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Abstract
Graph-based methods have proven effective in financial fraud de-
tection by modeling relationships between entities, yet they often
fail to leverage the rich textual information present in real-world
data. With the ability to understand semantic information, large lan-
guage models (LLMs) offer a promising solution to enhance fraud
detection by incorporating textual data, such as user profiles and
transaction descriptions. However, integrating LLMs with graph-
based methods introduces two key challenges: (1) the neighborhood
camouflage problem, where fraudulent nodes disguise themselves
within normal network structures, and (2) the input size constraints
of LLMs, making it difficult to process large, complex graphs with
extensive textual data. In this paper, we propose a novel frame-
work, Fraud Detection with LLM-enhanced Graph Neural Networks
(FLAG), to address these challenges. FLAG integrates LLMs with
graph-based fraud detection by introducing two main modules: se-
mantic similarity neighbor sampling, which reduces the input size
and further alleviates the influence of camouflaged neighbors by
selecting neighbors having high semantic similarity with the target
nodes, and LLM-based node enhancement, which extracts discrimi-
native textual features by LLM to enhance node robustness against
camouflaged neighbors. To further improve the model, we design a
fine-tuning approach that enables the LLM to extract discriminative
text more closely related to the node labels, enhancing the model’s
ability to differentiate between fraudulent and normal nodes. Ex-
tensive experiments on public datasets highlight the superiority of
FLAG, showing average improvements of 3.14% in F1-macro and
6.97% in AUC. Furthermore, we have deployed FLAG in Alipay’s
credit risk assessment system and evaluated its performance on a
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real-world dataset. The results indicate a 0.9% improvement in the
KS criterion, further underscoring FLAG’s effectiveness.
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1 Introduction
With the rapid development of Internet services, fraudulent activi-
ties have become increasingly sophisticated and widespread [2, 19].
Fraudsters often disguise themselves as legitimate users to bypass
antifraud mechanisms, spread misinformation, or exploit sensitive
user data. Graph-based methods have emerged as an effective ap-
proach for financial fraud detection, modeling entities and their
relationships in a graph to identify suspicious patterns [35, 42].
These methods are particularly effective when fraudsters form dis-
tinct structures, such as clusters, within the graph.

Recently, large language models (LLMs) have shown remark-
able abilities in understanding textual semantics [4, 38], leading to
the integration of LLMs with graphs for various tasks on text-rich
graphs [5, 21]. For example, in the recommendation domain, LLM-
Rec [43] utilizes text-generated profiles to filter noisy interactions
and enrich node embeddings which significantly improves recom-
mendation performance. Similarly, in graph contrastive learning,
GAugLLM [10] leverages LLMs to generate enhanced features and
graph structures, addressing the limitations of traditional methods
that overlook textual semantics. These advancements demonstrate
the potential of LLMs in improving graph-based approaches. In the
context of financial fraud detection, textual data, such as user pro-
files or transaction descriptions, also provides critical information
for identifying fraudulent behaviors [3, 15, 45]. However, existing
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methods largely fail to incorporate the expressive textual informa-
tion into their frameworks. This raises a crucial question: how can
we effectively integrate LLMs with graph-based methods to enhance
fraud detection in text-rich graphs?

Integrating LLMswith fraud detection on graphs presents unique
challenges. Firstly, integrating LLMs with graphs can exacerbate
the neighborhood camouflage problem, which is inherent to graph-
based fraud detection tasks. Specifically, as shown in Figure 1, fraud-
sters often camouflage themselves by employing sophisticated tac-
tics to mimic regular network patterns [27, 36], e.g., interacting
with normal users in the social networks or transferring funds
to normal accounts in transaction networks. This behavior con-
ceals fraudulent nodes within normal heterophilous neighborhoods,
resulting in heterophily for fraudulent nodes and homophily for
normal ones, which violates the homophily [12] inductive bias of
GNNs. Current methods that combine LLMs with graph-based tasks
struggle to address this challenge. For instance, InstructGLM [47]
uses a LLMs-as-Predictors approach with instruction prompts to
predict node labels. However, due to the dataset’s dominance of
homophilous normal nodes, it struggles to identify anomalous,
heterophilous nodes. GAugLLM adopts an LLMs-as-Enhancers strat-
egy, generating explanations from node text and graph structure
to enhance the GNN predictor. However, the effectiveness of the
LLM is limited by the GNN predictor, especially when the GNN
is inherently homophilic, hindering the LLM’s performance gains.
Similarly, GraphTranslator [49] aligns graph models with LLMs
through a translator module, which faces challenges in fraud de-
tection when aligning LLMs to homophilic GNNs. More details
about related work can be found in Appendix B. Secondly, LLMs
have inherent input size constraints [1, 39], making it infeasible to
process the whole ego-graph directly, especially when dealing with
highly connected nodes and extensive textual data. Particularly,
financial fraud detection graphs often exhibit complex relationships
and extensive textual attributes [24, 32], necessitating strategies to
reduce the input size while preserving critical information. How-
ever, most current LLM-based gnns use sampling strategies like
GraphSAGE [16]’s random sampling [14, 44], but could lose valu-
able homophilic neighbors and exacerbate the neighbor camouflage
issue.

