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Abstract

Graph neural networks (GNNs) have become the de facto
standard for representation learning on graphs, which derive
effective node representations by recursively aggregating in-
formation from graph neighborhoods. While GNNs can be
trained from scratch, pre-training GNNs to learn transferable
knowledge for downstream tasks has recently been demon-
strated to improve the state of the art. However, conventional
GNN pre-training methods follow a two-step paradigm: 1)
pre-training on abundant unlabeled data and 2) fine-tuning on
downstream labeled data, between which there exists a signifi-
cant gap due to the divergence of optimization objectives in
the two steps. In this paper, we conduct an analysis to show the
divergence between pre-training and fine-tuning, and to allevi-
ate such divergence, we propose L2P-GNN, a self-supervised
pre-training strategy for GNNs. The key insight is that L2P-
GNN attempts to learn how to fine-tune during the pre-training
process in the form of transferable prior knowledge. To encode
both local and global information into the prior, L2P-GNN
is further designed with a dual adaptation mechanism at both
node and graph levels. Finally, we conduct a systematic empir-
ical study on the pre-training of various GNN models, using
both a public collection of protein graphs and a new compi-
lation of bibliographic graphs for pre-training. Experimental
results show that L2P-GNN is capable of learning effective and
transferable prior knowledge that yields powerful representa-
tions for downstream tasks. (Code and datasets are available
at https://github.com/rootlu/L2P-GNN.)

1 Introduction
Graph neural networks (GNNs) have emerged as the state of
the art for representation learning on graphs, due to their abil-
ity to recursively aggregate information from neighborhoods
on the graph, naturally capturing both graph structures as well
as node or edge features (Zhang, Cui, and Zhu 2020; Wu et al.
2020; Dwivedi et al. 2020). Various GNN architectures with
different aggregation schemes have been proposed (Kipf and
Welling 2017; Hamilton, Ying, and Leskovec 2017; Velick-
ovic et al. 2018; Ying et al. 2018b; Hasanzadeh et al. 2019;
Qu, Bengio, and Tang 2019; Pei et al. 2020; Munkhdalai and
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Yu 2017). Empirically, these GNNs have achieved impressive
performance in many tasks, such as node and graph classifica-
tion (Kipf and Welling 2017; Hamilton, Ying, and Leskovec
2017), recommendation systems (Fan et al. 2019; Ying et al.
2018a) and graph generation (Li et al. 2018; You et al. 2018).
However, training GNNs usually requires abundant labeled
data, which are often limited and expensive to obtain.

Inspired by pre-trained language models (Devlin et al.
2019; Mikolov et al. 2013) and image encoders (Girshick
et al. 2014; Donahue et al. 2014; He et al. 2019), recent ad-
vances in pre-training GNNs have provided insights into re-
ducing the labeling burden and making use of abundant unla-
beled data. The primary goal of pre-training GNNs (Navarin,
Tran, and Sperduti 2018; Hu et al. 2019, 2020) is to learn
transferable prior knowledge from mostly unlabeled data,
which can be generalized to downstream tasks with a quick
fine-tuning step. Essentially, those methods mainly follow a
two-step paradigm: (1) pre-training a GNN model on a large
collection of unlabeled graph data, which derives generic
transferable knowledge encoding intrinsic graph properties;
(2) fine-tuning the pre-trained GNN model on task-specific
graph data, so as to adapt the generic knowledge to down-
stream tasks. However, here we argue that there exists a gap
between pre-training and fine-tuning due to the divergence of
the optimization objectives in the two steps. In particular, the
pre-training step optimizes the GNN to find an optimal point
over the pre-training graph data, whereas the fine-tuning step
aims to optimize the performance on downstream tasks. In
other words, the pre-training process completely disregards
the need to quickly adapt to downstream tasks with a few
fine-tuning updates, leaving a gap between the two steps. It
is inevitable that such divergence will significantly hurt the
generalization ability of the pre-trained GNN models.
Challenges and Present Work. In this work, we propose to
alleviate the divergence between pre-training and fine-tuning.
However, alleviating this divergence is non-trivial, presenting
us with two key challenges. (1) How to narrow the gap caused
by different optimization objectives? Existing pre-training
strategies for GNNs fall into a two-step paradigm, and the op-
timization gap between the two steps significantly limits the
ability of pre-trained GNNs to generalize to new downstream
tasks. Hence, it is vital to re-examine the objective of the
pre-training step to better match that of the fine-tuning step.
(2) How to simultaneously preserve node- and graph-level



information with completely unlabeled graph data? Existing
methods either only take into account the node-level pre-
training (Navarin, Tran, and Sperduti 2018; Hu et al. 2019),
or still require supervised information for graph-level pre-
training (Hu et al. 2020). While at the node level, predicting
links between node pairs is naturally self-supervised, graph-
level self-supervision has been seldom explored. Thus, it
is crucial to devise a self-supervised strategy to pre-train
graph-level representations.

To tackle the challenges, we propose L2P-GNN, a pre-
training strategy for GNNs that learns to pre-train (L2P) at
both node and graph levels in a fully self-supervised manner.
More specifically, for the first challenge, L2P-GNN mimics
the fine-tuning step within the pre-training step, and thus
learns how to fine-tune during the pre-training process itself.
As a result, we learn a prior that possesses the ability of
quickly adapting to new downstream tasks with only a few
fine-tuning updates. The proposed learning to pre-train can be
deemed a form of meta-learning (Finn, Abbeel, and Levine
2017), also known as learning to learn. For the second chal-
lenge, we propose a self-supervised strategy with a dual adap-
tation mechanism, which is equipped with both node- and
graph-level adaptations. On one hand, the node-level adapta-
tion takes the connectivity of node pairs as self-supervised
information, so as to learn a transferable prior to encode local
graph properties. On the other hand, the graph-level adapta-
tion is designed for preserving the global information in the
graph, in which a sub-structure should be close to the whole
graph in the representation space.

