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Abstract
Graph-level representation learning is to learn low-
dimensional representation for the entire graph,
which has shown a large impact on real-world
applications. Recently, limited by expensive la-
beled data, contrastive learning based graph-level
representation learning attracts considerable atten-
tion. However, these methods mainly focus on
graph augmentation for positive samples, while
the effect of negative samples is less explored.
In this paper, we study the impact of negative
samples on learning graph-level representations,
and a novel curriculum contrastive learning frame-
work for self-supervised graph-level representa-
tion, called CuCo, is proposed. Specifically, we
introduce four graph augmentation techniques to
obtain the positive and negative samples, and uti-
lize graph neural networks to learn their represen-
tations. Then a scoring function is proposed to sort
the negative samples from easy to hard, and a pac-
ing function is to automatically select the negative
samples in each training procedure. Extensive ex-
periments on fifteen graph classification real-world
datasets, as well as the parameter analysis, well
demonstrate that our proposed CuCo yields truly
encouraging results in terms of performance on
classification and convergence.

1 Introduction
Graph-structured data, such as social networks, protein-
protein interactions and financial networks, are ubiquitous
in real-world scenes. Recently, it is well recognized that
an adequate representation of graphs is vital to the learning
performance of a statistical or machine learning model, and
therefore, much work has been done on learning the low-
dimensional [Cai et al., 2018]. To date, graph representa-
tion learning has achieved remarkable success in many do-
mains such as social network analysis and recommendation
system [Fouss et al., 2007].

Most of the current graph representation learning methods
aim at learning node-level representation in a single graph.
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However, in practice, a variety of applications need to ex-
tract the representation of entire graphs such as predicting
molecule properties in drug and material discovery [Gilmer
et al., 2017], and forecasting protein function in biological
networks [Jiang et al., 2017]. Therefore, graph-level repre-
sentation learning has also attracted a large amount of atten-
tion in recent years. These methods design a message passing
algorithm and aggregation procedure to get the node embed-
ding, and then use pooling mechanisms [Ying et al., 2018]
to obtain a representation of the entire graph in a supervised
way.

Nevertheless, in many real applications, labeled data are
very limited and expensive to obtain. For example, in the
chemical domain, labels are typically produced with a costly
density functional theory calculation. As a consequence, it is
becoming increasingly important to learn the representations
of entire graphs in an unsupervised or self-supervised fashion.
Recently, motivated by profound success in natural language
processing [Devlin et al., 2018] and computer vision [He et
al., 2020], self-supervised contrastive leaning based graph-
level representation learning attracts considerable attention.
To be specific, the basic idea of these methods is to enforce
the embeddings of views augmented from the same instance
(forming the positive pair) close to each other, while those
from different instances (negatives) apart using a contrastive
loss, leading to powerful and transferable representations.

When applying contrastive learning to graphs, two fun-
damental problems need to be carefully considered: one is
how to augment positive pairs on graphs and the other is how
to select and train negative samples effectively. These two
factors both essentially determine the success of contrastive
learning on graphs. Most of current works focus on the for-
mer issue and design different graph augmentation strategies,
such as substructure augmentation [Veličković et al., 2018;
Sun et al., 2019; Weihua et al., 2020a; You et al., 2020a].
However, little efforts have been made towards an effec-
tive negative sample selection and training strategies, while
in fact treating negative samples effectively is rather crucial
on the generalization performance of the contrastive learn-
ing [Robinson et al., 2020; Kalantidis et al., 2020]. This re-
quirement is quite challenging because in contrastive leaning
setting the label information is unknown, making it infeasible
to adopt existing negative sampling strategies that use label
information. At present, most of contrastive methods select



negative samples randomly in the training process. Neverthe-
less, different negative samples play different roles and have
different influence. Specifically, for a specific sample, the
difficulties of its negative samples is different, and these neg-
ative samples play distinct roles in different training periods.
For instance, harder negative samples play a major role in the
later stage of training [Kalantidis et al., 2020]. Therefore,
we need to consider the order of sampling negatives based on
their difficulty in the training process, especially in the case of
no label information, the problem becomes more challenging.