In this paper, we propose a novel framework Fraud Detection
with LLM-enhanced Graph Neural Network (FLAG) designed to
integrate LLM into graph-based fraud detection while addressing
the aforementioned challenges. The framework consists of two key
modules: semantic similarity neighbor sampling and LLM-based
node enhancement. The semantic similarity neighbor sampling
module reduces the influence of camouflaged neighbors by select-
ing neighbors having high semantic similarity with the target nodes.
This approach ensures that the node’s neighborhood retains criti-
cal connections while filtering out those that might dilute its rep-
resentation, particularly for fraud nodes camouflaged by normal
neighbors. Moreover, this sampling strategy helps reduce the input
size, facilitating the application of the LLM. To further enhance the
robustness against camouflaged neighbors, we introduce an LLM-
based node enhancement strategy to extract discriminative text—the
portions of a node’s text most strongly correlated with its label.
This discriminative text is then encoded using a skip-GNN, where
we introduce a skip connection into the traditional GNN to enhance

Figure 1: The illustration of neighborhood camouflage.

personalized information. To optimize the LLM’s ability to extract
such discriminative text, we design an auxiliary task to generate
residual text, which complements discriminative text by being less
correlated with the label. By encouraging the discriminative text
to exhibit stronger label relevance and the residual text to remain
label-independent, LLM effectively removes noisy information from
raw text and highlights critical discriminative features. Extensive
experiments on the public datasets validate the effectiveness of
FLAG in fraud detection, with average improvements of 3.14% in
F1-macro and 6.97% in AUC. In light of the superior performance,
we have deployed FLAG in Alipay’s credit risk assessment system
and evaluated its performance on a real-world dataset. The results
indicate a 0.9% improvement in the KS criterion, 1.4% in F1-macro
and 0.47% in AUC, further underscoring FLAG’s effectiveness. In
summary, the main contributions are highlighted as follows:

• We are the first to integrate LLM with GNN for fraud detection,
utilizing textual semantic information to enhance GNN.

• To address the challenges of neighborhood camouflage and in-
put size constraints, we design two modules: semantic similarity
neighbor sampling to filter camouflaged neighbors while reduc-
ing the input size and LLM-based node enhancement to extract
discriminative text for enhancing node robustness. Additionally,
we fine-tune the LLM to improve its performance, making nodes
more distinguishable in fraud detection.

• Extensive experiments on public and industry datasets demon-
strate the superiority of FLAG, in detecting fraudulent nodes,
especially on text-rich graphs.

2 Preliminary
2.1 Graph Neural Network
Consider a text graph G = (V, E,X) with node texts T , where V
represents the set of nodes, E represents the set of edges, and X
represents the node features. Each node 𝑣 ∈ V is associated with a
feature vector 𝑥𝑣 ∈ X and ground-truth label 𝑦𝑣 ∈ Y = {1, ..., 𝐾}.
Each edge (𝑣,𝑢) ∈ E represents the relation between 𝑣 and 𝑢.

GNN is a parametric model designed to compute node represen-
tations by aggregating information from neighbors. At each layer 𝑙 ,
the representation ℎ𝑙𝑣 of node 𝑣 will be updated by combining the
representations of 𝑣 and its neighbors in the previous layer:

ℎ𝑙𝑣 = 𝜓
𝑙 (ℎ𝑙−1𝑣 , ⊕

𝑢∈N(𝑣)
𝜙𝑙 (ℎ𝑙−1𝑣 , ℎ𝑙−1𝑢 )), (1)

where N(𝑣) = {𝑢 | (𝑢, 𝑣) ∈ E} is the neighbor set of node 𝑣 , ⊕ de-
notes a differentiable, permutation-invariant function (e.g., sum,
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Figure 2: The framework of the proposed FLAG. Starting with a target node in the original graph, a k-hop subgraph is sampled
using a semantic similarity neighbor sampling. The text of all nodes in the subgraph is concatenated into a text sequence, which
is then processed by the LLM to extract both discriminative and residual texts. These texts are encoded with a frozen LM and,
along with the subgraph structure, passed through shared-parameter skip-GNN modules to obtain target node representations.
The framework is optimized using three loss functions: Disc. Loss, aligning discriminative text with one-hot labels; Res. Loss,
aligning residual text with uniform distribution; and Orthog. Loss, ensuring the two representations remain orthogonal.
Additionally, we give examples of discriminative and residual texts extracted from the original text in the Appendix C.

mean or max) and𝜓, 𝜙 denote differentiable transformation func-
tions such as multi-layer perceptrons (MLPs). The initial represen-
tation ℎ0𝑣 is the raw feature vector 𝑥𝑣 . The final label predictions
from a GNN are given by:

𝑍 = softmax(GNNΘ (𝐴,X)) ∈ R |V |×𝐾 , (2)
where 𝐴 ∈ R |V |× |V | is the adjacency matrix, Θ denotes the set of
trainable parameters, and each row of matrix 𝑍 corresponds the
predicted label distribution of a specific node.

2.2 Neighborhood camouflage
In this paper, neighborhood camouflage refers to the phenomenon
that the network exhibits distinguish patterns for various classes.
The phenomenon often arises in the graph-based fraud detection
scenario, which is a highly imbalanced binary classification task. In
this scenario, as shown in Figure 1, the fraudulent users actively or
passively camouflage themselves by interacting with normal nodes,
leading to heterophily, while the normal users remains homophily.
The neighborhood camouflage violates the general homophily as-
sumption, becoming a significant challenge for fraud detection.

3 Method
In this section, we propose FLAG, a novel approach designed for
fraud detection by integrating LLMs with graph-based methods.
FLAG consists of twomain components: a semantic similarity neigh-
bor sampling module and an LLM-based node enhancement module.
Given a text graph, FLAG first employs semantic similarity neigh-
bor sampling to reduce input size and the influence of heterophily
neighbors. The sampled graph is then processed by the LLM-based
node enhancement module, which extracts discriminative text ex-
pected to strongly correlate with the associated labels. To further
enhance the LLM’s ability to extract such text, we propose an ef-
fective fine-tuning strategy aimed at improving the correlation
between discriminative text and labels. Figure 2 illustrates the over-
all framework of our fraud detection method.

3.1 Semantic Similarity Neighbor Sampling
Given the increasing size of text and relationships in the indus-
try [23], it is necessary to perform effective sampling from the
entire text graph. Most current LLM-based graph methods use sam-
pling strategies like GraphSAGE’s random sampling [14, 44], but
could lose valuable homophilic neighbors and exacerbate the neigh-
bor camouflage issue. Moreover, previous methods for tackling
neighbor camouflage also use sampling techniques, but they do
not leverage the semantic information contained in the node text,
which limits their ability to capture more meaningful relationships
and contextual nuances. Therefore, we propose a sampling method
that utilizes semantic information to selectively focus on the most
relevant neighbors, thereby reducing the influence of irrelevant
normal nodes and mitigating neighbor camouflage.

