PathRAG: Pruning Graph-Based Retrieval Augmented Generation with
Relational Paths

Boyu Chen!, Zirui Guo?, Zidan Yang', Yuluo Chen', Junze Chen!, Zhenghao Liu’,
Chuan Shi', Cheng Yang''

'Beijing University of Posts and Telecommunications, China
2University of Hong Kong, China
3Northeastern University, China
chenbys4 @bupt.edu.cn, yangcheng @bupt.edu.cn

Abstract

Retrieval-augmented generation (RAG) improves the re-
sponse quality of large language models (LLMs) by retriev-
ing knowledge from external databases. Typical RAG ap-
proaches split the text database into chunks, organizing them
in a flat structure for efficient searches. To better capture the
inherent dependencies and structured relationships across the
text database, researchers propose to organize textual infor-
mation into an indexing graph, known as graph-based RAG.
However, we argue that the limitation of current graph-based
RAG methods lies in the redundancy of the retrieved informa-
tion, rather than its insufficiency. Moreover, previous methods
use a flat structure to organize retrieved information within
the prompts, leading to suboptimal performance. To over-
come these limitations, we propose PathRAG, which retrieves
key relational paths from the indexing graph, and converts
these paths into textual form for prompting LLMs. Specif-
ically, PathRAG effectively reduces redundant information
with flow-based pruning, while guiding LLMs to generate
more logical and coherent responses with path-based prompt-
ing. Experimental results show that PathRAG consistently
outperforms state-of-the-art baselines across six datasets and
five evaluation dimensions.

Code — https://github.com/BUPT-GAMMA/PathRAG

Introduction

Retrieval-augmented generation (RAG) empowers large lan-
guage models (LLMs) to access up-to-date or domain-
specific knowledge from external databases, enhancing the
response quality without additional training (Gao et al.
2023a,b; Fan et al. 2024; Procko and Ochoa 2024; Mavro-
matis and Karypis 2024; Su et al. 2025; Zhang, Feng, and
You 2025). Most approaches divide the text database into
chunks, organizing them in a flat structure to facilitate effi-
cient searches (Yepes et al. 2024; Lyu et al. 2025).

To better capture the inherent dependencies and structured
relationships across texts in a database, researchers have in-
troduced graph-based RAG (Edge et al. 2024; Guo et al.
2024), which organizes textual information into an index-
ing graph. In this graph, nodes represent entities extracted

fCorresponding author.
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Query-related nodes Used nodes

Unused nodes — Used edges — Unused edges

rganic \ uylight

o m\crode vacuums
R } lizer
T

e GRS e ﬂphlds device

\\ oak netting bu g\gm
) seeds
spiders — SRiders honeybee phe:ggcme S

(c) PathRAG

Insect

[e uy light
sn < IsmHzev microde /vacuums \ el

¥ N N\
water - - plants) aphids device |
nemng N i

X \ \\
spiders — Spiders noneybee ~ ... pheromone _
o e

Figure 1: Comparison between different graph-based RAG
methods. GraphRAG (Edge et al. 2024) uses all the infor-
mation within certain communities, while LightRAG (Guo
et al. 2024) uses all the immediate neighbors of query-
related nodes. In contrast, the proposed PathRAG focuses
on key relational paths between query-related nodes to alle-
viate noise and reduce token consumption.

from the text, while edges denote the relationships between
these entities. Traditional RAG (Liu et al. 2021; Yasunaga
et al. 2021; Gao et al. 2022) usually focuses on questions
that can be answered with local information about a single
entity or relationship. In contrast, graph-based RAG targets
on global-level questions that need the information across a
database to generate a summary-like response. For example,
GraphRAG (Edge et al. 2024) first applies community de-
tection on the graph, and then gradually summarizes the in-
formation in each community. The final answer is generated
based on the most query-relevant communities. LightRAG
(Guo et al. 2024) extracts both local and global keywords
from input queries, and retrieves relevant nodes and edges
using these keywords. The ego-network information of the
retrieved nodes is then used as retrieval results.