In this paper, we attempt to tackle the above challeng-
ing problem by proposing a Curriculum Contrastive learning
framework for graph-level representation, called CuCo. In
particular, we introduce four types of graph augmentations
for constructing positive sample pairs firstly and use a scor-
ing function to measure the difficulty of negative samples in
the training dataset. According to the learning process of hu-
man beings, we should start with easy samples when learning
a new model and then learn difficult samples gradually [Ben-
gio et al., 2009], so we sort the negative samples from easy
to hard. In addition, we design a pacing function to schedule
how the negative samples are introduced to the training pro-
cedure. At last, we utilize a popular contrastive object func-
tion to optimize our model. In this way, compared with state-
of-the-art self-supervised graph-level representation learning
methods, our method not only achieves overall better perfor-
mance, but also reduces training time.

We summarize the contributions as follows:
• We make the first attempt towards studying the impact of

negative samples on learning graph-level representation,
which is largely ignored by previous works but rather
practical and important for a good self-supervised graph-
level representation learning.

• We propose a novel curriculum contrastive learning
based graph representation learning model. Our model
effectively combines curriculum learning and con-
trastive learning, which is able to automatically select
and train negative samples in a human-learning manner.

• We conduct comprehensive experiments, which show
that the proposed method improves downstream conver-
gence speed and performance on fifteen datasets.

2 Related Work
Graph Neural Networks. In recent years, Graph Neural
Networks (GNNs) [Kipf and Welling, 2016; Xu et al., 2018]
have emerged as a promising approach for analyzing graph-
structured data. They follow an iterative neighborhood aggre-
gation (or message passing) scheme, where each node aggre-
gates feature vectors of its neighbors to compute its new fea-
ture vector [Gilmer et al., 2017]. After k iterations of aggre-
gation, a node is represented by its transformed feature vector,
which captures the structural information within the node’s
k-hop neighborhood. The representation of an entire graph
can then be obtained through pooling, for example, by mean-
ing the representation vectors of all nodes in the graph. Un-
like these methods which are mainly trained in a supervised
fashion, our approach aims for unsupervised/self-supervised
learning for GNNs.

Figure 1: Overall framework of CuCo. 1) Get positive pairs by graph
augmentations. 2) Get entire graph embeddings for each graph. 3)
Sort the negative samples by scoring function. 4) Use pacing func-
tion to specify the size of the memory bank used at each step. 5)
Optimize objective function with gradient descent.

Contrastive Learning. Contrastive learning is one of the
state-of-the-art self-supervised representation learning algo-
rithms that achieves great success for natural language pro-
cessing [Devlin et al., 2018] and visual representation learn-
ing [He et al., 2020]. Contrastive learning force the em-
beddings of views generated from the same data instance to
be closer to each other, while those from different instances
apart. In this work, we adopt the noise-contrastive estimation
from [Oord et al., 2018], as discussed in Section 3.

Curriculum Learning. Curriculum learning [Bengio et al.,
2009] is a training strategy that trains a machine learning
model from easier samples to harder samples, which imitates
the meaningful learning order in human curricula. Previous
empirical studies have shown that curriculum learning strat-
egy can improve the generalization capacity and convergence
speed of various models in a wide range of scenarios such as
computer vision [Pentina et al., 2015] and natural language
processing [Guo et al., 2018], etc. These methods are mainly
developed for images or words but not for graph-structured
data.

3 Our Proposed Model: CuCo
The main goal of this paper is to train a GNN encoder with
a curriculum learning based negative sampling strategy. As
shown in Figure 1, given a graph G, we employ the graph
augmentation techniques to obtain the positive pairs Ĝi, Ĝj at
first. Here we use every other graph except G in the train-
ing set as negative samples {Gk}Kk=1, called memory bank.
Then we utilize graph neural networks to learn their represen-
tations zi, zj , {zk}Kk=1 respectively. Thereafter we use a scor-
ing function S(·) to measure the difficulty of negative sam-
ples and sort the negative samples from easy to hard. Next a
pacing function g(·) is to schedule how the negative samples
are introduced to the training procedure. Finally, the param-
eters of GNN are optimized with gradient descent using the
contrastive learner.