Mathematically, for each node 𝑣 ∈ V , with the pre-trained lan-
guage models B, we first obtain its representation of the text 𝑡𝑣 .
Then the semantic similarity between the node 𝑣 and its neighbor
𝑢 ∈ N (𝑣) within a 𝑘-hop subgraph centered around 𝑣 is defined by
cosine similarity:

𝑠𝑖𝑚(𝑣,𝑢) = B(𝑡𝑣) · B(𝑣𝑢 )
| |B(𝑡𝑣) | | | |B(𝑣𝑢 ) | |

. (3)

Afterwards, we rank the neighboring nodes based on their similarity
to the center node 𝑣 ’s text 𝑡𝑣 . We then select the top-N neighbors
N𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑣) with the highest similarity that exceed a predefined
threshold 𝛿 :

N𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑣) = {𝑢 ∈ N (𝑣) | 𝑠𝑖𝑚(𝑣,𝑢) ≥ 𝛿}. (4)

The set of selected neighbors N𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑣) is finally used to form a
simplified subgraph G𝑣 centered around node 𝑣 .

To evaluate the effectiveness of our proposed text-based neigh-
bor sampling strategy, we perform comparative experiments on
Reddit [25] to compare the average subgraph edge homophily [51]
with other sampling strategies, including no-sampling (NS), ran-
dom sampling (RS), shallow feature similarity-based sampling (FS),
semantic similarity sampling without threshold (SS*), and our pro-
posed semantic similarity sampling (SS). Specifically, FS calculates
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(a) Comparison of subgraph homophily
across sampling strategies.

(b) Stability of discriminative text vs.
raw text.

Figure 3: Semantic similarity neighbor sampling and LLM-
based node enhancement for fraud detection.

the similarity between the central node and its neighbors based on
shallow features, and then selects the top-N neighbors to form the
final subgraph. SS*, compared to FS, replaces shallow features [30]
with text-based features for similarity calculation. Detailed sam-
pling settings are provided in Section 4.1. Moreover, the average
subgraph edge homophily measures the fraction of edges in a graph
which connects nodes that have the same class label, which is for-
malized as follows:

ℎ𝑜𝑚𝑜 =

∑
(𝑢,𝑣) ∈E I(𝑦 (𝑢) = 𝑦 (𝑣))

|E | . (5)

where I(𝑦 (𝑢) = 𝑦 (𝑣)) is an indicator function that is 1 if the class
labels of nodes 𝑢 and 𝑣 are the same, and 0 otherwise; |E | is the
total number of edges in the graph.

The results are visualized in Figure 3(a). We observe that the
homophily of RS is similar to that of the NS baseline. FS performs
slightly better, but still falls behind SS*. And homophily of SS* is
lower than that of our proposed SS. This demonstrates that: (1) RS
is ineffective in addressing neighbor camouflage; (2) the raw node
text contains more complete information than the shallow feature;
and (3) adopting a threshold-based filtering strategy is beneficial
for preserving critical information.

3.2 LLM-Based Node Enhancement
To further counter the effects of neighbor camouflage, we focus on
enhancing the robustness of the node itself. In traditional GNNs,
during feature aggregation, the features from neighboring normal
nodes can overwhelm the features of a fraudulent node, causing a
loss of the node’s distinct identity. By strengthening the connection
between a node’s features and its label, we can more effectively
combat neighbor camouflage. To achieve this, we utilize an LLM
to extract discriminative text—the portions of a node’s text most
strongly correlated with its label. Additionally, we implement a
skip-GNN that incorporates a bypass from the node features to the
final representation to increase the personalized information.

3.2.1 Discriminative text extraction. To extract this discriminative
text, we turn to LLM, which are well-suited for understanding and
distilling meaningful semantic information from text. LLMs can
identify and retain the most label-relevant aspects of a node’s text,
filtering out irrelevant text. Specifically, we apply the LLM to dis-
till the raw node text 𝑡𝑣 into a discriminative representation 𝑡𝐷𝑣
that highlights the node’s intrinsic properties, enabling a clearer
distinction between fraudulent and normal nodes. Table 1 illus-
trates the format and an example of the prompt used for extracting
discriminative text from node information.

Table 1: Format and example of the discriminative text
prompt on Reddit dataset.

Disc. Prompt:
<Dataset Description>. <Task Description>. <Ensurance>.
Example:

You are provided with a list of Reddit users’ posts. Each
user is classified as either popular or normal based on their
interactions and content. Your task is to generate a brief
discriminative text for each user that directly relates to
distinguishing them as either popular or normal. Ensure
that the generated text highlights specific features that help
differentiate the user’s classification while avoiding any
general or irrelevant information.

To validate the correlation between labels and the LLM-generated
discriminative text, we compare its stability against the raw text
under neighbor perturbations on Reddit [25]. Intuitively, for each
targeted node, if its feature is strongly correlated with the label,
it should still maintain superior performance even if most of its
neighbors are replaced. Put simply, we first extract discriminative
text and train two GNN models—one using the raw text and the
other using discriminative text. We then perturb the test set by
replacing the text of same-class neighbors with randomly selected
text from nodes of the opposite class. We use the GCN model for
this experiment, and detailed experimental settings are provided
in the Section 4.1. The model’s performance is finally evaluated on
these disturbed datasets.

Results shown in Figure 3(b) indicate that, as node heterophily
increases, the AUC of themodel using raw text declines significantly
after GNN aggregation, while the model using discriminative text
remains more stable. This demonstrates that discriminative text is
robustness against neighbor perturbation and strongly correlated
with the node’s label.

3.2.2 Skip-GNN. To further address the issue of heterophily of
fraudulent users, we incorporate skip connections into the GNN.
The skip connections allow the node feature to be included in the
final representation without passing through the aggregation pro-
cess, ensuring that the node’s label-relevant features are preserved.
This is crucial for distinguishing fraudulent nodes from normal
nodes, as it helps prevent the "dilution" of the fraudulent node’s
features by its neighbors.