To summarize, this work makes the following major con-
tributions.
• This is the first attempt to explore learning to pre-train

GNNs, which alleviates the divergence between pre-
training and fine-tuning objectives, and sheds a new per-
spective for pre-training GNNs.

• We propose a completely self-supervised GNN pre-
training strategy for both node- and graph-level represen-
tations.

• We build a new large-scale bibliographic graph data for
pre-training GNNs, and conduct extensive empirical stud-
ies on two datasets in different domains. Experimental
results demonstrate that our approach consistently and
significantly outperforms the state of the art.

2 Related Work
GNNs have received significant attention due to the preva-
lence of graph-structured data (Bronstein et al. 2017). Origi-
nally proposed (Marco, Gabriele, and Franco 2005; Scarselli
et al. 2008) as a framework of utilizing neural networks to
learn node representations on graphs, this concept is extended
to convolution neural networks using spectral methods (Def-
ferrard, Bresson, and Vandergheynst 2016; Bruna et al. 2014;
Levie et al. 2019; Xu et al. 2019a) and message passing archi-
tectures to aggregate neighbors’ features (Kipf and Welling
2017; Niepert, Ahmed, and Kutzkov 2016; Hamilton, Ying,
and Leskovec 2017; Velickovic et al. 2018; Abu-El-Haija et al.
2019). For a more comprehensive understanding of GNNs,
we refer readers to the literature (Wu et al. 2020; Battaglia

et al. 2018; Zhang, Cui, and Zhu 2020; Zhou et al. 2018). To
enable more effective learning on graphs, researchers have
explored how to pre-train GNNs for node-level representa-
tions on unlabeled graph data. Navarin et al. (Navarin, Tran,
and Sperduti 2018) utilize the graph kernel for pre-training,
while another work (Hu et al. 2019) pre-trains graph encoders
with three unsupervised tasks to capture different aspects of
a graph. More recently, Hu et al. (Hu et al. 2020) propose
different strategies to pre-train graph neural networks at both
node and graph levels, although labeled data are required at
the graph level.

On another line, meta-learning intends to learn a form
of general knowledge across similar learning tasks, so that
the learned knowledge can be quickly adapted to new tasks
(Vilalta and Drissi 2002; Vanschoren 2018; Peng 2020).
Among previous works on meta-learning, metric-based meth-
ods (Sung et al. 2018; Snell, Swersky, and Zemel 2017) learn
a metric or distance function over tasks, while model-based
methods (Santoro et al. 2016; Munkhdalai and Yu 2017) aim
to design an architecture or training process for rapid gen-
eralization across tasks. Finally, some optimization-based
methods directly adjust the optimization algorithm to enable
quick adaptation with just a few examples (Finn, Abbeel, and
Levine 2017; Yao et al. 2019; Lee et al. 2019; Lu, Fang, and
Shi 2020).

3 Learning to Pre-train:
Motivation and Overview

Our key insight is the observation that there exists a diver-
gence between pre-training and fine-tuning. In this section,
we conduct an analysis to demonstrate this divergence, and
further motivate a paradigm shift to learning to pre-train
GNNs.

3.1 Preliminaries

GNNs. Let G = (V, E ,X ,Z) denote a graph with nodes V
and edges E , where X ∈ R|V|×dv and Z ∈ R|E|×de are node
and edge features, respectively. A GNN involves two key
computations for each node v at every layer. (1) AGGREGATE
operation: aggregating messages from v’s neighbors Nv . (2)
UPDATE operation: updating v’s representation from its rep-
resentation in the previous layer and the aggregated messages.
Formally, the l-th layer representation of node v is given by

hlv =Ψ(ψ;A,X ,Z)l (1)

=UPDATE(hl−1v ,

AGGREGATE({(hl−1v ,hl−1u , zuv) : u ∈ Nv})),

where zuv is the feature vector of edge (u, v), and h0
v =

xv ∈ X is the input layer of a GNN. A denotes the adja-
cency matrix or some normalized variant, and Nv denotes
the neighborhood of node v whose definition depends on
a particular GNN variant. We abstract the composition of
the two operations as one parameterized function Ψ(·) with
parameters ψ.

To address graph-level tasks such as graph classification,
node representations need to be further aggregated into a



graph-level representation. The READOUT operation can usu-
ally be performed at the final layer as follows:

hG = Ω(ω;Hl) = READOUT({hlv|v ∈ V}), (2)

where hG is the representation of the whole graph G, and
Hl = [hlv] is the node representation matrix. READOUT is
typically implemented as a simple pooling operation like sum,
max or mean-pooling (Atwood and Towsley 2016; Duvenaud
et al. 2015) or more complex approaches (Bruna et al. 2014;
Ying et al. 2018b). We abstract READOUT as a parameterized
function Ω(·) with parameters ω.
Conventional GNN Pre-training. The goal of pre-training
GNNs is to learn a generic initialization for model parameters
using readily available graph structures (Hu et al. 2020, 2019).
Conventional pre-training strategies largely follow a two-
step paradigm. (1) Pre-training a GNN model fθ(A,X ,Z)
on a large graph-structured dataset (e.g., multiple small
graphs or a large-scale graph). The learned parameter θ0
is expected to capture task-agnostic transferable informa-
tion. (2) Fine-tuning the pre-trained GNN on downstream
tasks. With multiple (say, n) gradient descent steps over
the training data of the downstream task, the model aims
to obtain the optimal parameters θn on the downstream
task. Note that, for node-level tasks, the GNN model is
fθ = Ψ(ψ;A,X ,Z), i.e., θ = ψ; for graph-level tasks, the
GNN model is fθ = Ω(ω; Ψ(ψ;A,X ,Z)), i.e., θ = {ψ, ω}.

