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ARTICLE INFO ABSTRACT

Keywords: Previous debiasing studies utilize unbiased data to make supervision of model training. They

Recommender Systems suffer from the high trial risks and experimental costs to obtain unbiased data. Recent research

Debiasing Learning attempts to use invariant learning to detach the invariant preference of users for unbiased recom-

Knowledge Distillation mendations in an unsupervised way. However, it faces the drawbacks of low model accuracy
and unstable prediction performance due to the losing cooperation with variant preference.
In this paper, we experimentally demonstrate that invariant learning causes information loss
by directly discarding the variant information, which reduces the generalization ability and
results in the degradation of model performance in unbiased recommendations. Based on this
consideration, we propose a novel lightweight knowledge distillation framework (KD-Debias) to
automatically learn the unbiased preference of users from both invariant and variant information.
Specifically, the variant information is imputed to the invariant user preference in the distance-
aware knowledge distillation process. Extensive experiments on three public datasets, i.e.,
Yahoo!R3, Coat, and MIND, show that with the biased imputation from the variant preference
of users, our proposed method achieves significant improvements with less than 50% learning
parameters compared to the SOTA unsupervised debiasing model in recommender systems. Our
code is publicly available at https://github.com/BAI-LAB/KD-Debias.

1. Introduction

As recommender systems have achieved great success in providing personalized service, numerous studies focus
on improving the accuracy of model performance (Luo, Zou, Ai, Chen, Li, Yin, and Davison, 2024; Wei, Ren, Tang,
Wang, Su, Cheng, Wang, Yin, and Huang, 2024; Song, Huang, Lian, and Jin, 2024; Hua, Ge, Xu, Ji, Li, and Zhang,
2024). Recently, increasing attention has been paid to the long-term impacts on user experience and retention in
commercial platforms, especially in reducing the risks brought by multiple kinds of bias, including the exposure
bias (Yang, Cui, Xuan, Wang, Belongie, and Estrin, 2018), position bias (Collins, Tkaczyk, Aizawa, and Beel, 2018),
popularity bias (Chen, Xiao, Li, Ye, Sun, and Deng, 2020; Krishnan, Sharma, Sankar, and Sundaram, 2018) and so on.
For example, popularity bias refers to popular items being overly recommended, which is at the expense of damages
in recommendation ecology due to the under-recommendation of less popular items that users may be interested in.
The studies of debiasing in recommender systems can be generally classified into two basic routes: one is to address
a specific bias, like popularity bias (Chen et al., 2020; Krishnan et al., 2018) or position bias (Collins et al., 2018),
the other is general debiasing with various biases (Li, Wu, Zheng, Xiao, Wang, Geng, Feng, He, and Wu, 2024; Li,
Wang, Wang, and Xu, 2023; Zhang, Ma, Wei, Sheng, and Wang, 2024). In practice, in real recommendation scenarios,
various types of biases are often mixed up, for example, a user’s click behavior may be influenced by both popularity
bias and exposure bias.

To deal with the mixed-up biases, general debiasing methods (Li et al., 2024, 2023; Zhang et al., 2024) are proposed,
and they usually require the supervision of unbiased data in the training process. However, the acquisition of such
unbiased data in real recommender systems often entails considerable trial risks and human costs. In response, recent
studies attempt to apply invariant learning (Creager, Jacobsen, and Zemel, 2021; Du, Wu, Feng, He, and Tang, 2022) to
detach the invariant preference of users for unbiased recommendations in an unsupervised way (i.e., training without
unbiased data). The debiasing method (Wang, He, Liu, Zou, Yu, and Cui, 2022; Tang, Zou, Cui, Liang, and Jin,
2024) via invariant learning assumes that the observational user behaviors are determined by invariant preference (i.e.
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Figure 1: The drawbacks (i.e., low model accuracy and unstable prediction ability) of the invariant learning method InvPref
which solely relying on invariant information to make unbiased recommendations. (a) The model performances of our model
KD-Debias and InvPref on the Yahoo!R3 dataset with random seeds in the 20 repeated experiments,the horizontal axis
represents different experimental groups; (b) The distributions of invariant and variant preference in InvPref; (c) The
information entropies of invariant and variant preference; (d) The distance between the unbiased true label and the
predicted label from invariant and variant preference: the smaller the distance is, the more accurate the prediction is. The
cases in which the prediction from variant preference is more accurate to the unbiased true label are circled with the dotted
line, implying their potential utility to enhance the model performance, the horizontal axis refers to different data samples.

a user’s true preference) and the variant preference (affected by some unobserved confounders)!. They believe that
the unobserved confounders may cause various biases, and only the invariant preference should be used for unbiased
recommendations. Conducted in an unsupervised way, such a debiasing model (Wang et al., 2022) avoids the high
risks in collecting unbiased data.

