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ABSTRACT
Learning informative representations of users and items from the

historical interactions is crucial to collaborative filtering (CF). Ex-

isting CF approaches usually model interactions solely within the

Euclidean space. However, the sophisticated user-item interactions

inherently present highly non-Euclidean anatomy with various

types of geometric patterns (i.e., tree-likeness and cyclic structures).

The Euclidean-based models may be inadequate to fully uncover

the intent factors beneath such hybrid-geometry interactions. To

remedy this deficiency, in this paper, we study the novel problem

of Geometric Disentangled Collaborative Filtering (GDCF), which

aims to reveal and disentangle the latent intent factors across multi-

ple geometric spaces. A novel generative GDCF model is proposed

to learn geometric disentangled representations by inferring the

high-level concepts associated with user intentions and various

geometries. Empirically, our proposal is extensively evaluated over

five real-world datasets, and the experimental results demonstrate

the superiority of GDCF.
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1 INTRODUCTION
The rapid development of information technology has facilitated

an explosion of information, leading to the challenge of informa-

tion overload [1]. Recommender systems mitigate the information

overload by suggesting a small set of items for users to meet their

personalized interests [26, 27, 47]. Basically, recommender systems

aim at modeling a user’s preferences based on her historical in-

teractions (e.g., ratings and clicks) with different items, known as

collaborative filtering (CF) [44], and further recommending the user

some items that she might be interested in [1].

Most existing CF models follow the paradigm to first learn a set

of user/item representations and then build an interaction func-

tion to make recommendations based on the learned embeddings

[44]. Learning representations that precisely reflect users’ prefer-

ences based chiefly on user historical behaviors, has been a central

point of interest. Matrix Factorization (MF) [24] embeds users and

https://doi.org/10.1145/3477495.3531982
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Figure 1: An illustration of the user-item interactions and
the non-Euclidean structures.

items as distributed vectors via matrix decomposition. Deep neu-

ral networks (DNNs) are further introduced to capture the latent

preferences beneath the highly non-linear interactions [15, 47]. Re-

cently, graph neural networks (GNNs) have demonstrated great

potential in boosting recommendation performance. High-order

user-item interactions are explicitly captured by the stacked GNN

layers to learn expressive embeddings [14, 48].

The representation learning of most CF models is defined in the

Euclidean space due to the computational simplicity [43]. How-

ever, recent researches have demonstrated that a myriad of data

(e.g., data with tree-likeness or cyclic structures) exhibits the highly

non-Euclidean latent anatomy [3, 25, 40, 50]. Compared to the

conventional Euclidean geometry, non-Euclidean geometries (i.e.,

hyperbolic or spherical geometry) are more suitable for modeling

data with non-Euclidean characteristics. Coincidentally, such non-

Euclidean characteristics also inherently exist in the CF scenario. As

shown in Figure 1(b), the high-order interactions of user 𝑢1 can be

naturally extended to a tree-likeness structure based on the interac-

tions in Figure 1(a). This is reasonable as the receptive field tends to

be exponentially larger in the higher orders [42]. Euclidean geome-

try is insufficient to obtain relatively low distortion for embedding

such tree structures even using an unbounded number of dimen-

sions [28], but this task would be surprisingly easy for hyperbolic

spaces with only 2 dimensions [41]. In addition, users sharing simi-

lar preferences may interact with similar items, leading to the cyclic

structures in Figure 1(c) (e.g., 𝑢4 → 𝑖2 → 𝑢5 → 𝑖3 → 𝑢4). Such

cyclic structures indicate the behavioral similarities between users,

which are essentially the collaborative signals leveraged by CF

methods [44]. Representing the cyclic structures into the Euclidean

space with limited expressivity may result in inferior representa-

tions, while spherical geometry is more powerful in modeling data

with cyclic structures [3, 9].

Recently, several works focus on learning user/item represen-

tations within a single type of non-Euclidean space (e.g., hyper-

bolic space) [36, 45, 46, 52]. However, the underlying structures of

user-item interactions are more complicated than the pure trees or

spheres. As shown in Figure 1(b), the tree-likeness structure and

the cyclic structure (e.g., 𝑢1 → 𝑖1 → 𝑢3 → 𝑖2 → 𝑢1) are nested

together, leading to the hybrid geometric characteristics. From this

point of view, the single geometry-based hypothesis is inadequate

to capture latent intent factors beneath such hybrid structures. To

reveal the latent reasons why a user interacted with an item, dis-

entangled representation learning is introduced to learn factorized

embeddings to disentangle the latent intent factors [31, 32, 49, 54].

Although existing disentangled CF models learn representations

solely within the Euclidean geometry, they motivate us to disen-

tangle the sophisticated characteristics with different geometries.

In this paper, we propose to perform CF over hybrid geome-

tries via disentangled learning, namely Geometric Disentangled

Collaborative Filtering (GDCF). Based on the basic assumption that

user-item interactions are latently generated from highly sophisti-

cated intent factors, we further presume that these intent factors

should be associated with various geometries. Different intent fac-

tors are responsible for generating user-item interactions belonging

to different types of geometries. However, how to learn a desirable

GDCF model is still obscure. Previous disentangled CF models only

focus on uncovering the intent factors, while GDCF further needs

to capture the latent correlations between the intent factors and

different geometries. In addition, the closeness measurements in

different geometries are distinct. For example, distances in spherical

spaces are finite while the distances can be infinite in Euclidean

and hyperbolic spaces. Since the representations of users and items

are defined within different geometries, it is essential to measure

the closeness across different geometries in a principled manner.

To address the mentioned challenges, we make the first attempt

to learn geometric disentangled representations and propose a novel

generative GDCF model on the basis of variational autoencoders

(VAEs). Specifically, the geometric disentangled representations are

learned by identifying the high-level geometric concepts associated

with user intentions. The concepts represent the intent factors

associated with different geometries, which contribute to capturing

the task-relevant correlations between latent factors and geometries.

To measure the user-item similarities across multiple geometries,

we further propose to project the disentangled representations from

different spaces into a shared latent space, and thus a universal

measurement can be leveraged to calculate their closeness. Our

proposal is thoroughly evaluated on five publicly available datasets,

and the experimental results demonstrate its superiority.

We summarize our main contributions as follows:

• To the best of our knowledge, we are the first to study the

novel problem of geometric disentangled collaborative fil-

tering, which is capable of capturing fine-grained geometric

characteristics beneath the hybrid user-item interactions.

• We propose a novel GDCFmodel to learn geometric disentan-

gled representations by identifying the high-level geometry-

aware concepts associated with user intentions.

• Extensively, we evaluate GDCF on five real-world datasets.

Experimental results demonstrate its superiority.

2 PROBLEM DEFINITION
In this section, we will formally define the studied problem. A rec-

ommendation dataset can be formulated as D = {U, I, E}, in which

U = {𝑢1, 𝑢2, · · · , 𝑢𝑀 } denotes a set of 𝑀 users, I = {𝑖1, 𝑖2, · · · , 𝑖𝑁 }
is the set of 𝑁 items and E ∈ {0, 1}𝑀×𝑁

consists of the historical

interactions between users and items. For convenience, we use

f𝑢 = {𝑖 : E𝑢,𝑖 = 1} to represent items interacted with user 𝑢. Given

a candidate pair (𝑢, 𝑖) consisting of a target user 𝑢 and a potential

item 𝑖 , we aim to learn a preference score f𝑢,𝑖 ∈ {0, 1} to indicate

how likely this item should be recommended to the target user.