Let Dpre denote the pre-training graph data, and Lpre be
the loss function for pre-training. That is, the objective of
pre-training is to optimize the following:

θ0 = arg minθ Lpre(fθ;Dpre). (3)

On the other hand, the fine-tuning process aims to maximize
the performance on the testing graph data Dte of the down-
stream task, after fine-tuning over the training graph dataDtr
of the task. The so-called fine-tuning initializes the model
from the pre-trained parameters θ0, and updates the GNN
model fθ with multiple gradient descent steps over (usually
batched) Dtr. Taking one step as an example, we have

θ1 = θ0 − η∇θ0Lfine(fθ0 ;Dtr), (4)

where Lfine is the loss function of fine-tuning and η is the
learning rate.

3.2 Learning to Pre-train GNNs
In the conventional two-step paradigm, the pre-training step
is decoupled from the fine-tuning step. In particular, θ0 is
pre-trained without accommodating any form of adaptation
that are potentially useful for future fine-tuning on down-
stream tasks. The apparent divergence between the two steps
would result in suboptimal pre-training. To narrow the gap
between pre-training and fine-tuning, it is important to learn
how to pre-train such that the pre-trained model becomes
more amenable to adaptations on future downstream tasks. To
this end, we propose to structure the pre-training stage to sim-
ulate the fine-tuning process on downstream tasks, so as to
directly optimize the pre-trained model’s quick adaptability
to downstream tasks.

Specifically, to pre-train a GNN model over a graph
G ∈ Dpre, we sample some sub-structures from G, denoted
DtrTG , as the training data of a simulated downstream task TG ;
similarly, we mimic the evaluation on testing sub-structures
DteTG that are also sampled from G. Training and testing data
are simulated here since the actual downstream task is un-
known during pre-training. This setup is reasonable as our
goal is learning how to pre-train a GNN model with the ability
of adapting to new tasks quickly, rather than directly learning
the actual downstream task.

Formally, our pre-training aims to learn a GNN model
fθ, such that after fine-tuning it on the simulated task train-
ing data DtrTG , the loss on the simulated testing data DteTG is
minimized. That is,

θ0 = arg minθ
∑
G∈Dpre Lpre(fθ−α∇θLpre(fθ;DtrTG

);DteTG ),

(5)
where θ−α∇θLpre(fθ;DtrTG ) is the fine-tuned parameters on
DtrTG (still part of the pre-training data), in a similar manner as
the fine-tuning step on the downstream task in Eq. (4). More-
over, α represents the learning rate of the fine-tuning on DtrTG ,
which can be fixed as a hyper-parameter. Thus, the output of
our pre-training, θ0, is not intended to directly optimize the
training or testing data of any particular task. Instead, θ0 is
optimal in the sense that it allows for quick adaptation to new
tasks in general. Note that here we only show one gradient up-
date, and yet employing multiple updates is a straightforward
extension.
Connection to other works. Interestingly, our proposed
strategy of learning to pre-train GNNs subsumes the conven-
tional GNN pre-training as a special case. In particular, if we
set α = 0, i.e., there is no fine-tuning on DtrTG , our strategy
becomes equivalent to conventional pre-training approaches.
Furthermore, our strategy is a form of meta-learning, in partic-
ular, model agnostic meta-learning (MAML) (Finn, Abbeel,
and Levine 2017). Meta-learning aims to learn prior knowl-
edge from a set of training tasks that can be transferred to
testing tasks. Specifically, MAML learns a prior that can be
quickly adapted to new tasks by one or a few gradient updates,
so that the prior, after being adapted to the so-called support
set of each task, can achieve optimal performance on the
so-called query set of the task. In our case, the output of our
pre-training θ0 is the prior knowledge that can quickly adapt
to new downstream tasks, while DtrTG and DteTG correspond to
the support and query sets in MAML, respectively.

4 Proposed Method
In the following, we introduce our approach L2P-GNN. We
first present a self-supervised base GNN model for learning
graph structures in the MAML setting, followed by our dual
node- and graph-level adaptations designed to simulate fine-
tuning during the pre-training process.

4.1 Self-supervised Base Model
At the core of L2P-GNN is the notion of learning to pre-
train a GNN to bridge the gap between the pre-training and
fine-tuning processes. Specifically, our approach can be for-
mulated as a form of MAML. To this end, we define a task as
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Figure 1: Illustration of L2P-GNN. (a/b) Task construction for a graph, where the graph G is associated with a parent task TG
consisting of k child tasks {T 1

G , · · · , T kG }. (c) Dual node- and graph-level adaptations on the support set, and the optimization of
transferable prior θ on the query set.

capturing structures and attributes in a graph, from both local
and global perspectives. The meta-learned prior can then be
adapted to a new task or graph.
Task Construction. Consider a set of graphs as the pre-
training data, Dpre = {G1,G2, · · · ,GN}. A task TG =
(SG ,QG) involves a graph G, consisting of a support set
SG and a query set QG . We learn the prior such that, after
updating by gradient descent w.r.t. the loss on the support
set, it optimizes the performance on the query set, which
simulates the training and testing in the fine-tuning step.