However, we find it faces the drawbacks of low model accuracy and unstable prediction ability. Fig.1 (a) illustrates
the utilization of solely the invariant preference for generating unbiased recommendations across various random
initialized seeds. Notably, the performance of the invariant learning model (Wang et al., 2022) (marked in blue line)
exhibits marked instability, indicative of its limited generalization capability. To figure out the reasons, we characterize
the distributions of invariant preference and the variant preference via t-SNE algorithm (Van der Maaten and Hinton,
2008), as well as their information entropy in Fig.1 (b-c). We find out that the distribution of the invariant and variant
preference are distinct different (subfigure b), and both of them contain abundant information (subfigure c). Besides, to
verify whether the variant preferences are useless for debiasing learning, we evaluate their capability to make unbiased
recommendations, as shown in Fig.1 (d): for a certain number of cases ( circled with the dotted line), the prediction
from variant preference is more accurate to the true unbiased label. This indicates that solely relying on invariant
information to make unbiased recommendations will result in information loss, which degrades model performance
and reduces its generalization ability. The presence of abundant information within users’ variant preferences implies
their potential utility in enhancing the effectiveness of unbiased recommendations. Based on the above consideration,
our aim is to take full advantage of the variant information to enhance unbiased recommendations.

To tackle this challenge, we propose a novel distance-aware knowledge distillation framework (KD-Debias) to
adaptively fuse the invariant and variant information for general debiasing. The knowledge distillation process provides
a way to distill useful information from the variant information, which is automatically imputed to the unbiased
data distribution following the rules: comparing to the distribution of invariant information, the more different the
distribution of the variant information is (i.e., greater distance), the more attention will be paid to the variant preference
in the knowledge distillation process. Then a simple lightweight matrix factorization (MF) based student model is
designed to capture the collaborative signals. With the soft predicted label from the teacher model, the MF based
student model not only improves the model efficiency by reducing the number of parameters, but also enhance its
generalization ability for the final unbiased predictions. Our contributions are as follows:

e We use invariant learning to conduct general debiasing with biased observational data only and demonstrate the
necessity to incorporate the biased imputation from variant information in unbiased recommendations.

e We propose a lightweight distance-aware knowledge distillation framework, termed as KD-Debias, to auto-
matically fuse the invariant and variant information, the distillated student model achieves the best model

'In the debiasing model (Wang et al., 2022): the invariant preference refers to the unbiased preference, and the variant preference refers to the
biased preference affected by unobserved confounders.
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performance with less than 50% learning parameters compared to the SOTA unsupervised debiasing method
(i.e., InvPref).

e We conduct extensive experiments on three public datasets, i.e., Yahoo!R3, Coat, and Mind, to show that
with the imputation from biased information, our method achieves the best model performance in unbiased
recommendations.

2. Related Work

In this section, we introduce the concepts related to our study briefly, including debiasing learning, invariant
learning, and knowledge distillation methods in recommender systems.

2.1. Debiasing in recommender systems

There are various kinds of biases in recommender systems, such as selection bias (Li et al., 2023; Saito, 2020; Li,
Zheng, Zhou, and Wu, 2022), exposure bias (Mansoury, 2022; Ning, Sangineto, Porrello, Calderara, and Cucchiara,
2023), popularity bias (Zhao, Chen, Zhou, He, Cao, Zhang, and Wu, 2022; Chen, Dong, Wang, Feng, Wang, and He,
2023), and other undefined biases caused by latent confounders (Nam, Cha, Ahn, Lee, and Shin, 2020; Wang, Shen,
Wang, Chen, Chen, and Wen, 2022; Zhu, Zhang, Yang, Wang, and Feng, 2024). The biases would hurt the experience of
users and the revenues of platforms. As increasing attention has been paid to debiasing in recommender systems, more
and more debiasing methods have been proposed (Zhao, Cui, Li, Bao, Li, Zhou, Liu, and Feng, 2023; Wei, Feng, Chen,
Wu, Yi, and He, 2021; Qiu, Wang, Chen, Yin, and Huang, 2021). The studies of debiasing in recommender systems
can be generally classified into two basic routes: one is to address a specific bias, like the exposure bias (Du, Yuan,
Huang, Zhao, and Zhou, 2023; Yang et al., 2018), position bias (Collins et al., 2018; Wu, Qiu, Zheng, Zhu, and Chen,
2024), popularity bias (Chen et al., 2020; Krishnan et al., 2018) and so on. For example, KDRec (Yang, Huang, Xia,
Huang, Luo, and Lin, 2023) introduces contrastive learning to capture item transition patterns and address popularity
bias. Some researchers design inverse propensity score estimators to eliminate biases across different domains (Li,
Yao, Mu, Zhao, Li, Guo, Ding, and Wen, 2021). The other is general debiasing with various biases mixed up (Guo,
Cai, Zheng, Zhang, and Chen, 2024; Zhang et al., 2024; Yang, Li, Liu, Wang, Lu, and Liu, 2024). For example, the
IPS-based debiasing methods (Schnabel, Swaminathan, Singh, Chandak, and Joachims, 2016; Zhu, He, Zhang, and
Caverlee, 2020) address biases by re-weighting the samples to make the biased distribution of training data approximate
the distribution of unbiased data, iDCF (Zhang, Zhang, Liu, Wang, Gao, Zhang, and Guo, 2023) applies proximal causal
inference to infer the unmeasured confounders and identify the counterfactual feedback. DIB (Liu, Cheng, Zhu, Dong,
He, Pan, and Ming, 2023) alleviates the confounding bias via information bottleneck. AdvDrop (Zhang et al., 2024)
employs adversarial learning to split the neighborhood into bias-mitigated interactions and bias-aware interactions for
graph-based recommendations. Despite their effectiveness, most of these methods train models under the supervision
of unbiased data which is usually generated with high experimental costs, besides, the imbalance in the quantity of
unbiased and normal data also raises concerns about overfitting issues.