In the proposed skip-connected GNN, we add a direct connection
to the node feature X, so that the final node representation Z is a
combination of both the aggregated features and the node features:

Z = GNN(X,A) + Linear(X) . (6)
This ensures that the node’s own features are preserved, providing
more stable representations for nodes, particularly fraudulent ones,
even in the presence of neighborhood dilution.

3.3 Fine-Tuning Strategy
To enhance the discriminative power of the extracted text features,
we propose a fine-tuning strategy for the LLM that is specifically
tailored to the task of fraud detection in graph data. The core idea
behind this approach is to introduce an auxiliary task that focuses
on extracting the residual text—the portion of node text that is
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complementary to the discriminative text and less relevant to the
label. Since the discriminative and residual texts are inherently
complementary, enhancing the model’s ability to accurately extract
residual text helps improve its capacity to extract discriminative
text. Based on this complementary relationship, we design a process
that optimizes both tasks simultaneously.

The fine-tuning process involves generating two distinct types
of text for each node by utilizing separate prompts: one to produce
discriminative text 𝑡𝐷𝑣 and the other to generate residual text 𝑡𝑅𝑣 .
The format and an example of the prompt for residual text is shown
in Table 2. The generated texts are then encoded into respective
representations (𝑥𝐷𝑣 and 𝑥𝑅𝑣 ) using a fixed language model, and sub-
sequently input by two shared-parameter skip-GNNs along with
the corresponding graph structure. We finally obtain representa-
tions for discriminative text and residual text, respectively denoted
as 𝑧𝐷𝑣 and 𝑧𝑅𝑣 . To supervise the fine-tuning, we introduce three loss
functions, each focusing on different aspects of the task.
Table 2: Format and example of the residual text prompt on
Reddit dataset.

Res. Prompt:
<Dataset Description>. <Task Description>. <Ensurance>.
Example:

You are provided with a list of Reddit users’ posts.
Each user is classified as either popular or normal based on
their interactions and content. Your task is to generate a
brief residual text for each user that captures the portions
of their text that do not directly relate to distinguishing
them as either popular or normal. The residual text should
highlight non-discriminative features that are not helpful in
differentiating the user’s classification. Focus on generating
text that includes general background details, unrelated
observations, or information that does not influence the
classification task.

The Discriminative Text Loss encourages the LLM to generate
text strongly correlated with the node’s label, improving classifi-
cation performance. This is represented by Binary Cross-Entropy
(BCE):

L𝐷𝑖𝑠𝑐. = −
∑︁
𝑖∈V

[𝑦𝑖𝑙𝑜𝑔(𝑝𝑖 ) + (1 − 𝑦𝑖 )𝑙𝑜𝑔(1 − 𝑝𝑖 )] (7)

where 𝑦𝑖 is the true label of node 𝑖 (fraudulent or normal), and 𝑝𝑖 is
the predicted probability that node 𝑖 is fraudulent. This loss ensures
that the discriminative text generated by the LLM is aligned with
the node’s class.

The Residual Text Loss ensures that the residual text is as unre-
lated as possible to the node’s label. This is modeled using Kullback-
Leibler (KL) divergence:

L𝑅𝑒𝑠. =
∑︁
𝑖∈V

𝐷KL (𝑝𝑖 | |𝑢𝑖 ) =
∑︁
𝑖∈V

∑︁
𝑐∈{0,1}

𝑝𝑖 (𝑐) log
(
𝑝𝑖 (𝑐)
𝑢𝑖 (𝑐)

)
(8)

where 𝑝𝑖 is the predicted probability distribution of node 𝑖 generated
by the LLM, and 𝑢𝑖 is the uniform distribution over the classes (i.e.,
𝑢𝑖 =

1
𝐶
, with 𝐶 being the number of classes). This loss encourages

the model to produce text representations that do not over-rely on
contextual features.

The Orthogonality Loss ensures the representations of discrimi-
native and residual texts is distinct by minimizing their similarity:

L𝑂𝑟𝑡ℎ𝑜𝑔. = | |Z𝐷 · Z𝑅 | |22 (9)

where Z𝐷 andZ𝑅 are the representation matrices of the discrimi-
native and residual text, respectively, and · denotes the dot product.
This loss ensures that the two text representations are orthogonal,
thereby preventing any interference between them.

The final loss function, which combines all three components, is
defined as:

L = L𝐷𝑖𝑠𝑐. + 𝜆1 · L𝑅𝑒𝑠. + 𝜆2 · L𝑂𝑟𝑡ℎ𝑜𝑔. (10)

where 𝜆1 and 𝜆2 are the hyper-parameters that control the contri-
bution of each loss term. The goal is to minimize this total loss to
fine-tune the LLM, ensuring that it generates effective and accurate
discriminative text representations.

To ensure stable and effective optimization, we employ an al-
ternating two-stage approach. In the first stage, the LLM is fixed
while the skip-GNN is trained on the generated text and graph
structure. In the second stage, the GNN is fixed, and the LLM is
fine-tuned to better distinguish between discriminative and resid-
ual text. This alternating approach ensures both models iteratively
improve, enhancing fraud detection performance.

3.4 Inference Phase

Figure 4: Inference phase workflow integrating raw and dis-
criminative text via skip-GNN and attention mechanism.

In inference phase as shown in Figure 4, we utilize the fine-tuned
LLM to extract discriminative text from each node’s raw text. Then
both the raw text and the discriminative text are encoded into text
feature vectors using a frozen LM. These encoded features are in-
dependently processed through two shared-parameter skip-GNN
modules. The outputs of the two skip-GNN modules are fed into
an attention layer. The attention mechanism dynamically weighs
the contributions of the raw text and discriminative text repre-
sentations, generating a fused node representation that integrates
information from both sources. The fused node representation is the
final prediction. The pseudo code of FLAG is shown in Appendix A.