As illustrated in Figs. 1(a) and (b), to promote both
global and local perspectives of a graph, its correspond-
ing task TG is designed to contain k child tasks, i.e., TG =
(T 1
G , T 2

G , · · · , T kG ). Each child task T cG attempts to capture a
local aspect of G, which is defined as

T cG =
(
ScG = {(u, v) ∼ pE},QcG = {(p, q) ∼ pE}

)
(6)

s.t. ScG ∩QcG = ∅,
where the support ScG and query QcG contain edges randomly
sampled from the edge distribution pE of the graph, and they
are mutually exclusive. In essence, child tasks incorporate
the local connectivity between node pairs in a graph, and
they fuse into a parent task TG = (SG ,QG) to facilitate a
graph-level view, where SG = (S1G ,S2G , · · · ,SkG) and QG =

(Q1
G ,Q2

G , · · · ,QkG),
Base GNN Model. Given the parent and child tasks, we
design a self-supervised base GNN model with node-level
aggregation and graph-level pooling to learn node and graph
representations, respectively. The key idea is to utilize the in-
trinsic structures of label-free graph data as self-supervision,
at both node and graph levels. Specifically, the base model
fθ involves node-level aggregation Ψ(ψ;A,X ,Z) that ag-
gregates node information (e.g., its local structures and at-
tributes) to generate node representations, and graph-level
pooling Ω(ω;H) that further generates a graph-level repre-
sentation given the node representation matrix H.

In node-level aggregation, the node embeddings are aggre-
gated from their neighborhoods, as defined in Eq. (1). That
is, for each node v ∈ G, we obtain its representation hv after
l iteration of Ψ(·). Subsequently, given a support edge (u, v)
in a child task T cG , we optimize the self-supervised objective
of predicting the link between u and v (Tang et al. 2015;
Hamilton, Ying, and Leskovec 2017), as follows.

Lnode(ψ;ScG) =
∑

(u,v)∈ScG

(7)

− ln(σ(h>u hv))− ln(σ(−h>u hv′)),

where v′ is a negative node sample that is not linked with
node u in the graph, σ is the sigmoid function, and ψ denotes
the learnable parameters of Ψ(·). The node-level aggregation
encourages linked nodes in the support set of the child tasks
to have similar representations.

In graph-level pooling, the graph representation hG is gath-
ered from node representations with the pooling function
defined in Eq. (2). As the child tasks capture various local
sub-structures of the graph, we also perform pooling on the
support nodes of each child task T cG to generate the pooled
representation hScG = Ω(ω; {hu|∀u,∃v : (u, v) ∈ ScG}).
Given a parent task TG = (SG ,QG) which is a fusion of all
child tasks, we define the following self-supervised graph-
level objective:

Lgraph(ω;SG) =

k∑
c=1

(8)

− log(σ(h>ScGhG))− log(σ(−h>ScGhG′)),

where ω denotes the learnable parameters of Ω(·), and hG′

denotes the shifted graph representation by randomly shifting
some dimensions of hG (Velickovic et al. 2019), serving as
the negative sample.



Altogether, to capture both node- and graph-level informa-
tion, we minimize the following loss for a graph G:

LTG (θ;SG) = Lgraph(ω;SG) +
1

k

k∑
c=1

Lnode(ψ;ScG), (9)

where θ = {ψ, ω} is the learnable parameters of our self-
supervised base GNN model.

4.2 Dual Adaptation
As motivated, to bridge the gap between the pre-training and
fine-tuning processes, it is crucial to optimize the model’s
ability of quickly adapting to new tasks during pre-training
itself. To this end, we propose learning to pre-train the base
GNN model: we aim to learn transferable prior knowledge
(i.e., θ = {ψ, ω}), to provide an adaptable initialization that
can be quickly fine-tuned for new downstream tasks with new
graph data. In particular, the learned initialization should not
only encode and adapt to the local connectivity between node
pairs, but also become capable of generalizing to different
sub-structures of the graphs. Correspondingly, we devise
the dual node- and graph-level adaptations, as illustrated in
Fig. 1(c).
Node-level Adaptation. To simulate the procedure of fine-
tuning on training data, we calculate the loss on the support
set ScG in each child task T cG as shown in Eq. (7). Then, we
adapt the node-level aggregation prior ψ w.r.t. the support
loss with one or a few gradient descent step, to obtain the
adapted prior ψ′ for the child tasks. For instance, when using
one gradient update with a node-level learning rate α, we
have

ψ′ = ψ − α∂
∑k
c=1 Lnode(ψ;ScG)

∂ψ
. (10)

Graph-level Adaptation. To encode how to pool node
information for representing a graph, we adapt the graph-
level pooling prior ω to a parent task TG with one (or a few)
gradient descent step. Given β as the graph-level learning
rate, the adapted pooling prior is given by

ω′ = ω − β ∂L
graph(ω;SG)

∂ω
. (11)

Optimization of Transferable Prior. With the node- and
graph-level adaptations, we have adapted the prior θ to
θ′ = {ψ′, ω′} that is specific to the task TG . To mimic the test-
ing process with the fine-tuned model, the base GNN model
is trained by optimizing the performance of the adapted pa-
rameters θ′ on the query set QG over all training tasks or
graphs in Dpre. That is, the transferable prior θ = {ψ, ω}
will be optimized through the backpropgation of the query
loss given by ∑

G∈Dpre
LTG (θ′;QG). (12)

In other words, we can update the prior θ as follows.