Recently, some researchers have solved the debiasing issue in unsupervised ways (Wang, Chen, Wen, Huang,
Kuruoglu, and Zheng, 2020; Wang et al., 2022), i.e., training without unbiased data. For example, CVIB (Wang
et al., 2020) builds a counterfactual variational information bottleneck, mitigating bias by balancing learning between
the factual and counterfactual domains; InvPref (Wang et al., 2022) captures the biases through estimating pseudo
environments labels and generate unbiased user preferences with invariant learning. Despite their ability to eliminate
the dependence on unbiased data, these methods still face the drawbacks of low and unstable model performance
according to our findings in Section 1.

2.2. Invariant Learning

Invariant learning (Arjovsky, Bottou, Gulrajani, and Lopez-Paz, 2019; Creager et al., 2021) assumes that the
observed data originate from multiple different environments, which caused the heterogeneity of the distribution of
observed data. Relying on the principle of invariance inherent in causality, invariant learning captures representations
with invariant predictive ability across environments. By capitalizing on the invariant relationship that exists between
features and labels across diverse distributions, invariant learning can ensure generalization and disregard pseudo-
correlations even when there are deviations in distribution. Drawing from these strengths, the concept of invariant
learning has been extensively applied in recommendation tasks, extending its utility into the domain of debiasing
recommendations as well. For example, InvPref (Wang et al., 2022) attributes the heterogeneity of environments
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Figure 2: An Overview of KD-Debias framework. It contains two components: the Disentangled Preference Modeling
component and the Distance-aware Knowledge Distillation component. The disentangled preference modeling is conducted
on the left causal graph with an environment classifier to identify the biases from different environments. Then the
knowledge distillation are conducted on the disentangled invariant preference and variant preference with a distance-aware
fusion strategy.

will cause biases. They assume that the observational user behaviors are determined by invariant preference (i.e.
a user’s true preference) and the variant preference (affected by some unobserved environment confounders). They
capture the invariant user preferences across environments for unbiased recommendations. Compared with the existing
debiasing methods with invariant learning, we not only focus on the generalizability of invariant preference but also
the information loss exhibited by invariant learning when it comes to personalized recommendations.

2.3. Knowledge Distillation

The knowledge distillation framework (Hinton, Vinyals, and Dean, 2015) can distill the knowledge from teacher
models (an ensemble of cumbersome models) to the student model (a small model) by using the “soft targets or label”
produced by the teacher model for training the student model. In addition to the information of positive samples,
aligning with “soft targets” could also carry a lot of information from negative ones, which improves the generalization
ability of the student model. Benefiting from these strengths, many researchers employ knowledge distillation into
recommendation systems to lightweight the model (Gou, Yu, Maybank, and Tao, 2021; Liu, Cheng, Dong, He, Pan,
and Ming, 2020) and improve the generalization capabilities (Kang, Hwang, Kweon, and Yu, 2020; Tang and Wang,
2018; Zhu, Si, Wang, Yang, and Xiao, 2022) by ensemble models at a fine-grained level. Recently, some studies (Ding,
Feng, He, Jin, Wang, Liao, and Zhang, 2022; Liu, Cheng, Lin, Luo, Dong, He, Pan, and Ming, 2022; Chen, Chen, Feng,
Zhou, and He, 2023) attempt to use knowledge distillation to improve the debiasing ability in recommender systems.
KDCRec (Liu et al., 2022) proposes a flexible knowledge distillation method with four types of distillation strategies
from the teacher model to the student model. InterD (Ding et al., 2022) achieves competitive performance in both the
norm test and debiasing test by distilling knowledge from a biased model and an unbiased model. However, both of
them are trained under the supervision of unbiased data, which brings the high experimental costs and concerns of the
overfitting problem. Different from the existing knowledge distillation approaches on debiasing learning, we aim to
achieve unbiased recommendations without the participation of unbiased data.
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3. Our Proposed Method