However, we argue that the information considered in pre-
vious graph-based RAG methods is often redundant, which
can introduce noise, degrade performance, and increase to-
ken consumption. GraphRAG method uses all the informa-
tion from the nodes and edges within certain communities.
Similarly, LightRAG retrieves the immediate neighbors of
query-related nodes to generate answers. The redundant in-
formation retrieved in these methods may act as noise, and

negatively affecting subsequent generation. Moreover, both
methods adopt a flat structure to organize retrieved informa-
tion in the prompts, e.g., directly concatenating the textual
information of all retrieved nodes and edges, resulting in an-
swers with suboptimal logicality and coherence.

To overcome the above limitations, we propose PathRAG,
which performs key path retrieval among retrieved nodes
and converts these paths into textual form for LLM prompt-
ing. We focus on the key relational paths between retrieved
nodes to alleviate noise and reduce token consumption.
Specifically, we first retrieve relevant nodes from the in-
dexing graph based on the keywords in the query. Then
we design a flow-based pruning algorithm with distance
awareness to identify the key relational paths between each
pair of retrieved nodes. The pruning algorithm enjoys low
time complexity, and can assign a reliability score to each
retrieved path. Afterward, we sequentially concatenate the
node and edge information alongside each path as textual
relational paths. Considering the “lost in the middle” is-
sue of LLMs (Liu et al. 2024), we place the textual paths
into the prompt in ascending order of reliability scores
for better answer generation. To comprehensively evaluate
the effectiveness of PathRAG, we extend the benchmark
datasets from prior work (Guo et al. 2024) with four addi-
tional ones (Wang et al. 2022; Chen et al. 2022; Qian et al.
2024) from different domains. Experimental results demon-
strate that PathRAG consistently outperforms state-of-the-
art baselines across all five evaluation dimensions. In par-
ticular, compared to GraphRAG and LightRAG, PathRAG
achieves average win rates of 59.93% and 57.09%, respec-
tively. The contributions of this work are as follows:

e We highlight that the limitation of current graph-based
RAG methods lies in the redundancy of the retrieved in-
formation, rather than its insufficiency. Moreover, previous
methods use a flat structure to organize retrieved information
within the prompts, leading to suboptimal performance.

e We propose PathRAG, which efficiently retrieves key
relational paths from an indexing graph with flow-based
pruning, and effectively generates answers with path-based
LLM prompting.

e PathRAG outperforms state-of-the-art baselines across
six datasets and five evaluation dimensions. Extensive ex-
periments further validate the design of PathRAG.

Related Work

Text-based RAG. To improve text quality (Fang et al. 2024;
Xu et al. 2024; Zhu et al. 2024) and mitigate hallucina-
tion effects (Lewis et al. 2020; Guu et al. 2020), retrieval-
augmented generation (RAG) is widely used in large lan-
guage models (LLMs) by leveraging external databases.
These databases primarily store data in textual form, con-
taining a vast amount of domain knowledge that LLMs can
directly retrieve. We refer to such systems as text-based
RAG. Based on different retrieval mechanisms (Fan et al.
2024), text-based RAG can be broadly classified into two
categories: sparse vector retrieval (Alon et al. 2022; Schick
et al. 2023; Jiang et al. 2023; Cheng et al. 2023) and dense
vector retrieval (Lewis et al. 2020; Hofstitter et al. 2023;
Li et al. 2024; Zhang et al. 2024). Sparse vector retrieval

typically identifies the most representative words in each
text segment by word frequency, and retrieves relevant text
for a specific query based on keyword matching. In con-
trast, dense vector retrieval addresses issues like lexical
mismatches and synonyms by encoding both query terms
and text into vector embeddings. It then retrieves relevant
content based on the similarity between these embeddings.
However, most text-based RAG methods use a flat organiza-
tion of text segments, and fail to capture essential relation-
ships between chunks (e.g., the contextual dependencies),
limiting the quality of LLM-generated responses (Edge et al.
2024; Guo et al. 2024).