θ ← θ − γ ∂
∑
G∈Dpre LTG (θ′;QG)

∂θ
, (13)

where γ is the learning rate of the prior. The detailed training
procedure is provided in Appendix A.

Table 1: Statistics of the two datasets.

Dataset Biology PreDBLP

#subgraphs 394,925 1,054,309
#labels 40 6

#subgraphs for pre-training 306,925 794,862
#subgraphs for fine-tuning 88,000 299,447

4.3 Discussion
Here we give an analysis of the proposed L2P-GNN with
respect to model generality and efficiency.

Firstly, the proposed L2P-GNN is generalized and can
be easily applied to different graph neural networks. Sec.
3.2 demonstrates the divergence between pre-training and
fine-tuning, which is widely known in the literature (Lv et al.
2020; Gururangan et al. 2020), whether it is on the graph data,
or in natural language process or computer vision. L2P-GNN
directly optimizes the pre-trained model’s quick adaptability
to downstream tasks by simulating the fine-tuning process on
downstream tasks, making it free from the architectures of
graph neural networks.

Secondly, our L2P-GNN is efficient and can be parallelized
for large-scale datasets. In L2P-GNN, for task construction,
the time complexity is linear w.r.t. the number of edges as
each task contains edges sampled from the graph. For dual
adaptation, the time complexity depends on the architecture
of the GNN, which is at most k (i.e., number of child tasks)
times the complexity of the corresponding GNN. As the
number of child task k is usually small, the complexity of
L2P-GNN is as efficient as other pre-training strategies for
GNNs. Besides, with on-the-fly transformation of data (e.g.,
task construction), there is almost no memory overhead for
our L2P-GNN. Detailed pseudocode of the algorithm is in
supplemental material, Appendix A.

5 Experiments
In this section, we present a new graph dataset for pre-
training, and compare the performance of our approach and
various state-of-the-art pre-training baselines. Lastly, we con-
duct thorough model analysis to support the motivation and
design of our pre-training strategy.

5.1 Experimental Settings
Datasets. We conduct experiments on data from two do-
mains: biological function prediction in biology (Hu et al.
2020) and research field prediction in bibliography. The biol-
ogy graphs come from a public repository1, covering 394,925
protein subgraphs (Marinka et al. 2019). We further present
a new collection of bibliographic graphs called PreDBLP,
purposely compiled for pre-training GNNs based on DBLP2,
which contains 1,054,309 paper subgraphs in 31 fields (e.g.,
artificial intelligence, data mining). Each subgraph is cen-
tered at a paper and contains the associated information of

1http://snap.stanford.edu/gnn-pretrain
2https://dblp.uni-trier.de



Table 2: Experimental results (mean ± std in percent) of different pre-training strategies w.r.t. various GNN architectures. The
improvements are relative to the respective GNN without pre-training.

Model Biology PreDBLP
GCN GraphSAGE GAT GIN GCN GraphSAGE GAT GIN

No pre-train 63.22±1.06 65.72±1.23 68.21±1.26 64.82±1.21 62.18±0.43 61.03±0.65 59.63±2.32 69.01±0.23

EdgePred 64.72±1.06 67.39±1.54 67.37±1.31 65.93±1.65 65.44±0.42 63.60±0.21 55.56±1.67 69.43±0.07
DGI 64.33±1.14 66.69±0.88 68.37±0.54 65.16±1.24 65.57±0.36 63.34±0.73 61.30±2.17 69.34±0.09

ContextPred 64.56±1.36 66.31±0.94 66.89±1.98 65.99±1.22 66.11±0.16 62.55±0.11 58.44±1.18 69.37±0.21
AttrMasking 64.35±1.23 64.32±0.78 67.72±1.16 65.72±1.31 65.49±0.52 62.35±0.58 53.34±4.77 68.61±0.16

L2P-GNN 66.48±1.59 69.89±1.63 69.15±1.86 70.13±0.95 66.58±0.28 65.84±0.37 62.24±1.89 70.79±0.17
(Improv.) (5.16%) (6.35%) (1.38%) (8.19%) (7.08%) (7.88%) (4.38 %) (2.58%)

the paper. The new bibliographic dataset is publicly released,
while more detailed descriptions on the construction or pro-
cessing of the datasets are included in Appendix B.

For biology data, as in (Hu et al. 2020), we use 306,925 un-
labeled protein ego-networks for pre-training. In fine-tuning,
we predict 40 fine-grained biological functions with 88,000
labeled subgraphs that correspond to 40 binary classification
tasks. We split the downstream data with species split (Hu
et al. 2020), and evaluate the test performance with average
ROC-AUC (Bradley 1997) across the 40 tasks. For PreDBLP,
we utilize 794,862 subgraphs to pre-train a GNN model. In
fine-tuning, we predict the research field with 299,447 la-
beled subgraphs from 6 different categories. We randomly
split the downstream data and evaluate test performance with
micro-averaged F1 score. For both domains, we split down-
stream data with 8:1:1 ratio for train/validation/test sets. All
downstream experiments are repeated with 10 random seeds,
and we report the mean with standard deviation. The detailed
statistics of two datasets are summarized in Table 1.

Baselines. To contextualize the empirical results of L2P-
GNN on the pre-training benchmarks, we compare against
four self-supervised or unsupervised baselines: (1) the origi-
nal Edge Prediction (denoted by EdgePred) (Hamilton, Ying,
and Leskovec 2017) to predict the connectivity of node
pairs; (2) Deep Graph Infomax (denoted by DGI) (Velickovic
et al. 2019) to maximize local mutual information across the
graph’s patch representations; (3) Context Prediction strategy
(denoted by ContextPred) (Hu et al. 2020) to explore graph
structures and (4) Attribute Masking strategy (denoted by
AttrMasking) (Hu et al. 2020) to learn the regularities of
the node and edge attributes distributed over graphs. Further
details are provided in Appendix D.