In order to make unbiased recommendations with the biased observational data alone, we use invariant learning
to obtain the invariant and variant preferences of users in an unsupervised way. To fully make utilization of variant
information, we propose a distance-aware knowledge distillation debiasing framework (KD-Debias) to adaptively fuse
the invariant and variant information for debiasing in recommender systems. KD-Debias consists of two components:
i.e., the disentangled preference modeling component and the distance-aware knowledge distillation component. The
illustration of our proposed framework is shown in Fig. 2.

3.1. Disentangled Preference Modeling

To learn the unbiased preference of users, we disentangle user preference into user invariant preference and variant
preference. Following the method in invariant learning (Wang et al., 2022), which assumes that the variant information
is influenced by different latent confounders from environments and is regarded as biased information. Specifically,
the disentangled preference modeling is conducted on a causal graph (see in the left part of Fig. 2) that describes the
generation of observational user behaviors. Let U and I represent the set of users and items respectively. The preference
of users U towards items I can be disentangled into invariant preference M and variant preference N. Different
from the invariant preference M, the variant preference N is also directly influenced by the latent confounders in the
environment E. The observed user feedback Y is inevitably biased since it is affected by both invariant and variant
preference.

3.1.1. Basic Summarization.

To disentangle the invariant and variant preferences, invariant debiasing learning is conducted by an adversarial
network. It designs an environment classifier to identify the biases from different environments. The invariant
preference tries to confuse the environment classifier, while the classifier aims to identify the environment label of the
invariant preference. A well-trained classifier can easily predict the environment label of the biases mixed in invariant
preference. A well-optimized invariant user preference contains no bias that increases the difficulty of the classifier in
identifying which environment the bias comes from. Through the joint optimizations of the invariant preference and
environment classifier, we can obtain the disentangled invariant and variant preferences of users. Specifically, invariant
learning can be divided into two steps, i.e., the invariant and variant preference modeling and the adversarial learning
with the environment classifier.

3.1.2. The Invariant and Variant Preference Modeling.

For observed data user u and item i, we use u'™, i, i, i’ to denote the invariant embedding and variant
embedding of user « and item i. q, is the corresponding environment embedding. The invariant preference m, ; and
variant preference n,,; of the user toward item i can be computed as:

mu,i — uinU 10) iinl)’ (1)

n,; = 1 Rl 0} ko) Q@ (2)

where © is the Hadamard product of two embeddings.

In order to enhance the recommendation abilities of invariant preference, we use the observed feedback label y as
the supervision information, and the invariant representations are optimized by:
1

LinU = I | Z lrec((p(mu,i)’ yu,i)’ (3)

(u,)eD

where y, ; is the user feedback in observed data, /,,.(-) is the binary cross entropy loss and ¢(-) is a predictive function
as follow:

@(x) = Sigmoid(leL), 4

where 1; is an all-ones vector with the same dimension as x.
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3.1.3. The Adversarial Learning with the Environment Classifier.

The invariant preference of a user towards an item m,,; tries to confuse the environment classifier ¢,, while the
classifier tries to identify the environment label of this pair according to its invariant preference. The ground truth
environment label e, ; can be assigned according to the prediction loss of the observed user feedback (see in Eq.6),
since the smaller difference between observed biased feedback and prediction is, the more possibility the pair is from
this environment. The optimization of the environment classifier ¢, can be defined as:

1

env=| |

D L(pm,)),e,), )

(u,i)éD

where ¢, is a single-layer MLP network whose output dimensions are equal to the number of environments, and /,, is
the cross entropy loss for multiple classifications.

The environment label e, ; for user-item pair (u, i) is reallocated according to the prediction loss L, of the observed
feedback label, formulated as:
e,; < argmin(L,,.), ©6)
e€€
Luar = lrec(f((p(nu,i)’ (p(mu,i))’ yu,i)’ (7)

where y, ; is the biased label in observed data, ¢ is the predictive function (defined in Eq.4), f (-, -) is a product function
to fuse the invariant and variant predictions, and /,,.(-) is the binary cross entropy loss.

