
A Novel Index Structure for Multi-key Search

Dongyu Wei1, Xin Pan1, Chuan Shi1,�, and Yueguo Chen2

1 Beijing University of Posts and Telecommunications, Beijing, China 100876
2 Renmin University, Beijing, China

Abstract. The linear storage model is widely used to support in-
memory multi-key search running on small devices of limited computing
capacity, simply because it avoids the maintenance of space-costly and
energy-costly indexing structures. However, it only supports sequential
multi-key scan which is slow and energy-consuming. We design an index
structure called D-Tree to address the problem.

Keywords: Storage model, Multi-key search, Space-sensitive, Energy-
sensitive.

1 Introduction

Multi-key search has been an important function in database systems running
on small devices [3]. It is to search tuples within a table constrained by two
or more keys. Modern database systems use various indexing techniques (e.g.,
B+-tree [2], kd-Tree [1] and Bitmap [4]) to support efficient query processing
of multi-key search queries. However, for applications running on small devices
which have critical physical constraints (e.g., space and energy), the advanced
indexes are often not applicable due to their excessive cost in space consumption.
Quite often, linear list is more favored by many database systems designed for
small devices with physical limitations. Although linear storage model has no
extra space overhead and very few maintenance cost, the sequential scan process
is however slow and energy-consuming due to the vacancy of indexing supports.
In this paper, we address the multi-key search problem in space-limited memory
and propose a novel lightweight index named D-Tree for multi-feature datasets.

2 The D-Tree Index Structure

2.1 Construction Algorithm of D-Tree

Inspired by the dominance tree [5], we propose the D-Tree index structure to
support such a multi-key search query with small extra space cost but efficient
search speed. A dominance tree [5] is a binary tree, where the left-link field links
to its left subtree whose root node is dominated by that node, and the right-link
filed links to its right sub-tree whose root node is non-dominated by that node.
However,different from dominance tree, the D-Tree has just the child field which
point to the dominated nodes, whose data structure can be defined as follows.

� Corresponding author.

F. Li et al. (Eds.): WAIM 2014, LNCS 8485, pp. 431–434, 2014.
c© Springer International Publishing Switzerland 2014



432 D. Wei et al.

typedef struct DT{

int id; //coordinate in the sibling list
struct DT *child; //point to the dominated nodes

}

Algorithm 1. addinTree(DT *pNode, DT *newNode)
Insert a new node (newNode) into pNode’s left subtree when newNode is dominated by pNode.

1. if pNode has child then
2. addinList(pNode, pNode.child, newNode);
3. else
4. pNode.child = newNode;
5. end if

Algorithm 2. addinList(DT *pNode,
DT *cNode, DT *newNode)
When newNode is inserted into pNode’s left subtree,
newNode is compared with cNode, a node in the pNode’s
left child list.

while TRUE do
if cNode is nondominated with newNode then

if cNode is the last one in the list then
append newNode to the list;
return;

else
cNode = next node in the list;

end if
else if cNode dominates newNode then

addinTree(cNode, newNode);
return;

else if cNode is dominated by newNode then
remove cNode from the list;
addinTree(newNode, cNode);
if cNode is the last node in the list then

append newNode to the list;
return;

else
cNode = next node in the list;

end if
end if

end while

Algorithm 3. Equality Search
Require: query;

SN = CreateSN(query);
Create an empty stack; CN = root;
while CN != NULL do

if Better(SN,CN) == 1 then
prune the left branch of CN; CN=CN’s right neighbor;

else if Better(SN,CN) == -1 then
push CN’s left child to stack; CN=CN’s right neigh-
bor;

else if Better(SN,CN) == 0 then
if SN match CN then

find a target tuple;
push CN’s left child to stack; CN=CN’s right
neighbor;

else
prune the left branch of CN; CN=CN’s right
neighbor;

end if
end if
if CN == NULL then

if stack == NULL then
return;

else
CN = Pop(stack);

end if
end if

end while

To construct a D-Tree, nodes are inserted one by one. When a node (called
newNode) is compared with an existing node (called cNode), there are three pos-
sible results. 1) newNode dominates the cNode. cNode is removed and inserted
into the newNode’s left branch. newNode will be further compared with original
cNode’s right neighbors. 2) newNode is dominated by cNode. The newNode will
be inserted into the cNode’s left branch for further comparison. 3) newNode is
non-dominated with cNode. newNode will be further compared with the cNode’s
right neighbors. The node insertion algorithm of D-Tree is shown in Algorithm 1
and 2.

Right-link Sort. In many cases, a key (called hot key) is usually visit many
times in queries.We propose the right-link sort method to boost the performance
of queries containing a hot key. We will show that such a variation can improve
search performance in experiments.

Equality Search Here we consider the simplest operation (i.e., “=”) for the
multi-key search algorithm.The algorithm is shown in Algorithm 3. The search
process can be roughly separated into three steps. 1) Input an array list (a
sibling chain). 2) Iteratively compare SN with CN through the list. 3) Determine
whether go back to 1) or not.



A Novel Index Structure for Multi-key Search 433

3 Experiments

We test the equality search performances on synthetic datasets. Three structures,
FS, D-Tree and srD-Tree, are included in the experiments. FS means the multi-
key sequential scan on linear list. D-Tree means the multi-key search on D-Tree
without right-link sort adjustment. srD-Tree means the multi-key search on D-
Tree with right-link sort. One search key is always selected as hot key.