4 Experiment
In this section, we evaluate the performance of FLAG for financial
fraud detection using both public and industry datasets. Specifi-
cally, we design a series of experiments to address the following
research questions: Q1: How does FLAG perform under zero-shot
and fine-tuning settings? Q2: How do the individual components
of FLAG contribute to the overall performance? Q3: How does
FLAG influence the distribution of node embeddings in the feature
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space? Q4: What is the impact of hyper-parameters on the final
performance of FLAG?

4.1 Experimental Setup
4.1.1 Datasets. In this paper, we utilize two types of datasets for
our experiments. The first dataset is a real-world industrial dataset
named Huabei, derived from the Huabei financial product in Alipay.
This dataset comprises 13 million nodes, each representing a unique
Alipay user. The associated attributes include user behaviors such
as transfers, transactions, and credit activities. The constructed
graph consists of 120 million edges, illustrating social connections
between users. Additionally, the dataset is labeled based on whether
users have overdue payments.

Additionally, for the public fraud detection datasets, we note
that most of them, such as Yelp-Fraud [8], Amazon-Fraud [8], T-
Finance [36] and T-Social [36], lack textual information, which
poses a challenge for applying fraud detection methods that lever-
age rich-text graphs. To overcome this limitation, we construct a
dataset tailored to fraud detection by utilizing existing social net-
work datasets that contain textual data. Specifically, we use two
social network datasets: Reddit [25] and Instagram [25]. The Reddit
dataset consists of users as nodes and edges representing replies
between users. The raw text associated with each node is derived
from the content of the user’s last three posts on Reddit. Each node
is labeled as either popular or normal, based on the user’s social in-
teractions and engagement. The Instagram dataset consists of users
as nodes and edges representing following relationships. The raw
text for each node is derived from the user’s personal introduction.
Each node is labeled as either commercial or normal, based on the
user’s account type. Both datasets originally contain an approxi-
mately equal number of nodes in each class, but fraud detection
tasks generally require imbalanced datasets. To address this, we
treat the popular category in Reddit and the commercial category
in Instagram as the minority class. The minority class nodes are
randomly selected so that the final ratio between the minority and
majority classes is about 1:10.

To validate that the datasets we constructed are well-suited for
fraud detection tasks, we calculate the homophily score of every
node on Reddit and Instagram, defined as the fraction of edges
connected to nodes of the same class. The homophily scores are
divided into ten bins, ranging from 0.1 to 1.0, to represent varying
levels of homophily. For both normal and fraudulent nodes, we
compute the proportion of nodes within each homophily bin rela-
tive to the total number of nodes in their respective classes. This
analysis provides a detailed view of the neighborhood structure for
each class, allowing us to assess whether the constructed datasets
reflect the expected characteristics of fraud detection tasks.

The results in Figure 5 reveal a clear distinction in the homophily
distributions of normal and fraudulent nodes across both datasets.
Fraudulent nodes are predominantly found in lower homophily bins,
indicating that they are often connected to normal nodes. In con-
trast, normal nodes are concentrated in higher homophily bins, con-
firming their tendency to form connections within their own class.
This trend is especially pronounced in the Instagram dataset. Fur-
thermore, similar experiments [35] conducted on the non-textual
fraud detection datasets, Yelp-Fraud and Amazon-Fraud, also show

(a) Reddit. (b) Instagram.

Figure 5: Homophily distributions of fraudulent and normal
nodes on Reddit and Instagram.

comparable patterns, confirming that the network structures of the
datasets we constructed are suitable for fraud detection tasks.

4.1.2 Baselines and Implementation. We compare FLAG against
seven baseline GNN models, categorized into two groups: tradi-
tional GNN models (GCN [22] and GAT [40]) and GNN models
specifically designed for fraud detection tasks (GeniePath [28],
CARE-GNN [8], BWGNN [36], DGA-GNN [9], and PMP [52]). We
follow the experimental setup used in BWGNN [36], using F1-macro
and AUC [7] as evaluation metrics for public datasets. The model
with the highest F1-macro score on the validation set is selected for
testing on the test set. Additionally, we employ the Kolmogorov-
Smirnov (KS) statistic as supplement metric, which is a widely
used metric in the financial industry, particularly for evaluating the
performance of credit scoring models. Mathematically, KS can be
calculated by 𝐾𝑆 = max |𝐹1 (𝑥) − 𝐹2 (𝑥) |, which measures the maxi-
mum difference between the cumulative distribution functions of
two sample distributions—typically the distribution of scores for the
positive (e.g., defaulters, 𝐹1 (𝑥)) and negative (e.g., non-defaulters
𝐹2 (𝑥)) classes.

All models are configured with two layers and a hidden layer
size of 64. To enable testing on graphs of varying sizes, we evaluate
the models on 2-hop subgraphs of each node, employing a training
strategy similar to GraphSAGE. During training, we accumulate
the loss of 10 subgraphs before backpropagation. For sampling, we
set the similarity threshold to 0 and select the top-10 most similar
nodes to form each subgraph. We use the Adam optimizer with
a fixed learning rate of 0.01, employing early stopping to prevent
overfitting. For the public datasets, each model is evaluated 25 times
with 5 random seeds and 5 random initializations to ensure robust-
ness. For the industrial dataset, we conducted the training process
only once instead of repeating it to report average performance due
to the time constraint. Industry practice has also shown us that re-
sults from a single training session on large industrial datasets can
be reliable. We use Gemma-9b-it [37] as LLMmodel with LoRA [18]
used for fine-tuning and Sentence-BERT [34] as LM.

4.1.3 Model Deployment. The LLM fine-tuned in Section 3.3 has
been deployed for use on Alipay, utilizing an A100 GPU with 80GB
of memory. To ensure optimal online inference performance, the
deployment uses a total of 8 GPUs across both preproduction and
online environments. Notably, our model fully meets the needs of
monthly online prediction updates. Additionally, the GNN module
is deployed on a CPU cluster, capable of generating predictions
within a day.
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(a) GCN (b) GAT (c) GeniePath (d) CARE-GNN (e) BWGNN (f) DGA-GNN (g) PMP

(h) FLAGGCN (i) FLAGGAT (j) FLAGGenie (k) FLAGCARE (l) FLAGBWGNN (m) FLAGDGA (n) FLAGPMP

Figure 6: Visualization. The red and blue nodes represent fraud nodes and normal nodes respectively.