3.1.4. Overall Objective Functions.

The goal of invariant preference m,; = u"’ © i’ is to confuse the environment classifier ¢, i.e., maximize L,,,,
while the aim of the classifier is to identify the label of the environment, i.e., minimize the parameters 6, in L,,,,,. The
adversarial process can be formulated as:

min max L,,,. ®)

0“ uino jinv

The overall loss function of disentangled preference modeling can be formulated as:

L =Ly —a- Lo+ B Ly ©)

major

where a, f are the hyper-parameters to balance the proportions of the variant and invariant preferences.

3.2. Distance-aware Unbiased Knowledge Distillation

Utilizing the Disentangled Preference Modeling module, we systematically decompose user preferences into two
distinct categories: invariant and variant preferences. To achieve unbiased recommendations, we propose a distance-
aware knowledge distillation approach. By conducting the distance-aware knowledge distillation, we distill useful
information from both invariant and variant preference into a lightweight student model, which improves the model
efficiency by reducing the number of parameters. Besides, the use of soft predicted labels from the teacher model
further enhances the model’s generalization capability.

3.2.1. Basic Summarization.

Invariant preferences represent stable aspects of users’ tastes unaffected by external factors, reflecting enduring
interests or values. In contrast, variant preferences fluctuate in response to external influences such as time and context.
By adaptively integrating these two preferences, recommender systems can better understand and anticipate user needs,
ultimately facilitating unbiased recommendations. Our method is grounded in a fundamental principle: when there
is a significant difference in the invariant and variant preferences, it indicates that the user’s current needs diverge
markedly from their long-term preferences. By incorporating variant preferences, the system can effectively capture
this contextual information, allowing it to deliver recommendations that are not only more relevant but also unbiased. In
practice, this means that the greater the discrepancy between the variant preference and invariant preference, the more
attention should be paid to the information in the variant preference. Conversely, when the discrepancy is minimal, such
imputation information may be less required. Ultimately, we derive users’ invariant and variant-dominated feedback,
measuring their differences through distance calculations. This difference informs the adaptive fusion of preferences,
which serves as soft labels to guide the training of the student model.
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3.2.2. Teacher Model.
Given a user-item pair (u, i), we can calculate the invariant-dominated feedback y'/ and the variant-dominated
feedback V%" respectively:

ainv

P = p(m, ), (10)
Vi = omy,)). (11)

where @ is the predictive function (defined in Eq.4).
Then the distance between the prediction labels of invariant and variant preferences is calculated as an indicator to
fuse the prediction results. The fusion process in the teacher model can be formulated as follows:

dy; =190 = 9041, (12)
Wi =(1-d,;Y, (13)
we = 1- w7, (14)

Vi = w0y Tui w9 (15)

where y is a hyper-parameter and acts as the temperature coefficient in the fusion process. With the increasing of y,
more information on variant preferences be used to predict the final unbiased user feedback.

3.2.3. Student Model.

In order to enhance model performance and facilitate downstream recommendation tasks, we introduce a distance-
aware knowledge distillation strategy to distill the unbiased information from the teacher model to a lightweight student
model. Specifically, a simple matrix factorization-based student model is designed to capture the collaborative signals.

~stu

The prediction label y7"* of the student model is defined as:

J,},if? =8, o tu,lw (16)

where s, ; and t,; are the learning representations of the user and item in the student model.
For each user-item pair (u, i) in observed data, we treat the predicted unbiased user feedback 7 in the teacher
model (see in Eq.15) as the ground truth label. The loss function in knowledge distillation process is defined as:

1 AstU a
Lyp=1r7 D LecO, 950, (17)
1Dl 4 T

where /,,.(-) is the binary cross-entropy loss.

In summary, we first disentangle the variant and invariant preference of users, then propose a student model to
make the distillation of fused information, which not only lightweight the model parameters but also increases the
generalization ability of the debiasing student model. Without the requirement of unbiased data, our debiasing model
is trained in an unsupervised way, which expands the applicability of KD-Debias.

4. Experiments

We conduct experiments on three public datasets and compare our model with representative debiasing models to
show the effectiveness of KD-Debias.

4.1. Experimental Settings
4.1.1. Datasets.

To validate the effectiveness of KD-Debias, we utilize three real-world datasets: Yahoo!R3, Coat, and Mind
datasets. The statistics of three datasets are shown in Table 1.

e Yahoo!R3”: The Yahoo! R3 dataset is a collection of user ratings for songs, collected within the context of music
recommendation. The rating scale range from 1 to 5. It consists of two subsets: a set of biased data collected
from norm recommendation scenarios, and a set of unbiased data collected by a random logging strategy where
items are posted randomly.

Zhttps://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=3
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Table 1
Statistics of datasets.