Different from existing single geometry based approaches, we aim

to learn the representations for users {z𝑢 }𝑁𝑢=1 and items {h𝑖 }𝑀𝑖=1
by disentangling user embeddings with different geometries to

comprehensively understand the sophisticated interactions.

3 PRELIMINARY
In this section, we will introduce some preliminary knowledge

from the perspective of manifolds, including the basic notations

and operators in three geometries (i.e., hyperbolic, Euclidean and

spherical geometries). Three types of manifoldsM are defined with

the constant sectional curvature 𝜅 [5]. The general realizations of

these manifolds are the hyperboloid H𝜅 , the Euclidean space E, as
well as the hypersphere S𝜅 :

M𝑛
𝜅 =


H𝑛𝜅 : {𝒙 ∈ R𝑛+1 : ⟨𝒙, 𝒙⟩𝜅 = 1/𝜅, 𝑥0 > 0}, for 𝜅 < 0

E𝑛𝜅 : R
𝑑 , for 𝜅 = 0

S𝑛𝜅 : {𝒙 ∈ R𝑛+1 : ⟨𝒙, 𝒙⟩𝜅 = 1/𝜅}, for 𝜅 > 0

(1)

where ⟨·, ·⟩𝜅 denotes the curvature-aware scalar product, namely

⟨𝒙,𝒚⟩𝜅 = ⟨𝒙,𝒚⟩ =
∑𝑛
𝑖=0 𝑥𝑖𝑦𝑖 for 𝜅 > 0 and ⟨𝒙,𝒚⟩𝜅 = ⟨𝒙,𝒚⟩L =

−𝑥0𝑦0 +
∑𝑛
𝑖=1 𝑥𝑖𝑦𝑖 for 𝜅 < 0. ForM𝑛

𝜅 ∈ {H𝑛𝜅 , S𝑛𝜅 }, a critical notion
is tangent space [16], which is useful when the operators are not

explicitly defined in the manifolds. The tangent space of M𝑛
𝜅 at

𝒙 ∈ M𝑛
𝜅 is defined as a 𝑛-dimensional vector space approximating

M𝑛
𝜅 around 𝒙 :

T𝒙M𝑛
𝜅 := {𝒗 ∈ R𝑛+1 : ⟨𝒗, 𝒙⟩𝜅 = 0}. (2)

The mapping between manifold M𝑛
𝜅 ∈ {H𝑛𝜅 , S𝑛𝜅 } and its tangent

space T𝒙M𝜅 can be achieved by exponential map and loga-
rithmic map [16]. The exponential map projects points from a

subset of the tangent space T𝒙M𝜅 to the original manifold M𝑛
𝜅 ,

while the logarithmic map projects points in the opposite direction.

For points 𝒙,𝒚 ∈ M𝑛
𝜅 , 𝒗 ∈ T𝒙M𝑛

𝜅 , such that 𝒙 ≠ 𝒚, 𝒗 ≠ 0 and

0 = (1/
√︁
|𝜅 |, 0, · · · , 0), the exponential map exp

𝜅
𝒙 (·) and logarith-

mic map log
𝜅
𝒙 (·) are formally defined as follows:

exp
𝜅
𝒙 (𝒗) = cos𝜅 (

√︁
|𝜅 |∥𝒗∥𝜅 )𝒙 + sin𝜅 (

√︁
|𝜅 |∥𝒗∥𝜅 )

𝒗√︁
|𝜅 |∥𝒗∥𝜅

,

log
𝜅
𝒙 (𝒚) =

cos
−1
𝜅 (𝜅⟨𝒙,𝒚⟩𝜅 )

sin𝜅

(
cos

−1
𝜅 (𝜅⟨𝒙,𝒚⟩𝜅 )

) (𝒚 − 𝜅⟨𝒙,𝒚⟩𝜅𝒙),
(3)

where ∥𝒗∥𝜅 =
√︁
⟨𝒗, 𝒗⟩𝜅 denotes the norm of tangent vector, and

the curvature-aware trigonometric functions are:

sin𝜅 =

{
sin if 𝜅 > 0

sinh if 𝜅 < 0

, cos𝜅 =

{
cos if 𝜅 > 0

cosh if 𝜅 < 0

.

To connect vectors in tangent spaces, we use parallel transport

PT𝒙−𝒚 : T𝒙M𝑛
𝜅 → T𝒚M𝑛

𝜅 [16]:

PT
𝜅
𝒙→𝒚 (𝒚) = 𝒗 − 𝜅⟨𝒚, 𝒗⟩𝜅

1 + 𝜅⟨𝒙,𝒚⟩𝜅
(𝒙 +𝒚), (4)

which ensures the transported vectors stay parallel to the connec-

tion. In addition, the geodesic distance is defined as:

𝑑𝜅 (𝒙,𝒚) = 1√︁
|𝜅 |

cos
−1
𝜅 (𝜅⟨𝒙,𝒚⟩𝜅 ) . (5)

There are also several widely-used realizations of these spaces,

i.e., Poincaré ball P𝜅 for hyperbolic spaces, projected hypersphere

D𝜅 for spherical spaces. Please refer to [43] for more details. More-

over, for Euclidean space E𝑛 , let 𝒙,𝒚 ∈ E𝑛 and 𝒗 ∈ T𝒙E𝑛 , the
exponential map is defined as exp𝒙 (𝒗) = 𝒙 + 𝒗, and the logarith-

mic map is log𝒙 (𝒚) = 𝒚 − 𝒙 . The parallel transport is defined as

PT𝒙→𝒚 (𝒗) = 𝒗.

4 METHODOLOGY
In this section, we will introduce the details of the GDCF model.

First, we will expound the basic model paradigm. Then, the imple-

mentations of several major components will be presented. Finally,

we will discuss several key points within our proposal.

4.1 Mathematical Paradigm
In this subsection, we will introduce the basic mathematical para-

digm of GDCF. Users may have diverse interests, and these interests

can be attributed to various latent concepts. Therefore, we aim to

learn a factorized representation for user 𝑢 composed of 𝐾 high-

level concepts. The factorized representation of user 𝑢 is denoted

as z𝑢 = [z(1)𝑢 , z(2)𝑢 , · · · , z(𝐾)𝑢 ], where z(𝑘)𝑢 ∈ M𝑘 is a 𝑑-dimensional

concept representation living in the manifold M𝑘 . z
(𝑘)
𝑢 depicts the

preference of user 𝑢 regarding to the 𝑘th concept. Different from

the diverse interests of users, an item usually represents a specific

object, which is fixed and explicit [32]. Thus, items are represented

by the𝑑-dimensional embeddings {h𝑖 }𝑀𝑖=1 ∈ E𝑑 in Euclidean spaces

instead of the factorized vectors.

In order to model the correlations between items and latent

concepts, we design the concept assignment relations for items:

C = {c𝑖 }𝑀𝑖=1, where c𝑖 = [𝑐𝑖,1, 𝑐𝑖,2, · · · , 𝑐𝑖,𝑘 ] and 𝑐𝑖,𝑘 indicates

whether item 𝑖 belongs to concept 𝑘 . The concept assignment of

item 𝑖 is described by a distribution 𝑝 (𝑐𝑖,𝑘 ), which denotes the prob-

ability of item 𝑖 belonging to concept 𝑘 and

∑𝐾
𝑘=1

𝑝 (𝑐𝑖,𝑘 ) = 1. The

assignments among different concepts ensure that the user-item

interactions can be reconstructed based on different manifolds.