Table 3: The performance of FLAG on the industrial dataset
(KS, AUC, F1-macro in percentage). GNN† refers to GNN
trained using raw text embeddings and FLAG* corresponds
to the performance of FLAG after fine-tuning.

Datasets Huabei
Metric KS F1-macro AUC

GCN† 76.42 22.76 94.80
GAT† 76.59 22.89 94.87
Geniepath† 76.91 23.28 94.97
CARE-GNN† 76.92 23.28 94.98
BWGNN† 76.85 23.12 94.93
DGA-GNN† 76.84 23.15 94.92
PMP† 76.96 23.32 95.02
FLAG 77.78 24.48 95.41
FLAG∗ 77.86 24.72 95.49

4.2 Main Result (Q1)
The experimental results for both the industrial and public datasets
are presented in Table 3 and Table 4, respectively. Notably, for the
public datasets, we apply FLAG to a variety of GNN backbones
to demonstrate its model-agnostic nature and its potential as a
fundamental data augmentation strategy across different GNNs.
For clarity, we employ the following notations to convey their
respective meanings: "baseline" indicates the vanilla GNN model
utilizing shallow embeddings. The notation "+text" refers to the
model trained with raw text embeddings. "+FLAG" signifies the
performance of FLAG in a zero-shot context, whereas "+FLAG*"
represents the performance of FLAG after fine-tuning. In contrast,
for the industrial dataset, we fix the backbone to GeniePath [28]
due to its resource efficiency and the stability it provides for month-
to-month predictions. We have the following observations:

• Our proposed FLAG consistently outperforms all the baselines by
a considerable margin across most cases of all the datasets. For
instance, on the industrial dataset, FLAG achieves improvement
of 0.9% in KS, 1.4% in F1-macro and 0.47% in AUC on industry
datasets compared with its backbone Geniepath. Additionally,
on the public dataset, FLAG obtain the average gains of 3.14% in
F1-macro and 6.97% in AUC. These results collectively highlight
the effectiveness of FLAG through its efficient sampling approach
and the integration of LLM for extracting discriminative text to
enhance its robustness against camouflaged neighbors.

Table 4: The performance of FLAG with different backbones
on Reddit and Instagram (AUC and F1-macro in percentage).

Models Variant Reddit Instagram
F1-macro AUC F1-macro AUC

GCN

baseline 45.460.01 50.320.26 47.880.96 52.611.80
+text 45.840.36 57.821.94 47.290.01 55.740.73
+FLAG 48.191.02 60.180.79 48.050.69 56.310.83
+FLAG* 48.721.59 60.880.68 49.791.08 55.451.21

GAT

baseline 46.660.96 52.662.25 49.211.38 51.531.12
+text 48.262.23 59.320.29 48.310.98 54.690.76
+FLAG 49.701.76 60.611.20 49.131.23 54.970.75
+FLAG* 50.202.33 60.571.03 50.651.61 55.981.67

GeniePath

baseline 45.460.01 52.181.48 47.310.05 51.223.16
+text 46.841.89 56.911.85 47.290.01 52.452.31
+FLAG 48.302.24 59.430.55 48.411.51 55.590.85
+FLAG* 48.692.97 59.741.68 48.281.25 56.242.10

CARE-GNN

baseline 45.460.01 51.351.62 47.290.01 52.071.95
+text 47.661.59 56.721.38 48.051.07 54.920.38
+FLAG 50.780.95 58.430.65 49.641.74 55.790.58
+FLAG* 51.952.21 58.741.40 50.240.46 56.401.29

BWGNN

baseline 45.470.01 53.822.49 47.280.01 51.522.43
+text 48.761.54 57.561.53 47.610.72 54.100.71
+FLAG 50.932.16 58.892.50 48.550.32 56.330.72
+FLAG* 51.912.38 59.201.09 49.351.45 57.190.28

DGA-GNN

baseline 45.460.01 50.100.53 47.290.01 50.860.48
+text 45.490.11 59.591.60 47.290.01 56.281.07
+FLAG 48.772.18 61.050.71 48.530.42 56.730.66
+FLAG* 49.500.83 61.610.78 48.950.68 57.201.03

PMP

baseline 46.311.04 50.160.12 47.501.56 50.630.52
+text 47.211.18 59.790.43 48.290.01 56.051.27
+FLAG 48.911.30 61.320.66 48.480.82 57.100.62
+FLAG* 50.141.48 61.800.99 49.761.64 57.671.09

• In the zero-shot setting, FLAG continues to show substantial
performance improvements over GNNs that rely solely on raw
text embeddings. Specifically, on the industrial dataset, FLAG
enhances its backbone with improvements of 0.95% in KS, 1.44%
in F1-macro, and 0.52% in AUC. On the public dataset, FLAG
achieves average gains of 1.58% in F1-macro and 1.48% in AUC.
This improvement is attributed to the zero-shot generalization
capabilities of large language models (LLMs) across tasks and
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Table 5: Ablation studies of FLAG with different backbones
on Reddit and Instagram (AUC and F1-macro in percentage).