Dataset  #Users #tltem Biased Data Unbiased Data

Yahoo!R3 15.4k 1.0k 250k 54k
Coat 290 300 6.9k 4.2k
Mind 100k 161k 24M -

e Coat’: The dataset is sourced from a coat recommendation platform, capturing user ratings for items on a scale
of 1 to 5. It consists of two subsets: a set of biased data collected from norm recommendation scenarios, and a
set of unbiased data collected by a random logging strategy where items are posted randomly.

e Mind*: is a widely used news dataset and it contains user clicks for news and which news is exposed to users. It
is widely used to study the debiasing problem of exposure bias.

Following the experimental settings in (Ding et al., 2022; Wang et al., 2022), the biased data is used in the training
process. For the methods under the supervision of unbiased data, we randomly sample 5% of unbiased data as the
supervised labels in the training set (this part is not used in unsupervised methods), 5% of unbiased data as the validation
set for choosing parameters, the remaining 90% of the unbiased data is used for testing. The rating scores (1-5) larger
than 3 are treated as positive feedback, while the other rating scores are treated as negative feedback.

4.1.2. Evaluation metrics.
We adopt the NDCG@k and Recall@k to evaluate the performance of our model.

o NDCG @k: measures the quality of recommendations by combining relevance and position information.

I(2,; < K)
DCG@k =) —=——, (18)
o log(2,; +1)
NDCG@k = L M (19)

U] &. IDCG@k’

where 2, ; is the rank position of item i in the recommended list for user u, IDCG@k is the ideal DCG@k.

I(2,,; < k) returns 1if Z,; < k, and O otherwise.

o Recall@k: measures the number of items appear in the top-K clicked list of users.

Yy WGy < k)

Recall @k = s (20)
[,
1
Recall@k = — Recall @k, 2n
V| u;‘f !

where 1, is the item set of all interactions of user u.

4.1.3. Baselines.
We compare our proposed framework KD-Debias with the mainstream debiasing methods in recommender
systems.

e MF (Koren, Bell, and Volinsky, 2009): Matrix Factorization is a widely used model in the recommendation,
which is a biased model without debiasing capability.

e MF-IPS (Schnabel et al., 2016): is a recommendation model that incorporates inverse propensity scores into the
MF framework to address bias issues.

3https://www.cs.cornell.edu/ schnabts/mnar/
“https://paperswithcode.com/dataset/mind
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Table 2
Properties of debiasing methods. Debiasing: a debiasing model?; Unsupervised: training with unbiased data? General: a
general debiasing model? KD: knowledge distillation model?

Debiasing  Unsupervised General KD

MF % Vv X X
MF-IPS Vv X Vv X
AutoDebias \/ X \/ X
CauseE \/ X \/ \/
InterD \/ X \/ \/
InvPref \/ \/ \/ X
WMF v v X X
EXMF v Vv X X
KD-Debias vV v v vV

e CauseE (Bonner and Vasile, 2018): is a popular embedding method that is able to predict unbiased user feedback
by using biased data and unbiased data.

e AutoDebias (Chen, Dong, Qiu, He, Xin, Chen, Lin, and Yang, 2021): is a debiasing model trained with normal
biased and unbiased data by utilizing meta-learning.

e InterD (Ding et al., 2022): is a SOTA debiasing knowledge distillation method in recommender systems, interD
takes MF and AutoDebias as biased-teacher and unbiased teacher to distill a student model.

e InvPref (Wang et al., 2022): is a SOTA unsupervised debiasing method in recommender systems. InvPref treats
environments as the agent of confounders and applies invariant learning to learn the user’s unbiased preference.

To further verify the debiasing ability of our model on a specific bias, we select one of the most common biases in
recommender systems, i.e., the exposure bias. In addition to comparing with the general debiasing methods, we also
compare our method with the representative methods that specially designed for exposure bias, including:

e WMF (Hu, Koren, and Volinsky, 2008): is the most representative debiasing model for exposure bias. WMF
reduces exposure bias by imputing and assigning lower weights to unobserved samples.

e EXMF (Liang, Charlin, Mclnerney, and Blei, 2016): it models the probability of exposure and converted it as
confidence degree weight to reduce exposure bias.

The above methods cover different kinds of debiasing approaches in recommender systems: MF-IPS and AutoDe-
bias leverage IPS and meta-learning techniques for debiasing. CauseE and InterD are knowledge distillation debiasing
approaches with lightweight unbiased models. All of them need the supervision of unbiased data. The most similar work
to our proposed framework is InvPref, which conducts unbiased recommendations without relying on unbiased data.
Different from InvPref, our KD-Debias framework is a general debiasing framework, which automatically incorporates
both invariant and variant information via a distance-aware knowledge distillation process. Table 2 summarizes the
properties of different methods.