Following previous works [17, 23, 31], we adopt the variational

auto-encoders (VAEs) as the basic paradigms and propose a gener-

ative GDCF model. Assuming that the interactions are generated

from the true world simulator using the factorized user embedding

z𝑢 along with the concept assignment distribution 𝑝 (C). An appro-

priate objective function should maximize the marginal likelihood

of the user’ observed data f𝑢 in expectation over the distribution of

user representation z𝑢 and item concept assignment C:

max

𝜃
E𝑝𝜃 (C)

[ ∫
𝑝𝜃 (f𝑢 |z𝑢 ,C)𝑝𝜃 (z𝑢 )𝑑z𝑢

]
. (6)

Given the historical interactions of user 𝑢: f𝑢 = {𝑖 : E𝑢,𝑖 = 1},
the inferred posterior configurations of z𝑢 and C can be naturally

described by a probability distribution 𝑞𝜃 (z𝑢 |f𝑢 ,C). Moreover, we

are also interested in disentangling a user’s preferences at a more

granular level regarding various aspects of an item. This can be

achieved by introducing a constraint over 𝑞𝜃 (z𝑢 |f𝑢 ,C) and match-

ing 𝑞𝜃 (z𝑢 |f𝑢 ,C) to a unit Gaussian prior 𝑝𝜃 (z𝑢 ). Therefore, the
constrained optimization problem can be formalized as:

max

𝜃
Ef𝑢∼D

[
E𝑝𝜃 (C)

[
E𝑞𝜃 (z𝑢 |f𝑢 ,C)

[
log𝑝𝜃 (f𝑢 |z𝑢 ,C)

] ] ]
,

subject to 𝐷𝐾𝐿
(
𝑞𝜃 (z𝑢 |f𝑢 ,C)∥𝑝𝜃 (z𝑢 )

)
< 𝜖,

(7)
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Figure 2: The framework of GDCF.

where 𝜖 ≥ 0 indicates the strength of the applied constraint. We

rewrite Eq. (7) as a Lagrangian under the KKT conditions [19, 21]:

F (𝜃, 𝛽 ; f𝑢 , z𝑢 ) = E𝑝𝜃 (C)
[
E𝑞𝜃 (z𝑢 |f𝑢 ,C)

[
log 𝑝𝜃 (f𝑢 |z𝑢 ,C)

]
− 𝛽

(
𝐷𝐾𝐿

(
𝑞𝜃 (z𝑢 |f𝑢 ,C)∥𝑝𝜃 (z𝑢 )

)
− 𝜖

) ]
,

(8)

where the KKT multiplier 𝛽 ≥ 0 is the regularization coefficient.

Since 𝛽, 𝜖 ≥ 0, according to the complementary slackness KKT

condition, Eq. (8) can be re-written as [17]:

F (𝜃, 𝛽 ; f𝑢 , z𝑢 ) ≥L(𝜃 ; f𝑢 , z𝑢 , 𝛽)

= E𝑝𝜃 (C)
[
E𝑞𝜃 (z𝑢 |f𝑢 ,C)

[
log𝑝𝜃 (f𝑢 |z𝑢 ,C)

]
− 𝛽𝐷𝐾𝐿

(
𝑞𝜃 (z𝑢 |f𝑢 ,C)∥𝑝𝜃 (z𝑢 )

) ]
,

(9)

which is the final optimization objective of our model.

4.2 Implementation
In this subsection, we will introduce the details of three major

components in the implementation of the proposed GDCF model

as shown in Figure 2.

4.2.1 Concept assignment. Concept assignment calculates the prob-

abilities of an item assigning to different concepts. We propose

a prototype-based concept assignment strategy to prevent over-

parameterization and low sampling efficiency. Specifically, 𝐾 proto-

types {m𝑘 }𝐾𝑘=1 are proposed to describe the anchors of the concepts
across manifolds. Since items and the prototype m𝑘 might come

from different geometries, we need to map them into a shared

space for comparison. One straightforward approach is to assume

all the items are represented in the shared tangent space at 0, i.e.,
T0M, and then transform them into M𝑘 via exp

𝜅
0 (·). However,

the transformed item representations would be identical and in-

distinguishable if the prototypes share the same latent space, i.e.,

M𝑘 = M𝑘+1 [31]. Thus, the prototypes of items should be explicitly

incorporated in the transformation process. As shown in Figure 2

(a), we assume that item representations {h𝑖 }𝑀𝑖=1 come from T0M𝑘 ,

and transform them into Tm𝑘
M𝑘 via parallel transport to obtain

the prototype-aware item representations:

h′𝑖 = PT
𝜅
0→m𝑘

(h𝑖 ) . (10)

Then, we define the similarity measurement between h′
𝑖
and m𝑘 . A

common strategy is to transform h′
𝑖
into manifoldM𝑘 via exp

𝜅
m𝑘

(·).
Similarities between h′

𝑖
and m𝑘 can be measured by their geodesic

distance onM𝑘 . We theoretically prove this approach is equivalent

to a simpler operation, i.e., computing the norm of h′
𝑖
on Tm𝑘

M𝑘 :

Theorem 4.1. For x, y ∈ M and M ∈ {E, S𝜅 ,D𝜅 ,H𝜅 , P𝜅 }, the
geodesic distance between x and y, is equal to the norm of log𝜅x (y) in
the tangent space Tm𝑘

M𝑘 , i.e., 𝑑 (x, y) = ∥ log𝜅x (y)∥𝜅 .

Proof of Theorem 4.1: For Euclidean space E, it is easy to prove that
∥ log𝒙 (𝒚)∥ = ∥𝒚 − 𝒙 ∥ = 𝑑E (𝒙,𝒚). For the hyperboloid model, let

𝒗 = log
𝜅
𝒙 (𝒚), we have𝒚 = exp

𝜅
𝒙 (𝒗). The distance between 𝒙,𝒚 ∈ H𝜅

can be rewritten as:

𝑑H𝜅 (𝒙,𝒚) = 𝑑H𝜅 (𝒙, exp
𝜅
𝒙 (𝒗))

=
1

√
−𝜅

cosh
−1

(
𝜅
(
⟨𝒙, cosh(

√
−𝜅∥𝒗∥L)𝒙

+ sinh(
√
−𝜅∥𝒗∥L)

𝒗
√
−𝜅∥𝒗∥L

⟩L
) )

=
1

√
−𝜅

cosh
−1 (𝜅 · 1

𝜅
cosh(

√
−𝜅∥𝒗∥L)

)
=∥𝒗∥L = ∥ log𝜅𝒙 (𝒚)∥L .

(11)

This theorem also holds for the hypersphere model S𝜅 following

above proposition. For the Poincaré ball model P𝜅 , the distance

between 𝒙,𝒚 ∈ P𝜅 can be rewritten as:

𝑑P𝜅 (𝒙,𝒚) = 𝑑P𝜅 (𝒙, exp
𝜅
𝒙 (𝒗))

=
2

√
−𝜅

tanh
−1

(√
−𝜅 tanh

(√
−𝜅 𝜆

𝜅
𝒙 ∥𝒗∥
2

) 1

√
−𝜅

)
=𝜆𝒙 ∥𝒗∥ = ∥ log𝜅𝒙 (𝒚)∥

P𝜅
𝒙 .