Backbone Variant Reddit Instagram
SS LLM SG F1-macro AUC F1-macro AUC

GCN
✓ 47.922.77 59.601.56 47.840.79 55.520.46

✓ ✓ 48.110.66 60.070.64 47.970.53 55.850.38
✓ ✓ 48.190.51 59.812.11 47.990.31 56.030.65

GAT
✓ 49.032.69 59.960.41 48.761.83 54.201.64

✓ ✓ 49.160.63 59.801.64 48.790.98 54.790.25
✓ ✓ 49.731.10 60.271.02 49.282.02 54.271.02

GeniePath
✓ 47.472.14 58.350.26 47.340.79 54.380.61

✓ ✓ 48.382.52 58.310.36 47.540.48 55.241.94
✓ ✓ 48.131.74 59.242.99 47.880.96 55.611.80

CAREGNN
✓ 50.191.10 57.390.64 48.471.04 55.450.64

✓ ✓ 50.482.29 57.940.60 48.700.42 55.470.65
✓ ✓ 50.501.30 57.900.54 48.501.48 55.830.48

BWGNN
✓ 49.232.05 58.462.36 48.280.24 55.540.25

✓ ✓ 50.192.00 58.761.82 47.640.79 56.860.41
✓ ✓ 50.192.89 58.631.76 48.290.81 56.272.15

contexts, making FLAG particularly valuable in scenarios where
labeled data is limited or unavailable.

• Compared with FLAG, the fine-tuned FLAG* yields an average
increase of 0.84% in F1-macro and 0.42% in AUC. This suggests
that the fine-tuning process effectively strengthens the relation-
ship between the extracted text and the node labels, thereby
enhancing the robustness and distinguishability of nodes.

4.3 Ablation Studies (Q2)
In this section, we conduct ablation experiments to assess the effec-
tiveness of each component in FLAG. The variants tested include
SS (semantic similarity sampling), LLM (using LLM for extracting
discriminative text), and SG (using skip-GNN). For the sake of fair-
ness, experiments without LLM use the raw text encoding as node
features, and the LLM used in these experiments is not fine-tuned.

The results, summarized in Table 5, demonstrate that each com-
ponent in FLAG contributes effectively to the overall performance.
First, when comparing the performance of the variant using both
SS and SG (without LLM) with the zero-shot results, we observe
that the LLM module improves the F1-macro and AUC by 1.01%
and 0.31%, respectively. Second, when comparing the variant using
SS and LLM (without SG) to the zero-shot performance, we find
that the SG module leads to improvements in F1-macro and AUC
by 0.33% and 0.74%, respectively. Finally, when comparing the per-
formance of the variant using only SG with the combination of
SS and SG, we observe that SS further enhances the performance,
increasing the F1-macro and AUC by 0.15% and 0.66%, respectively.
In summary, the ablation studies confirm that each component of
FLAG plays a crucial role in enhancing performance.

4.4 Visualization (Q3)
In this section, we visualize how FLAG enhances the discriminabil-
ity of node embeddings compared to baseline GNN models on the
Reddit dataset. Specifically, we obtain 32-dimensional node embed-
dings from each method and use t-SNE to project these embeddings
into 2D space. Given the 1:10 class ratio in the test set, for better

(a) N (b) 𝛿

Figure 7: Sensitive analysis of hyper-parameters.

visualization, we select all minority class nodes and randomly sam-
ple 1/3 of the majority class nodes. Notably, the LLM used in this
experiment was not fine-tuned.

As shown in Figure 6, the node embeddings generated by the
basseline GNN models are highly mixed. However, when FLAG
is applied, the distinction between the two classes becomes much
clearer, especially for GCN, GAT, CARE-GNN, BWGNN, and PMP.
This demonstrates that FLAG successfully enhances the discrim-
inability of node embeddings, validating the effectiveness of FLAG.

4.5 Hyper-parameter Sensitivity (Q4)
In this section, we detail the rationality of the parameter settings
(i.e., selecting the top 10 nodes with the threshold to be 0) illustrated
above. We use GCN as the backbone and assess the impact on
GNN†’s AUC performance by varying one hyper-parameter while
keeping others fixed.

Figure 7(a) shows the performance variation of GCN† with dif-
ferent values of top-𝑁 ({5, 10, 15, 20}). It is observed that the AUC
of GCN† is slightly lower when 𝑁 = 5 compared to 𝑁 = 10, and it
decreases when 𝑁 is set to 15 and 20. This is because a larger 𝑁
leads to the sampled subgraph including more normal nodes, which
diminishes the focus on fraudulent nodes. When 𝑁 is reduced, this
issue is mitigated, but setting 𝑁 too small may result in insufficient
neighbor information, causing performance degradation.

Figure 7(b) shows the impact of varying the similarity threshold 𝛿
across values of {0.4, 0.2, 0, -0.2, -0.4}. We observe that when 𝛿 = 0.2
or 𝛿=-0.2, the performance remains similar to that of 𝛿 = 0. However,
at 𝛿 = 0.4 and 𝛿 = −0.4, performance significantly declines. This is
consistent with the previous conclusion: a threshold that is too high
reduces the central node’s neighbor information, while a threshold
that is too low increases heterophily in the fraudulent subgraph,
leading to performance loss.

5 Conclusion
In this paper, we propose a novel framework FLAG that integrates
LLMs with graph-based methods for fraud detection. FLAG ad-
dresses two major challenges: the neighborhood camouflage prob-
lem inherent in fraud detection graphs and the input size constraints
of LLMs. By leveraging semantic similarity neighbor sampling strat-
egy and LLM-based node enhancement module, we significantly
improve the performance of various GNNs in fraud detection tasks.
While this work focuses on static graphs to tackle financial fraud
detection, there is significant potential in exploring dynamic graphs
for more adaptive and real-time detection. In future work, we will
investigate the use of dynamic graphs to enable real-time fraud
detection, capturing evolving relationships over time.
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A Pseudo Code

Algorithm 1 Fraud Detection with LLM-enhanced Graph Neural
Networks (FLAG).
Require: Graph G = (V, E,X), Node Text T , Pre-trained LLM,