GNN Architectures and Parameter Settings. All pre-
training baselines and our L2P-GNN can be implemented
for different GNN architectures. We experiment with four
popular GNN architectures, namely, GCN (Kipf and Welling
2017), GraphSAGE (Hamilton, Ying, and Leskovec 2017),
GAT (Velickovic et al. 2018) and GIN (Xu et al. 2019b).
Implementation details are presented in Appendix C. We
tune hyper-parameters w.r.t. the model performance on vali-
dation sets. The hyper-parameter settings and experimental
environment are discussed in Appendix D.

5.2 Performance Comparison
Table 2 compares the performance of L2P-GNN and state-
of-the-art pre-training baselines, w.r.t. four different GNN ar-
chitectures. We make the following observations. (1) Overall,
the proposed L2P-GNN consistently yields the best perfor-
mance among all methods across architectures. Compared to
the best baseline on each architecture, L2P-GNN achieves up
to 6.27% and 3.52% improvements on the two datasets, re-
spectively. We believe that such significant improvements
can be attributed to the simulation of fine-tuning during
the pre-training process, thereby narrowing the gap between
pre-training and fine-tuning objectives. (2) Furthermore, pre-
training GNNs with abundant unlabeled data is clearly helpful
to downstream tasks, as our L2P-GNN brings up to 8.19%
and 7.88% gains relative to non-pretrained models on the two
datasets, respectively. (3) We also notice that some baselines
give surprisingly limited performance gain and yield negative
transfer (Rosenstein et al. 2005) on the downstream task (i.e.,
EdgePred and AttrMasking strategies w.r.t. the GAT model).
The reason might be that these strategies learn information
irrelevant to the downstream tasks, which harms the gen-
eralization of the pre-trained GNNs. This finding confirms
previous observations (Hu et al. 2020; Rosenstein et al. 2005)
that negative transfer results in limitations on the applicability
and reliability of pre-trained models.

5.3 Model Analysis
Next, we investigate the underlying mechanism of L2P-GNN:
the capability to narrow the gap between pre-training and fine-
tuning by learning to pre-train GNNs, the impact of the node
and graph-level adaptations on L2P-GNN’s performance and
a parameter analysis. Since similar trends are observed for
different GNN architectures, here we only report the results
w.r.t. the GIN model.
Comparative Analysis. We attempt to validate whether
L2P-GNN narrows the gap between pre-training and fine-
tuning by learning to pre-train GNNs. Towards this end, we
conduct a comparative analysis of the pre-trained GNN model
before and after fine-tuning on downstream tasks (named
Model-P and Model-F), and consider three perspectives for
comparison: Centered Kernel Alignment (CKA) similarity
(Kornblith et al. 2019) between the parameters of Model-P
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Figure 2: CKA similarity of GIN layers and changes of loss and performance on two datasets.
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Figure 3: Model analysis w.r.t. the GIN model.

and Model-F, changes in training loss (delta loss) and test-
ing performance on downstream tasks (delta RUC-AUC or
Micro-F1). As presented in Fig. 2, we observe that the CKA
similarities of our L2P-GNN parameters before and after
fine-tuning are generally smaller than those of the baselines,
indicating that L2P-GNN undergoes larger changes so as
to become more adapted to downstream tasks. Besides, the
smaller changes in training loss show that L2P-GNN can
easily achieve the optimal point of the new tasks by rapid
adaptations. This further implies that the objectives of our
pre-training and downstream tasks are more aligned, resulting
in a quick adaptation in the right optimization direction for
downstream tasks and a much more significant improvement
in testing performance. Thus, L2P-GNN indeed narrows the
gap by learning how to make adaptations during the pre-
training process.

Ablation Study. As the node- and graph-level adaptations
play pivotal roles in L2P-GNN, we compare two ablated vari-
ants, namely L2P-GNN-Node (with only node-level adap-
tation) and L2P-GNN-Graph (with only graph-level adapta-
tion). As reported in Fig. 3(a), L2P-GNN is superior to both
variants on the two datasets. The results demonstrate that
both the local node-level structures and global graph-level
information are useful and it is beneficial to model them
jointly.

Parameter Analysis. Lastly, we investigate the effect of
the number of node- and graph-level adaptation steps (s, t),
as well as the dimension of node representations. We plot the
performance of L2P-GNN under combinations of 0 ≤ s ≤ 3
and 0 ≤ t ≤ 3 in Fig. 3(b). We find that L2P-GNN is robust

to different values of s and t, except when one or both of
them are zero (i.e., no adaptation at all). In particular, L2P-
GNN can adapt quickly with only one gradient update in both
adaptions (i.e., s = t = 1). Finally, we summarize the impact
of the dimension in Fig. 3(c). We observe that L2P-GNN
achieves the optimal performance when the dimension is 300
and is generally stable around the optimal setting, indicating
that L2P-GNN is robust w.r.t. the representation dimension.