(12)

The formulas about P𝜅 are referred from [43]. The proof of the

projected hypersphere model D𝜅 is similar to the above process. □



Based on Theorem 4.1, we can measure the similarities by the

norm of h′
𝑖
as:

𝑠𝑖,𝑘 = −∥h′𝑖 ∥𝜅 . (13)

The probability of item 𝑖 belonging to concept 𝑘 can be achieved

after a softmax function:

𝑝 (𝑐𝑖,𝑘 ) =
exp(𝑠𝑖,𝑘/𝜏)∑𝐾
𝑙=1

exp(𝑠𝑖,𝑙/𝜏)
, (14)

where 𝜏 is a hyper-parameter to control the scale of values, and we

set 𝜏 ∈ (0, 1) to obtain a more skewed distribution.

4.2.2 Geometric disentangled representation. Users may have di-

verse interests, leading to the disentangled representations w.r.t.

different concepts. The prior distribution 𝑝𝜃 (z𝑢 ) is set to a unit

Gaussian distribution. The encoder𝑞𝜃 (z𝑢 |f𝑢 ,C) learns the represen-
tations for user 𝑢 based on the high-level concept distributions. As-

sume 𝑞𝜃 (z𝑢 |f𝑢 ,C) =
∏𝐾
𝑘=1

𝑞𝜃 (z
(𝑘)
𝑢 |f𝑢 ,C), and each 𝑞𝜃 (z

(𝑘)
𝑢 |f𝑢 ,C)

is defined as a multivariate normal distribution with a diagonal

co-variance matrix [17]. Let t𝑢 =
[
[𝑓𝑢,1, 𝑓𝑢,2, · · · , 𝑓𝑢,𝑀 ] ⊙ [𝑝 (𝑐

1,𝑘 ),
𝑝 (𝑐

2,𝑘 ), · · · , 𝑝 (𝑐𝑀,𝑘 )]
]
∈ E𝑀 be the probabilities of the interacted

items for user𝑢 belonging to 𝑘th concept, where ⊙ is the point-wise

product. The mean vector 𝝁 (𝑘)
𝑢 ∈ M𝑑

𝑘
and the standard deviation

𝝈 (𝑘)
𝑢 ∈ T0M𝑑

𝑘
are calculated by a neural network 𝑓 𝜅

nn
: M𝑀

𝑘
→

M2𝑑
𝑘

with input t𝑢 :

(a(𝑘)𝑢 , b(𝑘)𝑢 ) = 𝑓 𝜅
nn

(
exp

𝜅
0 (t𝑢 )

)
𝝁 (𝑘)
𝑢 = a(𝑘)𝑢 ,𝝈 (𝑘)

𝑢 = 𝜎0 · 𝑒 (−
1

2
log

𝜅
0 (b

(𝑘 )
𝑢 )) .

(15)

Here we implement the 𝑓 𝜅
nn

as non-Euclidean neural networks

[3, 10, 53]. Specifically, for the projected manifolds, i.e., D𝜅 and P𝜅 ,
we follow the neural structures proposed in [3, 10], which leverage

the log
𝜅
0 and exp

𝜅
0 to transform the𝑀-dimensional representations

between tangent spaces and the manifolds. The Euclidean opera-

tions are conducted over all the𝑀 elements for the𝑀-dimensional

features. However, a𝑀-dimensional feature vector in H𝜅 or S𝜅 has

𝑀 + 1 elements. If the Euclidean operations 𝑓nn are directly applied

on all the𝑀 + 1 dimensions, the transformed features would be out

of the tangent spaces [53]. To address this challenge, we propose

to conduct the Euclidean operations on the last 𝑀 elements. The

non-Euclidean operations defined in P𝜅 or D𝜅 are equivalent to

those defined in H𝜅 or S𝜅 , respectively. Please refer to Appendix

A.1 for the proposed operations and proofs.

As shown in Figure 2 (b), based on the obtained 𝝁 (𝑘)
𝑢 and 𝝈 (𝑘)

𝑢 ,

we leverage the wrapped normal distribution [37, 43] to build the

Gaussian distribution on Riemannian manifolds to generate user

representations. Specifically, to sample instances from the distribu-

tionWN(𝝁 (𝑘)
𝑢 ,𝝈 (𝑘)

𝑢 ), we need to first sample instances from the

tangent space of the manifold T0M𝑘 , i.e., v ∼ N(0,𝝈𝑢 ) ∈ T0M𝑘 .

The geometric disentangled representation z(𝑘)𝑢 can be obtained via

parallel transporting v𝑢 from T0M𝑘 to T𝝁𝑢M𝑘 , and then projecting

it to the manifold T𝝁𝑢M𝑘 by exponential map:

z(𝑘)𝑢 = exp
𝜅

𝝁 (𝑘 )
𝑢

(
PT0→𝝁 (𝑘 )

𝑢
(v𝑢 )

)
. (16)

4.2.3 User behavior reconstruction. Here we aim to predict which

items are most likely to be clicked by the target user. Since the item

representations live in the Euclidean space, we can view this space

as a tangent space and transform the item representations {h𝑖 }𝑀𝑖=1
to M𝑘 , and then compute their similarities based on the distances.

However, the distances in different spaces may have different value

scales. For example, the distances in Euclidean or hyperbolic spaces

could be theoretically infinite, while for spherical spaces, the dis-

tances are finite [16]. To tackle this challenge, we propose to project

the user representations z(𝑘)𝑢 to the tangent space T0M𝜅 . As shown

in Figure 2 (c), the tangent spaces of these manifolds are isomor-

phic to Euclidean spaces. Therefore, we can leverage Euclidean

measurements to calculate the similarities of different geometries.

Here we only consider the angle between the representations to

avoid the influence of the norm of the representations in different

spaces. Therefore, the Euclidean inner product can be employed

to measure the similarities between the normalized 𝑘th concept of

user 𝑢 and item 𝑖 in the shared tangent space T0M𝜅 :

𝑠 (z(𝑘)𝑢 , h𝑖 ) = ⟨
𝑙𝑜𝑔𝜅0 (z

(𝑘)
𝑢 )

∥ log𝜅0 (z
(𝑘)
𝑢 )∥

,
h𝑖
∥h𝑖 ∥

⟩. (17)

User behaviors can be further reconstructed via the categorical

distribution over the𝑀 items: 𝑝𝜃 (𝑓𝑢,𝑖 |z𝑢 ,C) ∝
∑𝐾
𝑘=1

𝑠 (z(𝑘)𝑢 , h𝑖 ).

4.3 Optimization
The trainable parameters 𝜃 of GDCF include 𝐾 concept prototypes

{m𝑘 ∈ M𝑑
𝑘
}𝐾
𝑘=1

,𝑀 item representations {h𝑖 ∈ E𝑑 }𝐾𝑘=1, and the pa-

rameters in the neural network 𝑓 𝜅
nn
. We optimize 𝜃 to maximize the

training objective in Eq. (9) via Adam [22] and RiemannianAdam

[4] for Euclidean and non-Euclidean parameters, respectively. More-

over, since a 𝑑-dimensional embedding in manifoldM𝜅 ∈ {H𝜅 , S𝜅 }
has 𝑑 + 1 elements, we concatenate or remove an element “0” at

the first dimension of features in the tangent spaces to ensure the

vector operations can be conducted in a principal manner.

4.4 Discussions
In this section, we will discuss two key points, i.e., similarity mea-

surements and probability distributions on Riemannian manifolds,

as well as the relations to some related methods including disen-

tangled VAEs and mix-curvature representation learning.