Problem Definition. Given an undirected graph G =

{V, E} where V = {vi}|V|i=1 denotes a set of |V| nodes and
E = [eij ] ∈ R|V|×|V| denotes the adjacency matrix, with the
node feature matrix X ∈ R|V|×N where xn = X[n, :]

T is
the N -dimensional attribute vector of the node vn ∈ V , for
self-supervised graph representation learning, a set of unla-
beled graphs G = {G1,G2, · · · ,GM} are given, and we aim
to learn a d-dimensional vector zGi ∈ Rd for each graph
Gi ∈ G under the guidance of the data itself.

3.1 Graph Augmentations
We know that, without any data augmentation, contrastive
learning is not helpful and often worse compared with train-
ing from scratch. Data augmentation aims at creating novel
and realistically rational data through applying certain trans-
formation without affecting the semantics label. We focus
on graph-level augmentations. Specifically, given a graph
G ∈ {Gm : m ∈ M} in the dataset of M graphs, we for-
mulate the augmented graph Ĝ satisfying: Ĝ ∼ T (Ĝ|G),
where T (·|G) is the augmentation distribution conditioned on
the original graph, which is pre-defined, representing the hu-
man prior for data distribution. Usually, there are four ba-
sic data augmentation strategies to construct positive pairs
of graphs [You et al., 2020a] : (1) node dropping that ran-
domly discards certain portion of nodes along with their con-
nections; (2) edge perturbation that perturbs the connectivi-
ties in G through randomly adding or dropping certain ratio
of edges; (3) attribute masking that prompts models to re-
cover masked node attributes using their context information,
i.e., the remaining attributes; and (4) subgraph that samples a
subgraph from G using random walk.

The given graph G undergoes graph data augmentations to
obtain two correlated views Ĝi, Ĝj , as a positive pair, where
Ĝi, Ĝj ∼ T (·|G) independently. Furthermore, although any
other graph in the training set can be regarded as a negative
pair with G, most of contrastive methods simply select nega-
tive samples randomly. However, how to strategically select
negative samples matters, we will discuss this in Sec. 3.4.
For different domains of graph datasets, we adopt [You et
al., 2020a] to strategically select data augmentations. Specif-
ically, for chemical and biochemical molecules, we employ
two augmentations strategies as: node dropping and sub-
graph; for social networks, we use all four data augmentation
strategies.

3.2 Graph Encoder

After we obtain the positive augmented graph pairs, i.e., Ĝi
and Ĝj , we need to learn their representations. Although
our method allows various choices of the network architec-
ture without any constraint, here we employ graph neural net-
works (GNNs) as the graph encoder. Next we take Ĝi as an
example to introduce the GNN based learning process, and
this procedure is the same as Ĝj . Given an undirected graph
Ĝi = {Vi, Ei} with the node feature matrix X ∈ R|Vi|×N

where xn = X[n, :]
T is the N -dimensional attribute vector

of the node vn ∈ Vi. Considering a L-layer GNN f (·), the

propagation of the lth layer is represented as:

a(l)n = AGGREGATION(l)({h(l−1)
n′ : n′ ∈ N (n)}),

h(l)
n = COMBINEl(h(l−1)

n ,a(l)n ), (1)

where h
(l)
n is the embedding of the node vn at the lth layer

with h
(0)
n = xn, N (n) is a set of nodes adjacent to vn, and

AGGREGATION(l)(·) and COMBINE(l)(·) are component
functions of the GNN layer. After the L-layer propagation,
the output embedding f(Ĝi) for Ĝi is summarized on layer
embeddings through the READOUT function. Then a multi-
layer perceptron (MLP) is adopted for the graph-level down-
stream task (classification or regression):

f(Ĝi) = READOUT({h(l−1)
n′ : vn ∈ Vi, l ∈ L}),

zi = MLP(f(Ĝi)). (2)

3.3 Contrastive Learning with Memory
To enforce maximizing the consistency between positive
pairs {zi, zj} compared with negative pairs, we adopt the
noise-contrastive estimation loss [Oord et al., 2018]. Specif-
ically, we define a “memory bank” Q which contains K neg-
ative sample embeddings {zk}Kk=1 for each positive pair {zi,
zj}, then we employ a similarity metric function sim(·, ·) to
calculate the similarity of positive pair {zi, zj} and the neg-
ative pair {zi, zk}. Based on this, the loss function is as fol-
lows:

LNCE = − log
exp(sim(zi, zj)/τ)

exp(sim(zi, zj)/τ) +
∑K
k=1 exp(sim(zi, zk)/τ)

, (3)

where τ denotes the temperature parameter. Minimizing
Eq.(3) implies that we enforce the positive pair score higher
than the negative pairs in the memory bank.