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

N

tim
e(

m
s)

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

N

tim
e(

m
s)

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

N
tim

e(
m

s)
0 2000 4000 6000 8000 10000

0

200

400

600

800

1000

N

tim
e(

m
s)

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

N

tim
e(

m
s)

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

N

tim
e(

m
s)

5 10 15
500

1000

1500

2000

2500

3000

3500

4000

M

tim
e(

m
s)

10^4 10^6 10^8 10^10
500

1000

1500

2000

2500

3000

3500

4000

D

tim
e(

m
s)

FS

D−Tree

srD−Tree

R=1

R=2

R=3

R=4

FS

D−Tree

srD−Tree

R=1

R=2

R=3

R=4

FS

D−Tree

srD−Tree

FS

D−Tree

srD−Tree

FS

D−Tree

srD−Tree

FS

D−Tree

srD−Tree

5) skew dataset. more large values

1) uniform workload and dataset. 
R=2.

2) uniform workload and dataset. 
varing R

3) skew workload. R = 2 4) skew workload. Varing R

6) skew dataset. more small values 8) D from 32 to 16k7) increase key.

Fig. 1. Time efficiency experiments on equality search.N represents the number of
tuples, M represents the number of keys indexed by D-Tree, R represents the the
number of keys specified in Search Node, D represents the value domain of each key

In the results of Fig. 1(1), the data of a table with four keys are indexed. Each
key has a domain of [1,50]. All queries contain 2 search key (i.e., R = 2). The
results show that D-Tree consistently outperforms the solution of the sequential
multi-key scan. srD-Tree is the fastest one. In experiments of Fig. 1(2), we vary
the number of search keys from 1 to 4. As shown in the figure, the more search
keys used, the faster D-Tree and srD-Tree are. This is because when more values
are filled in the search node (SN), SN has larger possibility to be non-dominated
with CN.

Different from Fig. 1(1) and (2) which use uniform workload, Fig. 1(3) and (4)
generate skew workload using Zipfian distribution1 with parameter 1.0. Smaller
values have larger possibility to be searched. Similar to the experimental setting
in Fig. 1(1) and (2), we use 2 search keys in Fig. 1(3) and vary the number
of keys in Fig. 1(4). As we expected, D-Tree and srD-Tree further improve the
performance. srD-Tree in Fig. 1(4) is over 2 orders of magnitude faster than
the sequential scan. The reason is that, when the values in the query become
smaller, the target tuples stay closer to the root.

Instead of generating skew workload, we generate skew dataset using Zipfian
distribution with parameter 1.0 in Fig. 1(5) and Fig. 1(6). Besides, 3 search keys

1 http://en.wikipedia.org/wiki/Zipf’s law



434 D. Wei et al.

are used in queries. In Fig. 4(5), large values has large possibility to be generated,
while in Fig. 1(6) small values have large possibility of being generated. srD-Tree
is nearly two orders of magnitude faster than FS.

In experiments of Fig. 1(7), the impact of M is tested. As shown in Fig. 1(7),
when more keys are indexed, the performance of D-Tree and srD-Tree degrade.
The reason is that when more keys are indexed, nodes have large possibility to be
non-dominated with each other. And the sibling chain, which cannot be pruned
by D-Tree, gets longer. Even though D-Tree degrades, it still outperforms FS
when 15 keys are indexed.

We also test the impact of value domain in Fig. 1(8). The value domain of all
keys is enlarged together. As the value domain is enlarged, fewer duplicate values
occur. However, we do not observe the significant change of the performance
when varying the value domain of all keys from 32 to 16k. It means that the
time efficiency of D-Tree is not sensitive to domain size.

4 Conclusions

Data management engines on small devices are faced with common special phys-
ical restrictions and limited energy support. They are not quite time-sensitive
but have high requirements on space and energy. We propose the novel D-Tree,
an in-memory lightweight storage model for multi-key search. The D-Tree can
effectively store the dominance relationships of tuples with small extra index
space. We design efficient search algorithms based on D-Tree for multi-key search.
Extensive experiments show that D-Tree can achieve 2 orders of magnitude im-
provement than linear scan with very small extra space cost. It indicates that
D-Tree can be an effective substitution of linear list on the extreme space limit
scenarios, such as smart card and sensor database.

Acknowledgement. This work is supported by the National Basic Research
Program of China (2013CB329603). It is also supported by the National Natural
Science Foundation of China (No. 61375058, 60905025, 61074128) and Ministry
of Education of China and China Mobile Research Fund (MCM20123021).

References

1. Bentley, J.L.: Multidimentional binary search trees used for associative searching.
Communications of the ACM 18(9), 509–517 (1975)

2. Comer, D.: The ubiquitous b-tree. ACM Computing Surveys 11(2), 121–137 (1979)
3. Li, X., Kim, Y.J., Govindan, R., Hong, W.: Multi-dimensional range queries in

sensor networks. In: SenSys, pp. 63–75 (2003)
4. O’Neil, P., Quass, D.: Improved query performance with variant indexes. In: SIG-

MOD, pp. 38–49 (1997)
5. Shi, C., Yan, Z., Lu, K., Shi, Z., Wang, B.: A dominance tree and its application in

evolutionary multi-objective optimization. In: Information Sciences, pp. 3540–3560
(2009)


	A Novel Index Structure for Multi-key Search
	1 Introduction
	2 The D-Tree Index Structure
	2.1 Construction Algorithm of D-Tree

	3 Experiments
	4 Conclusions
	References