Similarity measurement. We leverage two types of metrics to

measure the similarities: the geodesic distance for concept assign-

ment in Eq. (13), and the Euclidean distance on the tangent spaces

for user behavior reconstruction in Eq. (17). These two metrics are

employed for different purposes. Concept assignment aims to infer

the most likely manifold for item 𝑖 while the geodesic distance

thrives on measuring the manifold-specific similarity. Thus, the

metric used in the concept assignment is set to geodesic distance.

For the behavior reconstruction, we need to measure the similarities

between item representations and disentangled user representa-

tions on all the manifolds in a universal manner. The disentangled

user representations are projected to a shared tangent space, where

the Euclidean distance can be utilized as the closeness metric.

Probability distribution onRiemannianmanifolds. Several ap-
proaches have been proposed to generalize the Normal distribution



Table 1: Statistics of five datasets.

Dataset MovieLens-100k MovieLens-1M MovieLens-20M AliShop LastFM

#users 603 6,038 136,677 10,668 1,862

#items 5,697 3,605 20,108 20,591 14,795

#interactions 47,922 836,452 9,990,030 767,493 89,805

#held-out users 50 500 10,000 4,000 200

to Riemannian manifolds, including restricted normal, Riemannian

normal, and wrapped normal [9, 13, 37]. Restricted normal distribu-

tions restrict a point of the ambient space sampled from a Gaussian

distribution to the manifolds. Von Mises-Fisher distribution [9] is

a kind of restricted normal, but it has only a single scalar covari-

ance parameter and cannot parameterize covariance for different

dimensions. Riemannian normal distributions [13, 34, 35] are based

on geodesic distance in the manifolds. These distributions aim to

maximize the entropy distributions and resemble the Gaussian

distribution’s properties the closest. However, the resemble pro-

cess is quite computationally expensive, leading to low efficiency.

Wrapped normal distributions [37, 43] first sample features from a

Gaussian distribution in the tangent space and the sampled features

are further transformed to Riemannian manifolds via parallel trans-

port and exponential map. We select wrapped normal distributions

in our model due to its computational efficiency. Note that we do

not follow the wrapped normal distributions when calculating the

probability density function. This is because the density functions

are expected to be directly computed on the tangent space instead

of the manifolds.

Connections to disentangled VAEs. VAEs have been widely ex-

ploited to learn the disentangled representations [17, 18, 20, 31].

Existing disentangled VAEs usually leverage the cosine function to

measure the similarities, which ignore the norms of representations.

Thus, these disentangled VAEs can be viewed as representation

learning on the hypersphere [31]. The key difference between these

methods and our proposal is that GDCF learns the representations

on different Riemannian manifolds. Multiple Riemannian mani-

folds endow our proposal with powerful modeling capacity. The

major difference between MacridVAE and GDCF is that MacridVAE

only focuses on a single manifold (i.e., hypersphere) while GDCF

is capable of disentangling representations for different types of

manifolds. In addition, MacridVAE aims at learning the one-hot

concept assignment relations C, while GDCF does not require the
C to be one-hot vectors, leading to a general solution with less

restrictions.

Connections to mix-curvature representation learning. Mix-

curvature methods [3, 11, 43] learn the representations by bal-

ancing the expressive capacities of different kinds of manifolds.

Cross-manifold representations learned by existing mix-curvature

methods are defined in the product spaces, i.e.,M1×M2×· · ·×M𝐾 .

GDCF is fundamentally different from these methods because the

representations of GDCF on different manifolds are independent

from each other, i.e., M1,M2, · · · ,M𝐾 , which can preserve the

uniqueness of different geometries.

Complexity analysis. The time complexity of GDCF is𝑂 (𝑘𝑑𝑁𝑀),
where 𝑘 is the number of concepts, 𝑑 is the dimension of user/item

representations,𝑁 and𝑀 are the number of users and items, respec-

tively. The time complexity is on par with the SOTA disentangled

models like MacridVAE [31].

5 EXPERIMENTS
5.1 Experimental Setup
Datasets. We conduct the experiments on five real-world datasets,

including three MovieLens datasets with different numbers of in-

teractions (MovieLens-100k, MovieLens-1M and MovieLens-20M)

[12], AliShop [31] and LastFM [6]. The training/validation/testing

partitions are following previous works [27, 31]. The statistics of

these datasets are shown in Table 1.

Baselines. We select the following SOTA CF models as baselines:

• NGCF [48] is a graph-based CF model to incorporate the

high-order connectivity of user-item interactions.

• LightGCN [14] is a SOTA CF recommendation model based

on graph convolution network.

• DGCF [49] is a disentangled CF model to learn representa-

tions for different latent user intentions via graph convolu-

tional network.

• MacridVAE [31] is also a disentangled model, which lever-

ages VAE to disentangle macro and micro components for

user behaviors.

• HyperML [46] is a hyperbolic CF model, which explores

metric learning in hyperbolic spaces for recommendation.

• H-VAE [36] is a hyperbolic VAE based CF approach, which

employs a hyperbolic VAE to solve the collaborative filtering

problem.

• HGCF [45] is a hyperbolic CF method, which is devised to

capture the high-order correlations between users and items

by using hyperbolic GNN.

• 𝜅-GCN [3] is a mix-curvature GNN. We modify its loss to

the hinge loss to solve the CF problem.

Hyper-parameter. We perform the hyper-parameter search on

a small validation set. For the proposed GDCF, we set the dimen-

sion of embedding as 100 and tune the temperature 𝜏 ∈ [0, 0.1],
𝛽 ∈ [0, 100] in Eq. (9), the number of factors𝐾 ∈ {1, 2, 3, . . . , 20}, the
standard deviation of the prior 𝜎0 ∈ [0.075, 0.5] and the number of

hidden layers 𝑙 ∈ {0, 1, 2, 3} by grid search. We set 𝜅 ∈ {−1, 0, 1} for
hyperbolic, Euclidean and spherical geometry, respectively. More-

over, we also tune the following parameters for all methods: learn-

ing rate ∈ [10−6, 10−2], dropout probability ∈ [0, 1], 𝐿2 regular-

ization strength ∈ [10−8, 10−2]. We tune these hyper-parameters

automatically via Optuna [2].

Infrastructure. We implement our model with Pytorch, and con-

duct the experiments with: CPU: Intel(R) Xeon(R) Platinum 8168

CPU @ 2.70GHz GPU: 24 × NVIDIA Tesla V100.

5.2 Main Results
We evaluate the performance of our approach on the five popular

datasets. Here we implement GDCF with three kinds of manifolds

i.e.,H𝜅 ,E, and S𝜅 . To evaluate the effectiveness on top-K recommen-

dation task, we adopt two popular evaluation metrics: Recall@20

and NDCG@20 [14, 48, 49]. We repeat this process 5 times and

report the average scores.



Table 2: The recommendation performance comparison. Best results are in bold and second best results are underlined.