To simplify the calculation, we use dot product as the sim-
ilarity metric function. The log-likelihood function of Eq.(3)
is defined over the probability distribution created by apply-
ing a softmax function for each zi. Let pẑ be the match-
ing probability for the zi and the other samples ẑ ∈ Z =
Q ∪ {zj}, then the gradient of the loss with respect to the zi
is given by

∂LNCE

∂zi
= −1

τ

(1− pzj ) · zj −
∑
zk∈Q

pzk · zk

 ,

where

pẑ =
exp(zi

T ẑ/τ)∑
m∈Z exp(ziT zm/τ)

, (4)

and pzj , pzk are the matching probability of the positive pair
ẑ = zj and negative pair ẑ = zk respectively.

3.4 Curriculum Setting for Negative Sampling
Obviously, we need negative sampling from our memory
bank. In the following, we will introduce a novel nega-
tive sampling method by adopting curriculum learning. The
main idea is ordering negative samples during training based
on their difficulty. Generally speaking, a curriculum is de-
fined by specifying three ingredients [Hacohen and Wein-
shall, 2019]: the scoring function, the pacing function and
the order.



The Scoring Function
Here, in our memory bank, we have K negative embeddings
{zk} with different diffuculties. We then define a scoring
function, which maps a negative embedding zk to a numer-
ical score S(zk), to measure such difficulty. Usually, higher
score corresponds to a more difficult negative embedding. We
can set up the scoring function S(zk) as sim(zi, zk) ∈ R to
return the measure of a negative embedding’s difficulty, since
the higher the scoring function value is, the loss for zi also be-
comes higher according to Eq. (3), meaning that zk is a more
difficult negative embedding. Specially, we use two common
score functions based on embedding’s similarity:

• Cosine Similarity : It uses the cosine value of the angle
between two vectors to measure the similarity.

S(zk) =
|zk · zi|
|zk||zi|

. (5)

• Dot Product Similarity : In contrast to the cosine
similarity, the dot product is proportional to the vector
length.

S(zk) = zk · zi. (6)
The Pacing Function
After we get the score S(zk) of every single negative embed-
ding zk in the memory bank, we use pacing function to sched-
ule how the negative samples are introduced to the training
procedure. The pacing function g(t) specifies the size of the
memory bank used at each step t. The memory bank at step t
consists of the g(t) lowest scored samples. Negative sample
batches are sampled uniformly from this set. We denote the
full memory bank size by K and the total number of training
steps by T. Here we consider four common function families:
logarithmic, linear , quadratic, and root.

• Logarithmic :

g(t) = [1 + .1 log(
t

T
+ e−10)] ·K. (7)

• Polynomial :
g(t) = (t/T )λ ·K. (8)

where λ is a smoothing parameter which controls the
pace in the training procedure. λ = 1/2, 1, 2 denote
root, linear and quadratic pacing functions, respectively.

The Order
In order to narrow down the specific effects of using scoring
function based on ascending difficulty level, we specify an or-
der of either curriculum (ordering examples from the lowest
score to the highest score), anti-curriculum (ordering exam-
ples from the highest score to the lowest), or random.

3.5 Early Stop Mechanism
In the later stage of training, with the increasing difficulty
of negative samples, the proportion of false negative samples
which have the same label with the zi will increase, and false
negative samples will hurt the generalization performance of
the model [Kalantidis et al., 2020]. To relieve this problem,
we design an early stop mechanism. Specially, we define a
hyperparameter patience of early stop p. When loss no longer
decreases, p value begins to decreased. Once p becomes 0,
the training will stop.