4.1.4. Parameter Settings.

For each baseline method, a grid search is applied to find the optimal settings. These include embedding dimensions
from {10, 20, 30,40, 50}, and the learning rate from {0.1,0.01,0.001, 0.0001, 0.00001}. We report the result of each
method with its optimal hyperparameter settings on the validation data. In our KD-Debias model, we set the dimension
of invariant and variant embedding to 40, the number of environments is 2, the learning rate in disentangled preference
modeling is 0.003, the learning rate in distance-aware distillation is 0.005, the a, g, y are setto 1.9, 9.9, 0.17. The code
will be publicly available after the review process.

4.2. Main Results
We compare the performances of methods in the general debiasing and specific debiasing (i.e., exposure bias)
settings. As shown in Table 3, Table 4 and Table 5, we can observe that:
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Table 3
Performace comparison on Yahoo!R3 dataset. The improvements achieved by KD-Debias are statistically significant (i.e.,
two-sided t-test with p-value < 0.05) over the best baseline (marked by underline).

Method Yahoo!R3
NDCG@5 Imp.1 Recall@5 Imp.1 # Parameters

MF 0.6007 - 0.7639 - 492k
MEFE-IPS 0.6113 +1.76% 0.7754 +1.51% 492k
CauseE 0.6108 +1.68% 0.7694 +0.72% 492k
AutoDebias 0.6134 +2.11% 0.7762 +1.61% 180k
InterD 0.6263 +4.26% 0.7853 +2.80% 180k
InvPref 0.6578 +9.51% 0.8065 +5.58% 1.31M
KD-Debias 0.6739* +12.19 % | 0.8217* | +7.57% 656k

Table 4
Performace comparison on Coat dataset. The improvements achieved by KD-Debias are statistically significant (i.e., two-
sided t-test with p-value < 0.05) over the best baseline (marked by underline).

Method Coat
NDCG@5 Imp. 1 Recall@5 Imp. 1 # Parameters
MF 0.4128 - 0.4716 - 17.7k
ME-IPS 0.4131 +0.07% 0.4775 +1.25% 17.7k
CauseE 0.4166 +0.92% 0.4734 +0.38% 17.7k
AutoDebias 0.4380 +6.10% 0.4899 +3.88% 6.5k
InterD 0.4475 +8.41% 0.5121 +8.59% 6.5k
InvPref 0.4241 +2.74% 0.4721 +0.11% 47.3k
KD-Debias 0.4687* | +13.54% | 0.5180* | +9.83% 23.6k
Table 5
Performace comparisons in dealing with exposure bias on MIND dataset.
NDCG Recall
Method I T Top20 | Topd0 | Topl0 | Top20 | Topd0
MF 0.222 | 0.258 | 0.283 | 0.362 | 0.499 | 0.591

WMF 0.234 | 0.267 | 0.301 | 0.379 | 0.513 | 0.607
EXMF 0.228 | 0.264 | 0.289 | 0.362 | 0.499 | 0.588
InvPref 0.234 | 0.270 | 0.298 | 0.386 | 0.532 | 0.624
KD-Debias | 0.238 | 0.278 | 0.301 | 0.386 | 0.545 | 0.661

(1) MF performs the worst in general debiasing test due to it is not a debiased model. Compared to MF, MF-IPS
addressing specific biases without uniform data can bring benefits.

(2) CauseE, AutoDebias, and InterD steadily outperform MF and MF-IPS. Under the supervision of unbiased data,
these methods gain improvements in resisting affect from biases.

(3) The unsupervised model InvPerf outperforms other baseline methods in Yahoo!R3 dataset, suggesting that the
invariant preference can reveal the unbiased preference of users to some extent. However, due to the information loss
problem, InvPerf loses the advantages of the supervised method InterD in the Coat dataset.

(4) Our proposed method KD-Debias achieves the best performance on all datasets, showing the effectiveness of
our model by incorporating the biased information in the distance-aware knowledge distillation framework. (5) For the
model efficiency of the training methods with observed biased data only, our surrogate student model in KD-Debias
is a lightweight model, which achieves the best performance with less than 50% learning parameters compared to the
SOTA baseline method InvPerf.

(6) For the specific exposure bias, we report the NDCG and Recall at top K = 10, 20, 40 in the rank lists. As shown
in Table 5, our model achieves the best performance on both NDCG and Recall in terms of addressing exposure bias.
This observation indicates that with the imputation of biased information, our knowledge distillation method learns
more useful information for unbiased recommendations.
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Table 6
The performance of the degeneration versions of KD-Debias.
Dataset Yahoo!R3 Coat
Metric NDCG@O5 | Recall@5 | NDCG@5 | Recall©@5
Ours 0.6739 0.8217 0.4687 0.5180

Ours-Variant 0.6693 0.8125 0.4278 0.4695
Ours-Distance 0.6596 0.8089 0.4643 0.5142

Ours-KD 0.6326 0.8046 0.4291 0.4723
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Figure 3: Stability comparison on Yahoo!R3 dataset. The standard deviation is computed based on 20 times repeated
experiments with different random seeds.