Datasets MovieLens-100k MovieLens-1M MovieLens-20M Alishop LastFM

Metric NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20

NGCF 0.2437 0.2997 0.2956 0.2852 0.2979 0.3214 0.1058 0.1175 0.2681 0.2924

LightGCN 0.2596 0.3112 0.3115 0.3016 0.3172 0.3498 0.1573 0.1512 0.3116 0.3258

HyperML 0.2160 0.2549 0.2719 0.2839 0.2631 0.2809 0.1023 0.1061 0.2546 0.2852

H-VAE 0.2157 0.2706 0.2729 0.3049 0.2405 0.2737 0.1087 0.1101 0.2667 0.2795

HGCF 0.2218 0.2701 0.2844 0.2955 0.3093 0.3536 0.1115 0.1135 0.2706 0.2985

𝜅-GCN 0.1912 0.2408 0.2443 0.2351 0.2155 0.2419 0.0846 0.0816 0.2489 0.2582

DGCF 0.2572 0.3148 0.3252 0.3128 0.3193 0.3626 0.1556 0.1547 0.3062 0.3242

MacridVAE 0.2310 0.3095 0.3241 0.3605 0.3205 0.3965 0.1831 0.1862 0.3072 0.3213

GDCF 0.2652 0.3261 0.3314 0.3637 0.3317 0.4052 0.1874 0.1886 0.3173 0.3296

Experimental results are summarized in Table 2, and we can

observe that the proposed GDCF achieves SOTA performance on

the five datasets across all metrics, demonstrating the effective-

ness of the geometric disentangled representation learning. GDCF

outperforms the hyperbolic CF methods (e.g., HyperML, H-VAE

and HGCF) by a large margin, which verifies that a single hyper-

bolic space may be insufficient to capture the hybrid geometric

characteristics. The disentanglement-based methods (DGCF and

MacridVAE) outperform other baselines inmost cases, which proves

the benefits of factorized representations under the CF scenario. By

incorporating the geometric concepts into the disentangled repre-

sentation learning, GDCF surpasses DGCF and MacridVAE over

all the datasets, confirming the superior modeling capacity of our

proposal.

5.3 Ablation Study
Since three types of geometries are incorporated in the GDCF

model, we further conduct an ablation study to investigate the

effectiveness of different geometry combinations. Here we lever-

age hyperboloid model H𝜅 and Poincaré ball P𝜅 to describe hy-

perbolic geometry, hypersphere model S𝜅 and projected hyper-

sphere D𝜅 to describe spherical geometry, respectively. We evalu-

ate the performance of GDCF with three types of geometry com-

binations, and the subscripts are omitted for simplicity: the sin-

gle geometry H, P,E, S,D; the combinations of two geometries

H&E, P&E,E&S,E&D,H&S, P&D; and the combinations of three

geometries H&E&S, P&E&D. The numbers of components for dif-

ferent geometries are set to approximately equal.

The results are reported in Table 3. The best results of all the

methods are marked in bold, while the best results within each

type of geometry combinations are marked with underlines. One

can see that GDCF implemented with three kinds of geometries

achieve the best performance in most cases, which demonstrates

that all the three geometries contribute to learning expressive and

meaningful representations. For the single geometry-based varia-

tions, non-Euclidean methods (H, P, S and D) generally outperform
Euclidean-based model (E). It demonstrates that the non-Euclidean

geometric structures are ubiquitous under the recommendation

scenario and our proposal can effectively encode such patterns into

representations. Moreover, the simplified version of GDCF with

only two geometries (H&E and H&S) already achieve promising

performance on MovieLens datasets, revealing the effectiveness

of representation learning in multiple geometries. Ablation mod-

els implemented with H or S consistently perform better than the

counterparts with P and D, which is reasonable as P and D suffer

from numerical instability in the optimization process [7, 29, 39].

5.4 Universal Curvature Analysis
Previous ablation studies raise an interesting question: how to find

the most effective combination of these geometries. The simplest

approach is to enumerate all the possible combinations and select

the candidate with best performance. This enumeration method

would be optimal but impractical due to the inefficiency and low

scalability [43]. Here we propose an approximate method to tackle

this challenge. Specifically, we randomly initialize the curvatures of

the components within [−1, 1] and view the curvatures 𝜅 of all com-

ponents as trainable parameters in the training process. Moreover,

the sign of curvature is also not constrained. Thus, components

are able to change their geometries from hyperbolic (spherical) to

spherical (hyperbolic) space to achieve the optimal solutions. Note

that ∥0∥𝜅 = ∥(1/
√︁
|𝜅 |, 0, · · · , 0)𝑇 ∥𝜅

𝜅→0−→ ±∞, for the hyperboloid

H𝜅 and hypersphere S𝜅 [43]. Therefore, the universal curvature

variation of GDCF leverages the Poincaré ball P and the projected

hypersphere D for hyperbolic and spherical geometry, respectively.

GDCF with the universal curvature is denoted as U. We are in-

terested in comparing U with P&D, since both of them leverage

Poincaré ball P and projected hypersphere D.
Table 4 exhibits the results. The combinations with the best

performance are marked in bold. One can see that the variations

with universal curvature U outperform P&D in most cases, which

indicates U can automatically select more proper geometries. How-

ever, U does not converge to some specific curvatures [43], leading

to the low generalization. Another limitation of U is that the Eu-

clidean component cannot be incorporated as it cannot ensure 𝜅

will converge to 0 in the training process.

5.5 Parameter Sensitivity Analysis
In this subsection, we will investigate the effect of two key parame-

ters (the number of concepts 𝐾 and the dimension of embedding 𝑑)

on the MovieLens-100k and LastFM datasets. Figure 3(a) and 3(b)

show the results of GDCF under varying 𝐾 . With the increase of

the number of concepts 𝐾 , the performance of GDCF first improves



Table 3: Ablation study of the geometry combinations. Best results of all the methods are in bold, and the best results within
each type of geometry combinations are underlined.

Datasets MovieLens-100k MovieLens-1M MovieLens-100M Alishop LastFM

Metric NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20

H 0.2340 0.3127 0.3236 0.3539 0.3223 0.3858 0.1870 0.1833 0.3106 0.3275

P 0.2353 0.3063 0.3245 0.3517 0.3216 0.3827 0.1862 0.1824 0.309 0.3225

E 0.2252 0.2965 0.3253 0.3548 0.3207 0.3851 0.1805 0.1797 0.3023 0.3172

S 0.2361 0.3141 0.3266 0.3554 0.3239 0.3892 0.1728 0.1733 0.3076 0.3212

D 0.2357 0.3046 0.3196 0.3501 0.3216 0.3864 0.1734 0.1751 0.3018 0.3176

H&E 0.2620 0.3135 0.3263 0.3597 0.3263 0.3991 0.1885 0.1833 0.3147 0.3288

P&E 0.2542 0.3118 0.3257 0.3540 0.3248 0.3954 0.1875 0.1826 0.3105 0.3238

E&S 0.2517 0.3126 0.3261 0.3595 0.3250 0.3973 0.1798 0.1770 0.3149 0.3281

E&D 0.2523 0.3231 0.3254 0.3538 0.3244 0.3922 0.1757 0.1785 0.3067 0.3192

H&S 0.2582 0.3155 0.3271 0.3599 0.3295 0.4006 0.1841 0.1804 0.3141 0.3239

P&D 0.2526 0.3164 0.3241 0.3562 0.3266 0.3934 0.1818 0.1794 0.3099 0.3227

P&E&D 0.2549 0.3196 0.3256 0.3572 0.3284 0.3986 0.1811 0.1802 0.3124 0.3276

H&E&S 0.2652 0.3261 0.3314 0.3637 0.3317 0.4052 0.1874 0.1886 0.3173 0.3296

Table 4: Results of the universal curvature analysis.