Algorithm 1 Training procedure of CuCo

Input: Training set D = {Gj}NDj=1 , the number of training
iterations NT , difficulty scoring function S, pacing function
g, a GNN model f , patience of early stop p, the augmentation
distribution T
Output: The pre-trained GNN fθ

Initialize model parameters θ with an Xavier initialization.
Let t = 1.
while p ≥ 0 and t ≤ NT do
BG ← RandomSample(D)
BĜ ∼ T (BĜ |BG)
B′Ĝ ∼ T (B

′
Ĝ |BG)

zĜj , zĜ′
j
← Eqs. (1,2) (j = 1, 2, · · · , N)

zGi ← Eqs. (1,2) (i = 1, 2, · · · , ND − 1)
for j = 1 to N do

sort zGi according to S(zĜj , zGi) in ascending order
zG′

i
← zG [1, . . . , g(t)]

zGk ← UniformlySample(zG′
i
)

end for
LNCE ← Eq (3)
fθ ← fθ −∇fθ (LNCE)
if LNCE not descend then
p = p− 1

end if
end while

Datasets Category Graph Num. Avg.Node Avg.Edges

MUTAG Molecules 188 17.93 19.79
NCI1 Molecules 4110 29.87 32.30

PROTEINS Molecules 1113 39.06 72.82
DD Molecules 1178 284.32 715.66

COLLAB Social Networks 5000 74.49 2457.78
RDT-B Social Networks 4999 508.52 594.87

RDT-M5K Social Networks 2000 429.63 497.75

Table 1: Statistics of datasets

3.6 Model Optimization
The training procedure of CuCo is summarized in Algorithm
1. During the training, using the online-updated graph em-
beddings, we sort the negative embeddings by their difficulty
according to score function S(·), and then sample the neg-
ative pairs according to pacing function g(·). In each itera-
tion, the parameters of GNN are optimized with gradient de-
scent using the objective LNCE . If the objective no longer
decreases, the patience value p begins to reduce 1 every itera-
tion. Once the patience value p becomes 0 or epoch t achieves
the last iteration NT , the training will stop.

4 Experiments
In this section, in order to indicate that our self-supervised
model, CuCo, can learn graph representation fast and well,
we compare our model with state-of-the-art methods (SO-
TAs) in the settings of unsupervised and transfer learning on
graph classification.



Dataset NCI1 PROTEINS DD MUTAG RDT-B RDT-M5K COLLAB

DGK 80.31 ± 0.46 73.30 ± 0.82 74.85 ± 0.74 87.44 ± 2.72 78.04 ± 0.39 41.27 ± 0.18 64.66 ± 0.50
WL 80.01 ± 0.50 72.92 ± 0.56 74.02 ± 2.28 80.72 ± 3.00 68.82 ± 0.41 46.06 ± 0.21 69.30 ± 3.44

sub2vec 52.84 ± 1.47 53.03 ± 5.55 54.33 ± 2.44 61.05 ± 15.80 71.48 ± 0.41 36.68 ± 0.42 55.26 ± 1.54
graph2vec 73.22 ± 1.81 73.30 ± 2.05 70.32 ± 2.32 83.15 ± 9.25 75.78 ± 1.03 46.86 ± 0.26 71.10 ± 0.54
InfoGraph 76.20 ± 1.06 74.44 ± 0.31 72.85 ± 1.78 89.01 ± 1.13 82.50 ± 1.42 53.46 ± 1.03 70.65 ± 1.13
GraphCL 77.87 ± 0.41 74.39 ± 0.45 78.62 ± 0.40 86.80 ± 1.34 87.53 ± 0.84 55.99 ± 0.28 71.36 ± 0.44

CuCo 79.24 ± 0.56 75.91 ± 0.55 79.20 ± 1.12 90.55 ± 0.98 88.6 ± 0.55 56.49 ± 0.19 72.30 ± 0.34

Table 2: The performance of different methods on graph classification.

Figure 2: Training loss versus
epochs.

Figure 3: Accuracy versus nega-
tive sample size.

4.1 Unsupervised Representation Learning
We evaluate our method in the unsupervised representation
learning following [Sun et al., 2019], where CuCo is used to
learn graph representations in a fully unsupervised manner,
followed by evaluating the graph-level classification utility
of these representations. This is performed by directly using
these representations to train and test a SVM classifier.