6 Conclusion
In this paper, we introduce L2P-GNN, a self-supervised pre-
training strategy for GNNs. We find that with conventional
pre-training strategies, there exists a divergence between the
pre-training and fine-tuning objectives, resulting in subopti-
mal pre-trained GNN models. To narrow the gap by learning
how to pre-train GNNs, L2P-GNN structures the pre-training
step to simulate the fine-tuning process on downstream tasks,
so as to directly optimize the pre-trained model’s quick adapt-
ability to downstream tasks. At both node and graph levels,
L2P-GNN is equipped with dual adaptations to utilize the in-
trinsic structures of label-free graph data as self-supervision
to learn local and global representations simultaneously. Ex-
tensive experiments demonstrate that L2P-GNN significantly
outperforms the state of the art and effectively narrows the
gap between pre-training and fine-tuning.
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Appendices
A Pseudocode of L2P-GNN

The pseudocode of the pre-training procedure for L2P-GNN
is outlined in Algorithm 1. The training of L2P-GNN in-
volves the initialization of parameters, task construction, as
well as node-level and graph-level adaptations. At the begin-
ning (Line 1), we randomly initialize all learnable parameters
θ in our L2P-GNN, including the node-level aggregation pa-
rameters ψ and graph-level pooling parameters ω. Then, we
construct child tasks and the parent task for the graph G. Each
child task consists of a support set and a query set, each of
which contains edges randomly sampled from the edge distri-
bution pE of the graph (Line 2). In each training iteration, for
each child task T cG , we perform node-level adaptation on the
support set (Line 4–8). Furthermore, we conduct graph-level
adaptation with the sub-structure and whole graph representa-
tions (Line 9–12). At last, we update all learnable parameters
in L2P-GNN (Line 13). The process stops when the model
converges.

Algorithm 1 Pre-training of L2P-GNN

Require: a pre-training graph G = (V, E ,X ,Z); node and
graph-level update steps: s and t; node-level, graph-level
and prior learning rates: α, β and γ; number of child-
tasks: k; support set and query set size: m and n.

1: Randomly initialize GNN parameters θ = {ψ, ω}
2: Construct child tasks and the parent task for the graph G

by Eq. (6): TG = (T 1
G , T 2

G , · · · , T kG ),
each child task T cG consisting of a support ScG and a query
set QcG , and ScG = {(u, v) ∼ pE},QcG = {(p, q) ∼ pE}.

3: while not done do
4: for all child task T cG w.r.t. graph G do
5: Compute node representation hlv by Eq. (1) for all

nodes in support set ScG
6: Evaluate Lnode(ψ,ScG) by Eq. (7)
7: Node-level adaptation by Eq. (10) with s updates
8: end for
9: Compute sub-structure representation with hScG =

Ω
(
ω;
{
hu|∀u,∃v : (u, v) ∈ ScG

})
10: Compute the whole graph representation hG by Eq. (2)

11: Evaluate Lgraph(ω,SG) by Eq. (8)
12: Graph-level adaptation by Eq. (11) with t updates
13: Update all learnable parameters θ in L2P-GNN by Eq.

(9)
14: end while

B Details and Processing of Datasets
We conduct experiments on two large-scale datasets, includ-
ing biology graphs (called Biology) and bibliographic graphs
(called PreDBLP). Here we provide more details of the two
datasets and any additional processing done.
Biology. Biology dataset comes from a public repository3,
covering 394,925 protein subgraphs. Following earlier work

3http://snap.stanford.edu/gnn-pretrain

(Hu et al. 2020), we perform biological function prediction
on the Biology data. Detailed information about the dataset
can be found in Appendix D of the original paper (Hu et al.
2020).
PreDBLP. To enrich graph pre-training data from a differ-
ent domain, we further present PreDBLP, a new compilation
of bibliographic graphs. We derive the new PreDBLP data
from AMiner4 and DBLP5. Specifically, PreDBLP contains
1,054,309 paper subgraphs in 31 fields (e.g., artificial intel-
ligence, data mining). Each subgraph is centered at a paper
and contains the associated information of the paper.

The original Aminer/DBLP contains both the records of
each paper and the implicit relations between papers, au-
thors, venues and keywords. For each paper record in the
Aminer/DBLP data, we generate a subgraph centered on the
paper as follows: (1) according to the citation relationship, we
perform a breadth-first search to select the subgraph nodes,
with a search depth limit of 2 and a maximum number of 10
neighbors randomly expanded per node; (2) we include the
selected paper nodes and all the edges between those paper
nodes into the subgraph; (3) we convert the authors attached
to each paper’s record to nodes as well, and link them to the
paper; (4) we utilize the same procedure as in (3) to incorpo-
rate the information of venues and keyword terms. As a result,
each subgraph compiled contains four types of nodes (i.e., pa-
per, author, venue and keywords) and edges (i.e., paper-paper,
paper-author, paper-venue, paper-keywords).

We further utilize a set of node and edge features for the
subgraph. For each subgraph, we set the node/edge features
as their corresponding types. For instance, for nodes u and
v connected via edge (u, v), the feature of u and v are their
respective type and that of edge (u, v) is the type of (u, v).

During the pre-training process, we utilize 794,862 sub-
graphs that belong to 25 research fields to pre-train a GNN
model. On average, each subgraph contains 262.43 nodes and
900.07 edges. In fine-tuning, we predict the research field
of 299,447 labeled subgraphs from the remaining 6 research
fields, including: Artificial intelligence (86,956 subgraphs),
Computational linguistics (20,024 subgraphs), Computer Vi-
sion (95,729 subgraphs), Data mining (14,934 subgraphs),
Databases (68,287 subgraphs) and Fuzzy systems (13,517
subgraphs).