Dataset Metric P&D U Best

MovieLens-100k

NDCG@20 0.2526 0.2564 H&E&S
Recall@20 0.3164 0.3218 H&E&S

MovieLens-1M

NDCG@20 0.3241 0.3261 H&R&S
Recall@20 0.3562 0.3557 H&E&S

MovieLens-20M

NDCG@20 0.3266 0.3301 H&E&S
Recall@20 0.3934 0.4049 H&E&S

AliShop

NDCG@20 0.1818 0.1821 H&E
Recall@20 0.1794 0.1814 H&E&S

LastFM

NDCG@20 0.3099 0.3134 H&E&S
Recall@20 0.3227 0.3305 U

and then drops on both datasets across all metrics. This phenom-

enon suggests that a suitable number of concepts is needed for

GDCF, while redundant concepts may introduce noise and lead to

the performance decay. Also, figure 3(c) and 3(d) present the results

of GDCF under varying 𝑑 . With the increase of the dimension of

embeddings 𝑑 , model performance first improves and then keeps

steady. This is reasonable as representations of proper dimensions

are already capable of fully modeling the interactions, and too large

dimensions may increase model complexity and effect the training

efficiency.

5.6 Case Study
In this subsection, we will investigate whether GDCF can capture

the correlations between the latent concepts and the geometric

structures. To this end, we provide two cases (items with ID i961

and i4837) in MovieLens-100k dataset. Figure 4 displays the 2-hop

ego-graphs centered with different items. One can see that the ego-

graph of i961 is closer to the tree-likeness structures with less cycles

compared to i4837. After model training, the concept assignment

probabilities calculated by GDCF on different geometries are shown
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Figure 3: Results of the parameter sensitivity analysis.

in Figure 4(c) and Figure 4(d). These probabilities reveal that the

hyperbolic model H is more important in modeling tree-structures

(i961) and spherical model S is crucial in modeling cyclical struc-

tures (i4837). This phenomenon demonstrates that our proposal is

capable of effectively capturing the intrinsic correlations between

the latent concepts and the geometric structures.

6 RELATEDWORK
In this section, we will briefly summarize two related techniques:

the disentangled representation learning and the non-Euclidean

representation learning, along with their applications on the rec-

ommendation scenario.
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Figure 4: Local topological structures and concept assign-
ments of two cases in MovieLens-100k. The center nodes,
1-hop nodes, 2-hop nodes are marked by red, green, blue
circles, respectively.

6.1 Disentangled Representation Learning
Disentangled representation learning aims at learning factorized

representations that reveal and disentangle the latent intent factors

beneath the input dataset, which has been widely used in a myriad

of applications. Higgins et al. [17] propose beta-VAE to learn inter-

pretable factorised latent representations from raw image data in

an unsupervised manner. Ma et al. [30] introduce the disentangled

graph convolutional network to learn disentangled node represen-

tations. Yang et al. [51] propose a factorizable graph convolutional

network for explicitly disentangling the intertwined relations en-

coded in a graph. Recently, disentangled representation learning is

introduced into the recommendation scenario to boost performance.

MacridVAE [31] is designed to infer the high-level concepts associ-

ated with user intentions. Wang et al. [49] further devise a disentan-

gled graph collaborative filtering model to encode the high-order

interactions into the factorized representations. For the sequential

recommendation, Ma et al. [33] introduce a sequence-to-sequence

training strategy based on latent self-supervision and disentangle-

ment. By combining the curriculum learning with the disentangled

representation learning, Curriculum Disentangled Recommenda-

tion model [8] is proposed to efficiently learn disentangled repre-

sentations from complex and noisy multi-feedbacks. Despite the

promising performance, existing disentangled approaches learn

representations solely within the Euclidean geometry and ignore

the hybrid geometric characteristics of the user-item interactions.

6.2 Non-Euclidean Representation Learning
A myriad of data exhibits the highly non-Euclidean latent anatomy

[3, 25, 40, 50], and non-Euclidean geometries (i.e., hyperbolic or

spherical geometry) are more suitable for modeling data with non-

Euclidean characteristics compared to Euclidean geometry. Nickel

et al. [38] first leverage the hyperbolic space to learn hierarchi-

cal representations of symbolic data. HGCN [7] is an inductive

hyperbolic GCN designed for hierarchical and scale-free graphs.

Mixed-curvature Variational Autoencoder [43] exploits both the

hyperbolic and spherical geometries to better modeling data char-

acteristics. In the recommendation scenario, existing works usually

focus on modeling interactions with hyperbolic models [46]. Feng

et al. [46] propose to learn the representations of check-in activities

in a hyperbolic space. Mirvakhabova et al. [36] propose an au-

toencoder based on hyperbolic geometry for solving collaborative

filtering problem. HGCF [45] is devised to capture the high-order

correlations between users and items by integrating hyperbolic

geometry into graph neural networks. Most exising works focus

on learning representations in a single non-Euclidean space, which

may be incapable of modeling the hybrid geometric interactions as

discussed in the introduction.

7 CONCLUSION
In this paper, we study the novel problem of geometric disentan-

gled collaborative filtering. Different from existing single geometry-

based CF models, we propose a novel GDCF model to incorporate

multiple types of geometries to disentangle the sophisticated hy-

brid patterns of user-item interactions. Specifically, GDCF learns

factorized representations that uncover and disentangle the intent

factors hidden in the historical interactions, which is capable of

learning expressive user/item representations. Extensive experi-

ments are conducted over five publicly available datasets, and the

experimental results demonstrate the superiority of GDCF.
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A SUPPLEMENTARY MATERIAL
A.1 Neural Networks in the hypersphere model
To ensure the transformed features satisfy the spherical geometry,

we define hypersphere matrix-vector multiplication to perform the

hypersphere matrix-vector multiplication:

Definition A.1. (Hypersphere matrix-vector multiplica-
tion) If M : R𝑛 → R𝑚 is a linear map with matrix representation,
given two points 𝒙 = (𝑥0, . . . , 𝑥𝑛) ∈ S𝑛𝜅 , 𝒗 = (𝑣0, . . . , 𝑣𝑛) ∈ T0S𝑛𝜅 , we
have:

M⊗𝜅 (𝒙) = exp
𝜅
0 (M̂(log𝜅0 (𝒙))), M̂(𝒗) = (0,M(𝑣1, . . . , 𝑣𝑛)). (18)

Let M be a𝑚 × 𝑛 matrix, M′ be a 𝑙 ×𝑚 matrix, x ∈ S𝑛𝜅 , M⊗𝜅𝒙 :=

M⊗𝜅 (𝒙), we have matrix associativity as: (M′M)⊗𝜅𝒙 = M′ ⊗𝜅
(M⊗𝜅𝒙).

The hypersphere matrix-vector multiplication also satisfies fol-

lowing theorem:

Theorem A.1. Given a point in spherical space, which is repre-
sented by 𝒙𝑛

S𝜅
∈ S𝑛𝜅 using hypersphere model or x𝑛

D𝜅
∈ D𝑛
D𝜅

using
projected hypersphere ball model [3], respectively. LetM be a𝑚 × 𝑛
matrix, hypersphere matrix-vector multiplicationM⊗𝜅𝒙𝑛S𝜅 used in
hyperboloid model is equivalent to Möbius matrix-vector multiplica-
tion M⊗𝜅𝒙𝑛D𝜅 used in projected hypersphere model.