Experiments Setting
We evaluate model performance on seven classical graph
classification benchmarks shown in Table 1. Aside from
SOTA graph kernel methods that Weisfeiler-Lehman sub-
tree kernel (WL) [Shervashidze et al., 2011] and deep graph
kernel (DGK) [Yanardag and Vishwanathan, 2015], we also
compare with four state-of-the-art unsupervised graph-level
representation learning methods as sub2vec [Adhikari et al.,
2018], graph2vec [Narayanan et al., 2017], InfoGraph [Sun et
al., 2019] and GraphCL[You et al., 2020a]. For our proposed
model, we adopt a three-layer Graph Isomorphism Network
(GIN) with 32-dimensional hidden units and a sum pooling
readout function for performance comparisons. We use 10-
fold cross validation accuracy to report the classification per-
formance. Experiments are repeated 5 times. We report re-
sults from previous papers with the same experimental setup
if available. If results are not previously reported, we imple-
ment them and conduct a hyperparameter search according to
the original paper.

Performance Analysis
The results of evaluating unsupervised graph level represen-
tations using downstream graph classification tasks are pre-
sented in Table 2. While two kernel methods perform well on
individual datasets, none of them are competitive across all
of the datasets. We find that CuCo outperforms all of these

Logarithmic Root Linear Quadratic

MUTAG 90.33 90.76 90.55 88.28
NCI1 77.45 78.15 78.95 78.19

PROTEINS 75.48 74.48 75.91 74.57
DD 77.96 78.12 79.22 78.33

RDT-B 87.78 87.55 88.61 86.16

Table 3: Employing alternative pacing functions on five datasets

baselines on 6 out of 7 of the datasets. In the other dataset
NCI1, CuCo still has very competitive performance.

We also investigate the benefits of convergence speed. We
compare CuCo with GraphCL for fairness, since our method
and GraphCL employ the same graph augmentations and
GNN architecture. Due to our early stop mechanism and or-
dered learning, as shown in Figure 2, our method leads to
faster training: our negative sampling only needs 13 to 14
epochs to reach the better performance than GraphCL in 20
epochs, which reduces time cost by about 40%.

Alternative Pacing Functions
In our empirical setup, we investigate all four pacing func-
tions on five datasets, and the results are shown in Table 3.
We find that the linear pacing function has a slight advantage
on most datasets and the other pacing functions have compa-
rable performance. For the logarithmic and root which are
concave functions, the memory bank we used will contain
more diffculty negative samples in a fewer iteration, result-
ing in the effect of curriculum learning is similar to random
sampling. For the quadratic which is a convex function, the
number of hard negative samples will rise rapidly in the later
stage of training. It leads to a rapid increase in the number of
false negative samples, which will be harmful for the model.
Therefore, we think that increasing the difficulty of introduc-
ing negative samples at a uniform rate have a positive effect
on improving the generalization performance.

The Number of Negative Samples
We employ three datasets to study the effect of negative sam-
ple size on generalization performance, and the results are
shown in Figure 3. We can find that too small or too large
number of negative samples are not good in our negative sam-
pling scheme. It is retional that few negative samples cannot
provide enough information for contrastive learning, while
too many negative samples will inevitably contain more false



Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Avg

No-Pre-Train 65.8 ± 4.5 74.0 ± 0.8 63.4 ± 0.6 57.3 ± 1.6 58.0 ± 4.4 71.8 ± 2.5 75.3 ± 1.9 70.1 ± 5.4 67.0

EdgePred 67.3 ± 2.4 76.0 ± 0.6 64.1 ± 0.6 60.4 ± 0.7 64.1 ± 3.7 74.1 ± 2.1 76.3 ± 1.0 79.9 ± 0.9 70.3
InfoGraph 68.2 ± 0.7 75.5 ± 0.6 63.1 ± 0.3 59.4 ± 1.0 70.5 ± 1.8 75.6 ± 1.2 77.6 ± 0.4 78.9 ± 1.1 70.3