C Implementation details of GNN Models
Here, we introduce the GNN architecture used in biological
function prediction on Biology and research field prediction
on PreDBLP. For both experiments, we utilize the GIN ar-
chitectures (Xu et al. 2019b) as an example to explain how
to incorporate the node features and edge features in the
subgraphs.
Biological Function Prediction. Following previous work
(Hu et al. 2020), the raw node features are uniform and the
raw input edge features are binary vectors since the protein
subgraphs only have edge features. We adopt the same GNN
architecture as in (Hu et al. 2020) for protein function predic-

4https://www.aminer.cn/citation
5https://dblp.uni-trier.de



tion. Detailed implementation please refer to the Appendix
A in (Hu et al. 2020).
Research Field Prediction. In research field prediction,
the raw node features are 4-dimensional one-hot vectors,
denoted as xv ∈ R4 for node v. The raw edge features are
1-dimensional type vector indicting the type of edge, denoted
as zuv ∈ R1 (see Appendix B for details). As input features
to GNNs, we first embed the feature vectors by

h0
v = Wnodexu + bnode (A.1)

hleuv = Wedgezuv + bedge for l = 0, 1, ..., L− 1, (A.2)

where Wnode, bnode,Wedge and bedge are learnable param-
eters. At each layer, GNNs update node representations by

hlv =RELU(MLPl(CONCAT (A.3)

(
∑

u∈Nu∪{v}
hl−1u ,

∑
euv :u∈Nu∪{v}

hl−1e ))),

where CONCAT(·) takes two vectors as input and concate-
nates them, andNu is a set of nodes adjacent to node v. Note
that we remove the RELU activation in the final layer so as
to output negative values in hlv .

With the aggregation and update of node/edge features,
we generate node embeddings at final layer l to obtain the
graph-level representation hG :

hG = MLP(MEAN
({

hlv|v ∈ G
})

), (A.4)

where MEAN is the mean pooling operation and Ω(·) =
MLP(MEAN(·)) is the graph-level pooling calculation.

For other GNN architectures like GCN, GraphSAGE and
GAT, we adopt the implementation in the Pytorch Geomet-
ric library6. More specifically, the number of GAT attention
heads is set to 2 and the dimension of node/edge embeddings
as well as the number of GNN layers are the same as GIN.
Since these GNN models do not originally handle edge fea-
tures, we incorporate edge features into them similarly to
how we do it for the GIN; we add edge embeddings into node
embeddings, and perform the GNN message-passing on the
obtained node embeddings, as suggested in (Hu et al. 2020).

D Details of Experimental Settings
Implementation of Baselines To contextualize the empiri-
cal results of L2P-GNN on the pre-training benchmarks, we
compare against four self-supervised or unsupervised base-
lines:
• EdgePred (Hamilton, Ying, and Leskovec 2017) is a self-

supervised method to predict the connectivity of node pairs,
which adapts the same objective function as node-level loss
in L2P-GNN.

• DGI (Velickovic et al. 2019) learns node representations
within graph-structured data in an unsupervised manner,
which relies on maximizing mutual information between
patch representations and corresponding high-level sum-
maries of graphs—both derived using established graph
convolutional network architectures.
6https://github.com/rusty1s/pytorch_geometric

• ContextPred (Hu et al. 2020) utilizes node-level self-
supervised information to explore distribution of graph
structure. We use the suggested parameters to sample sub-
graphs to predict their surrounding graph structures.

• AttrMasking (Hu et al. 2020) is also a node-level self-
supervised pre-training strategy for GNNs, aiming to learn
the regularities of the node and edge attributes distributed
over graphs

All the above pre-training baselines and our L2P-GNN can
be implemented for different GNN architectures. We exper-
iment with four popular GNN architectures, namely, GCN
(Kipf and Welling 2017), GraphSAGE (Hamilton, Ying, and
Leskovec 2017), GAT (Velickovic et al. 2018) and GIN (Xu
et al. 2019b). We implement these GNNs with PyTorch Geo-
metric (PyG).
Parameter Settings We adopt Adaptive Moment Esti-
mation (Adam) to optimize our L2P-GNN. We select the
hyper-parameters that performed well across all downstream
tasks in the validation sets. In pre-training procedure, for
all datasets, we use a batch size of 64 and set the dimen-
sion of node representation to 300. We perform one step
gradient descent update in both node-level and graph-level
adaptations (i.e., s = t = 1). The prior learning rate, node-
level and graph-level learning rates are all set to 0.001 (i.e.,
γ = α = β = 0.001). We set the number of child tasks to 1
for all datasets, and set the sizes of support/query sets to 10/5
and 50/30 for Biology and PreDBLP dataset, respectively.
The number of layers of GNNs is set to 5 for all datasets.
The maximum number of epochs are set to 50 and 20 for
pre-training GNNs on Biology and PreDBLP dataset, respec-
tively. In fine-tuning procedure, all models are also trained
with Adam optimizer with a learning rate of 0.001. For all
downstream datasets, we use a batch size of 32 and train
models for 50 epochs.

For baselines, we optimize their parameters empirically
under the guidance of literature. Specifically, we also train
the baselines with Adam optimizer with a learning rate of
0.001 and set the dimension of node representation to 300.
As suggested in (Hu et al. 2020), we set the batch size to 256
for pre-training while 32 for fine-tuning Biology dataset. For
PreDBLP dataset, we set the batch size and the number of
epochs to be the same as in our L2P-GNN. Other baseline
parameters either adopt the original optimal settings or are
optimized by the validation set.
Experiment Environment All experiments are conducted
on a Linux server with one GPU (GeForce RTX 2080) and
CPU (Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz), and
its operating system is Red Hat 4.8.5-16. We implement the
proposed L2P-GNN with deep learning library PyTorch and
PyTorch Geometric. The Python and PyTorch versions are
3.7.6 and 1.4.0, respectively.
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