Proof. Let 𝒙𝑛
S𝜅

∈ S𝑛𝜅 , 𝒗 = (𝑣0, 𝑣1, . . . , 𝑣𝑛) ∈ T0S𝑛𝜅 , and M be a

𝑚 × 𝑛 matrix, hypersphere matrix-vector multiplication is shown

as follows:

M⊗𝜅𝒙𝑛S𝜅 : = M⊗𝜅 (𝒙𝑛S𝜅 ) = exp
𝜅
0

(
M̂
(
log

𝜅
0 (𝒙

𝑛
S𝜅
)
) )

= 𝒚𝑚S𝜅 ,

M̂(𝒗) =
(
0,M(𝑣1, . . . , 𝑣𝑛)

)
.

(19)



Let 𝒙𝑛
D𝜅

∈ D𝑛𝜅 , Möbius matrix-vector multiplication has the formu-

lation as [3]:

M ⊗𝜅 𝒙𝑛D𝜅 := M⊗𝜅 (𝒙𝑛D𝜅 )

=(1/
√
𝜅) tan

( ∥M𝒙𝑛
D𝜅

∥
∥𝒙𝑛
D𝜅

∥ tan
−1 (

√
𝜅∥𝒙𝑛D𝜅 ∥)

) M𝒙𝑛
D𝜅

∥M𝒙𝑛
D𝜅

∥ = 𝒚𝑚D𝜅 .
(20)

For 𝑃S𝑛𝜅→D𝑛𝜅 (𝒙
𝑛
S𝜅
) = 𝒙𝑛

D𝜅
and a shared𝑚 × 𝑛 matrixM, we aim to

prove 𝑃S𝑚𝜅 →D𝑚𝜅 (𝒚𝑚
S𝜅
) = 𝒚𝑚

D𝜅
.

For 𝒙𝑛
S𝜅

= (𝑥0S𝜅 , 𝑥1S𝜅 , . . . , 𝑥𝑛S𝜅 ) ∈ S
𝑛
𝜅 , let �̂�S𝜅 = (𝑥1S𝜅 , . . . , 𝑥𝑛S𝜅 ),

and the logarithmic map of 𝒙𝑛
S𝜅

at 0 = (1/
√
𝜅, 0, . . . , 0) ∈ S𝑛𝜅 is

shown as follows:

log
𝜅
0 (𝒙𝑛S𝜅 ) =

cos
−1 (

√
𝜅𝑥0S𝜅

)√︃
1 − 𝜅𝑥2

0S𝜅

(0, �̂�S𝜅 ) =
cos

−1 (
√
𝜅𝑥0S𝜅

)
√
𝜅 ∥�̂�S𝜅 ∥

(0, �̂�S𝜅 ) . (21)

Let 𝑞 =
cos

−1 (
√
𝜅𝑥0S𝜅

)
√
𝜅 ∥�̂�S𝜅 ∥ , log

𝜅
0 (𝒙𝑛S𝜅 ) = 𝑞(0, �̂�S𝜅 ), so we have:

M̂
(
log

𝜅
0 (𝒙

𝑛
S𝜅
)
)
= (0, 𝑞M�̂�S𝜅 ) = 𝒎. (22)

The hypersphere matrix-vector multiplication is given as following:

M⊗𝜅𝒙𝑛S𝜅 =

(
1

√
𝜅
cos(

√
𝜅∥𝒎∥), sin(

√
𝜅∥𝒎∥)𝑞

√
𝜅∥𝒎∥

M�̂�S𝜅

)
= 𝒚𝑚S𝜅 . (23)

Then we map 𝒚𝑚
S𝜅

to the projected hypersphere model:

𝑃S𝑛𝜅→D𝑛𝜅 (𝒚
𝑚
S𝜅
) = 1

√
𝜅
tan

(
∥M�̂�S𝜅 ∥

cos
−1 (

√
𝜅𝑥0S𝜅 )

2∥�̂�S𝜅 ∥

) M�̂�S𝜅
∥M�̂�S𝜅 ∥

.

(24)

Note that ∥𝒎∥ =
√︁
⟨𝒎,𝒎⟩ = ∥𝑞M�̂�S𝜅 ∥, and𝑥0S𝜅 =

√︃
1/𝜅 − ∥�̂�S𝜅 ∥2 .

Moreover, the point 𝒙𝑛
D𝜅

= (𝑥1D𝜅 , . . . , 𝑥𝑛D𝜅 ) ∈ D
𝑛
𝜅 can be mapped

into the hypersphere model as following:

𝑃D𝑛𝜅→S𝑛𝜅 (𝒙
𝑛
D𝜅

) =
(1/

√
𝜅 −

√
𝜅∥𝒙𝑛

D𝜅
∥2, 2𝑥1D𝜅 , . . . , 2𝑥𝑛D𝜅 )

1 + 𝜅∥𝒙𝑛
D𝜅

∥2

= (𝑥0S𝜅 , 𝑥1S𝜅 , . . . , 𝑥𝑛S𝜅 ) .
(25)

Thus, the squared norm of �̂�S𝜅 is given as:

∥�̂�S𝜅 ∥2 =
𝑛∑︁
𝑖=1

(
2

1 + 𝜅 ∥𝒙𝑖D𝜅 ∥2
)
2

(𝑥𝑖D𝜅 )
2 =

( 2∥𝒙𝑛D𝜅 ∥
1 + 𝜅 ∥𝒙𝑛

D𝜅
∥2

)
2

. (26)

By combining Eq. (24) and Eq. (26), we have:

𝑃S𝑚𝜅 →D𝑚𝜅 (𝒚𝑚S𝜅 )

=(1/
√
𝜅) tan

( ∥M𝒙𝑛
D𝜅

∥
∥𝒙𝑛
D𝜅

∥ tan
−1 (

√
𝜅∥𝒙𝑛D𝜅 ∥)

) M𝒙𝑛
D𝜅

∥M𝒙𝑛
D𝜅

∥ = 𝒚𝑚D𝜅 .
(27)

Therefore, hypersphere matrix-vector multiplication is equivalence

to Möbius matrix-vector multiplication. □
Also, to apply non-linear transformation on the hypersphere

model, the hypersphere pointwise non-linear activation can be

derived as:

Definition A.2. Hypersphere pointwise non-linear activa-
tion If 𝜎 : R𝑛 → R𝑛 is a pointwise non-linearity map, given two
points x = (𝑥0, · · · , 𝑥𝑛) ∈ S𝑛𝜅 and v = (𝑣0, · · · , 𝑣𝑛) ∈ T0S𝑛𝜅 , the
hypersphere version 𝜎⊗𝜅

is:

𝜎⊗𝜅 (𝒙) = exp
𝜅
0 (�̂�

⊗𝜅 (log𝜅0 (𝒙))), �̂�
⊗𝜅 (𝒗) = (0, 𝜎 (𝑣1), . . . , 𝜎 (𝑣𝑛))) .

(28)

The hypersphere pointwise non-linear activation has the follow-

ing property:

Theorem A.2. Given a point in hyperbolic space, it is modeled
by x𝑛,𝛽 ∈ H𝑛,𝛽 using hyperboloid model and x𝑛,𝛼 ∈ D𝑛,𝛼 using
Poincaré ball model, respectively. Lorentzian pointwise non-linearity
𝜎⊗

𝛽 (x𝑛,𝛽 ) in the hyperboloid model is equivalent to Möbius pointwise
non-linearity 𝜎⊗

𝛼 (x𝑛,𝛼 ) in the Poincaré ball model [10], when 𝜎 (·)
indicates some specific non-linear activation, e.g., Relu, leaklyRelu.

The proof of Theorem A.2 is similar to Theorem A.1, and we

omit it due to the page length limit.
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