AttrMasking 64.3 ± 2.8 76.7 ± 0.4 64.2 ± 0.5 61.0 ± 0.7 71.8 ± 4.1 74.7 ± 1.4 77.2 ± 1.1 79.3 ± 1.6 71.1
ContextPred 68.0 ± 2.0 75.7 ± 0.4 63.9 ± 0.6 60.9 ± 0.6 65.9 ± 3.8 75.8 ± 1.7 77.3 ± 1.0 79.6 ± 1.2 70.9

GraphPartition 70.3 ± 0.7 75.2 ± 0.4 63.2 ± 0.3 61.0 ± 0.8 64.2 ± 0.5 75.4 ± 1.7 77.1 ± 0.7 79.6 ± 1.8 70.8

CuCo 71.4 ± 1.2 75.8 ± 0.4 65.2 ± 0.5 62.1 ± 0.5 76.8 ± 2.6 72.2 ± 2.5 79.8 ± 0.7 80.6 ± 1.3 72.9

Table 4: Transfer learning comparison with different manually designed pre-training schemes.

Figure 4: Bar plots showing the best mean accuracy, for curriculum
(green), anti-curriculum (blue), random-curriculum (purple) sam-
pling for five classical graph classification benchmarks.

negative samples in the later stage of the curriculum, which
will hurt the generalization.

The Value of Ordered Learning
Equipped with the ingredients described in the previous sec-
tions, we investigate the relative benefits of curriculum neg-
ative sampling. To understand whether anti-curriculum, or
random learning provides any benefit over ordinary training,
we replicate this procedure with three random seeds and five
standard benchmark datasets. For each experiment in this
sweep, we select the best configuration and stopping time and
record the corresponding test accuracy. The results of these
runs are shown in Figure 4. Compared with random negative
sampling, the curriculum negative sampling has an average
improvement of the accuracy by about 2% for five bench-
marks. In addition, the anti-curriculum negative sampling is
not helpful for the model.

4.2 Transfer Learning
We perform transfer learning on molecular property predic-
tion in chemistry and protein function prediction in biology
following [Weihua et al., 2020a], which pre-trains and fine-
tunes the model in different datasets to evaluate the trans-
ferability of the pre-training scheme. We fine-tune the pre-
trained GNN model with a small portion of labels on down-
stream tasks.

Experiments Setting
We adopt the same train-test and model selection procedure
as in [Xu et al., 2018], where we perform 10-fold cross- vali-

dation and select the epoch with the best cross-validation per-
formance averaged over the 10 folds. The evaluation metric is
ROC-AUC score. For fine-tuning on a downstream task, a lin-
ear classifier is appended on the top of pre-trained GNN. All
reported results are averaged over five independent runs under
the same configuration. In our transfer learning experiments,
we evaluate model performance on eight Open Graph Bench-
mark (OGB) [Weihua et al., 2020b] molecule property pre-
diction datasets. Traditional unsupervised methods have no
ability to transfer knowledge to other domain datasets. So we
consider six baselines, including non-pretrain (direct super-
vised learning) and five state-of-the-art GNN self-supervised
learning (SSL) methods including EdgePred [Hamilton et al.,
2017], InfoGraph [Sun et al., 2019], AttrMasking [Weihua et
al., 2020a], ContextPred [Weihua et al., 2020a] and Graph-
Partition [You et al., 2020b].

Transferability of CuCo
Table 4 reports the performance of proposed CuCo method
compared with other works in transfer learning setting.
Among all self-supervised learning strategies, our method
outperforms all baselines on average performance and
achieves the highest results on on six of eight datasets. We
gain a 5% performance enhancement against non-pretrain
baseline, which well indicates the effectiveness of our pro-
posed CuCo on transfer learning.

5 Conclusion
In this paper, we study the impact of negative samples on
learning graph-level representations, and propose a novel cur-
riculum contrastive learning framework for self-supervised
graph-level representation called CuCo. We look into dif-
ferent ways of associating difficulty to negative samples us-
ing scoring functions and a variety of schedules known as
pacing functions for introducing negative samples to the self-
supervised training procedure. We conduct comprehensive
experiments, which show that the proposed method improves
downstream convergence speed and performance on fifteen
datasets.
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