Frozen LM
1: Sampling Phase:
2: for each node 𝑣 ∈ V do
3: for each neighbor 𝑢 ∈ N (𝑣) do
4: Calculate semantic similarity 𝑠𝑖𝑚(𝑣,𝑢) using Eq. 3
5: end for
6: Select top-k neighbors N𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑣) using Eq. 4
7: Construct subgraph G𝑣 based on selected neighbors
8: end for
9: Training Phase:
10: for each node 𝑣 ∈ V do
11: Extract discriminative text 𝑡𝐷𝑣 and residual text 𝑡𝑅𝑣 using fine-

tuned LLM
12: Encode both discriminative and residual texts using frozen

LM
13: Feed the encoded features into shared skip-GNN
14: Compute the total loss L = L𝐷𝑖𝑠𝑐. + L𝑅𝑒𝑠. + L𝑂𝑟𝑡ℎ𝑜𝑔.
15: Update LLM and skip-GNN parameters alternately
16: end for
17: Inference Phase:
18: Reset skip-GNN parameters
19: for each test node 𝑣 ∈ V do
20: Extract discriminative text 𝑡𝐷𝑣
21: Encode both raw text 𝑡𝑣 and discriminative text 𝑡𝐷𝑣 using

pre-trained LM
22: Process the encoded features through skip-GNN
23: Apply attention mechanism to fuse outputs: 𝑧𝑣 =

Attention(𝑧𝐷𝑣 , 𝑧𝑣)
24: Update skip-GNN using BCE loss and backpropagation
25: end for
26: return Node predictions 𝑧𝑣

B Related Work
B.1 Large Language Model for Graph
LLMs have demonstrated exceptional language understanding and
summarization capabilities in natural language processing, show-
casing their strong generalization abilities across unseen tasks [31,
33]. Their emergence has sparked significant interest in the graph
learning community, prompting research into how LLMs can en-
hance performance on graph-related tasks [6, 20]. Most existing
approaches that combine LLMs with GNNs can be broadly classi-
fied into three categories: LLMs-as-Predictors, LLMs-as-Enhancers,
and LLM-GNN Alignment. LLMs-as-Predictors leverage LLMs to
directly predict node labels or graph properties. Methods like NL-
Graph [41] and GPT4Graph [13] tackle graph tasks by describing
graph structures through natural language, enabling the LLMs to
infer patterns and make predictions. InstructGLM [47], on the other
hand, employs instruction tuning to adapt the LLM to graph down-
stream tasks, using natural language instructions and graph-text
alignment to express graph structural information effectively. LLMs-
as-Enhancers utilize LLMs to enhance node representations by gen-
erating supplementary textual features. OFA [26] unifies graph data
from diverse domains into a common embedding space for cross-
domain learning. TAPE [17] generates custom prompts to query
LLMs, producing both predictions and textual explanations for
nodes, which are then converted into GNN node embeddings. Simi-
larly, LLMRec [43] uses LLM-generated profiles to filter out noisy
interactions and enrich node embeddings, thereby significantly
improving recommendation performance. LLM-GNN Alignment
focuses on aligning the capabilities of LLMs and GNNs to improve
graph-based task performance. GLEM [50] iteratively utilizes the
LLM and GNN to provide mutual labels for node classification,
thereby aligning their respective strengths. GraphTranslator [49]
uses a translator module to align graph models with LLMs, facilitat-
ing seamless integration for improved performance on graph tasks.
However, these methods generally faces a significant challenge: the
neighbor camouflage problem, which hinders the effectiveness of
these methods in fraud detection tasks.

B.2 Graph-Based Fraud Detection
Graph-based fraud detection is essential for identifying fraudulent
activities in financial and online networks [29, 46, 48], where in-
creasing complexity makes it both more critical and challenging.
The primary challenges in this domain is neighborhood camouflage.
Fraudulent nodes often connect to numerous normal nodes, and
when GNNs aggregate information from these heterophilous neigh-
borhoods, the distinctiveness of fraudulent nodes becomes diluted.
This makes it increasingly difficult to distinguish anomalous nodes
from normal ones, thus complicating fraud detection. To address
neighbor camouflage, existing approaches are primarily catego-
rized into spatial and spectral methods. Spatial methods focus on
mitigating the influence of noisy neighbors through strategies like
re-sampling, re-weighting, or neighbor selection. CARE-GNN [8] is
an early one to address neighbor camouflage explicitly, proposing
similarity-aware neighbor selection. PC-GNN [27] extents this by
balancing subgraph labels through sampling and refining neighbor-
hood aggregation. DGA-GNN [9] introduces a feedback dynamic
grouping strategy that classifies nodes into two distinct groups
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and employs hierarchical aggregation to extract more discrimi-
native features for fraud detection tasks. PMP [52] mitigates the
effects of class imbalance by assigning different weight matrices to
neighbors of different labels and unlabeled neighbors. In contrast,
spectral methods tackle the problem using graph spectral proper-
ties. For instance, BWGNN [36] identifies that anomalous nodes
often concentrate their features in the high-frequency domain and
designs mechanisms accordingly. Similarly, GHRN [11] establishes
a connection between heterophily and spectral properties, pruning
heterophilic edges to improve classification. While effective, these
methods fail to fully utilize the contextual and semantic richness in-
herent in textual features, which are critical in real-world financial
datasets.

C Examples of Discriminative and Residual
Text

Below are examples of discriminative and residual texts extracted
from the original text of a popular user in the Reddit dataset. Clearly,
the discriminative text captures the unique identity of the nodes.

Ori. Text: I’ve been experimenting with a new strategy in Civ-
ilization VI, focusing on culture early to gain more diplomatic
influence. It’s a bit of a gamble, but so far it’s paying off. Anyone
else tried this approach?; I’m currently streaming my gameplay
of Age of Empires on Twitch. I’ve been getting a lot of viewers
lately—thanks to everyone who’s been tuning in! It’s awesome to
discuss strategies with so many people in real time.; Just came back
from a hiking trip to the RockyMountains. The weather was perfect
for a hike, and I got some amazing shots of the landscape. Here’s
one of my favorite photos from the trip!

Disc. Text: This user frequently shares unique game strategies
for Civilization VI and streams Age of Empires on Twitch, where
they engage with a large community of viewers.

Res. Text: This user shares personal experiences, such as their
hiking trip to the Rocky Mountains and the landscape photos they
took.
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