4.3. Experimental Analysis
We conduct in-depth analyses of our model to quantitatively show the effectiveness and stability of KD-Debias.

4.3.1. Ablation Study.

To demonstrate the effectiveness of each component (including the variant information, the distance-aware fusion
strategy and the knowledge distillation process) in our proposed KD-Debias, we conduct the ablation study on
Yahoo!R3 and Coat datasets. The degeneration versions of KD-Debias are as follows:

e Ours-Variant: it only utilizes invariant user preference to guide the learning of student model.

o Ours-Distance: it replaces the distance-aware combination with a simple combination strategy ( i.e., information
are fused with the equal weight 0.5) of the invariant and variant preference in the knowledge distillation process.

e Ours-KD: the invariant and variant preference are fused with distance-aware mode for unbiased recommen-
dations without knowledge distillation process. The teacher model is used to make prediction for unbiased
recommendations.

As shown in Table 6, we can observed that: (1) The performance of Ours-Variant is worse than KD-Debias on all
metrics, which verifies the effectiveness of incorporating biased information. (2) Replacing the fusion function (Ours-
Distance) will result in the degeneration of model performance, showing the usefulness of our proposed distance-aware
module. This emphasizing the critical role of effective information fusion in enhancing overall model performance.
(3) By removing the knowledge distillation module (Ours-KD), although the variant and invariant preferences are
intuitively fused with weighted coefficients, the model performance decreases a lot, showing the necessity to design
a knowledge distillation framework with the surrogate student model to fuse information. This emphasizes the
importance of knowledge distillation in effectively blending diverse information for better performance.
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Figure 5: The distance between the prediction results of invariant preferences (marked by the red circles), variant preferences
(marked by the blue triangles), and the fused preference (marked by the green stars). The dots under the red dashed line
(y = 0.5) can be regarded as correct predictions.

4.3.2. The Stability Analysis.

We conducted 20 repeated experiments with different random seeds in the same settings to evaluate the stability of
models. We compute the standard deviation of the performance on each model on Yahoo!R3 dataset, and choose the
base model (i.e., MF (Koren et al., 2009) ) in these methods as the baseline to compare with. As shown in Fig. 3, there is
acertain gap between InvPref and the base model MF, while the standard deviations of the model performance in InterD
and AutoDebias are 13 times larger than MF, showing the instability of these methods. The stability of our KD-Debias
is comparable to the base model MF. It may benefit from the distance-aware knowledge distillation module, which
combines invariant preference and variant preference by considering the inconsistency distribution between them and
meanwhile increases the generalization ability via learning the soft predicted labels from the teacher model.

4.3.3. Hyperparameters Analysis.

We conduct analysis of the hyperparameters (e.g. the temperature coefficient y) that may influence the model
performance. As mentioned in Eq.13, y is a hyper-parameter acting as the temperature co-efficient in knowledge
distillation to smooth the fusion of unbiased information and biased information. As shown in Fig. 4, as the
increasing of y, N DCG @5 has a clear trend of increasing and then decreasing. The increasing part indicated that
incorporating biased information enhances the performance of unbiased recommendations, while incorporating too
much variant information may confound invariant preference and substantially decrease the performance of unbiased
recommendations.
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4.3.4. Case Study.

We have demonstrated the effectiveness of incorporating variant information in knowledge distillation. We
intuitively display its effect on the model performance in Fig. 5. The value on the vertical axis represents the distance to
the true unbiased label. The smaller value is, the more precise of prediction results. We can see that variant information
(marked by blue triangles) plays a complementary role to invariant information (marked by the red circle) in debiasing
learning, and their fusion makes the prediction results (marked by green stars) closer to the true unbiased label. It shows
the the effectiveness of variant preferences in our model in enhancing the debiasing performance in recommender
systems.

5. Conclusion

In this paper, we investigate the problem of general debiasing with only the biased observation data. We point out
the instability and low accuracy of invariant learning in unbiased recommendations, and propose a novel distance-
aware knowledge distillation framework (KD-Debias) to make unbiased predictions with both invariant and variant
information. Extensive experiments show that with the imputation from variant information, our knowledge distillation
method achieves the best model performance in unbiased recommendation task. In our framework, a simple MF method
is used as the student model to improve the model efficiency and generalization ability in unbiased recommendations.
In the future, we will expand the applications of our framework with more complex student models in different
recommendation scenarios.
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