KG-RAG. Besides text databases, researchers have pro-
posed retrieving information from knowledge graphs (KGs),
known as KG-RAG (Yasunaga et al. 2021; Gao et al. 2022;
Li, Miao, and Li 2024; Procko and Ochoa 2024; He et al.
2025). These methods can utilize existing KGs (Wen, Wang,
and Sun 2024; Dehghan et al. 2024) or their optimized ver-
sions (Fang, Meng, and Macdonald 2024; Panda et al. 2024),
and enable LLMs to retrieve information of relevant entities
and their relationships. Specifically, KG-RAG methods typ-
ically extract a local subgraph from the KG (Bordes et al.
2015; Talmor and Berant 2018; Gu et al. 2021), such as
the immediate neighbors of the entity mentioned in a query.
However, most KG-RAG methods focus on addressing ques-
tions that can be answered with a single entity or relation in
the KG (Joshi et al. 2017; Yang et al. 2018; Kwiatkowski
et al. 2019; Ho et al. 2020), narrowing the scope of their
applicability.

Graph-based RAG. Instead of utilizing pre-constructed
KGs, graph-based RAG (Edge et al. 2024; Guo et al. 2024)
typically organizes text databases as text-associated graphs,
and focuses on global-level tasks that need the informa-
tion from multiple segments across a database. The graph
construction process often involves extracting entities from
the text and identifying relationships between these entities.
Also, contextual information is included as descriptive text
to minimize the information loss during the text-to-graph
conversion. GraphRAG (Edge et al. 2024) first applies com-
munity detection algorithms on the graph, and then grad-
ually aggregates the information from sub-communities to
form higher-level community information. LightRAG (Guo
et al. 2024) adopts a dual-stage retrieval framework to ac-
celerate the retrieval process. First, it extracts both local and
global keywords from the question. Then, it retrieves rel-
evant nodes and edges using these keywords, treating the
ego-network information of the retrieved nodes as the final
retrieval results. This approach simplifies retrieval and effec-
tively handles global-level tasks. However, the retrieved in-
formation covers all immediate neighbors of relevant nodes,
which may introduce noise harming the answer quality. A
recent work MiniRAG (Fan et al. 2025) also considers path
information to assist retrieval. But they focus on address-
ing questions that can be answered by the information of a
specific node, and thus explore paths between query-related
and answer-related nodes like KG reasoning (Yasunaga et al.
2021; Liu et al. 2021; Tian et al. 2022).

Preliminaries

In this section we will introduce and formalize the workflow
of a graph-based RAG system.

Instead of storing text chunks as an unordered collection,
graph-based RAG automatically structures a text database
into an indexing graph as a preprocessing step. Given a
text database, the entities and their interrelations within the
textual content are identified by LLMs, and utilized to con-
struct the node set VV and edge set £. Specifically, each node
v €)V represents a distinct entity with an identifier k,, (e.g.,
entity name) and a textual chunk ¢, (e.g., associated text
snippets), while each edge e € & represents the relation-
ship between entity pairs with a descriptive textual chunk ¢,
to enrich relational context. We denote the indexing graph
as G = (V,&, Ky, T), where Ky, represent the collection of
node identifiers and 7 is the collection of textual chunks in
the indexing graph.

Given a query ¢, a graph-oriented retriever extracts rele-
vant nodes and edges in the indexing graph. Then the textual
chunks of retrieved elements are integrated with query ¢ to
obtain the answer by an LLM generator. The above process
can be simplified as:

A(g,G) = F o M(¢;R(q,9)),)

where A denotes the augmented generation with retrieval re-
sults, R means the graph-oriented retriever, M and F rep-
resent the prompt template and the LLM generator, respec-
tively. In this paper, we primarily focus on designing a more
effective graph-oriented retriever and the supporting prompt
template to achieve a better graph-based RAG.

Methodology

In this section, we propose a novel graph-based RAG frame-
work with the path-based retriever and a tailored prompt
template, formally designated as PathRAG. As illustrated in
Figure 2, the proposed framework operates on an indexing
graph through three sequential stages: node retrieval, path
retrieval, and answer generation.

Node Retrieval

In this stage, we identify keywords from the input query by
LLMs, and accordingly extract relevant nodes from the in-
dexing graph. Given a query ¢, an LLM is utilized to ex-
tract keywords from the query text. The collection of key-
words extracted from query ¢ is denoted as K. Based on
the extracted keywords, dense vector matching is employed
to retrieve related nodes in the indexing graph G. In dense
vector matching, the relevance between a keyword and a
node is calculated by their similarity in the semantic em-
bedding space, where the commonly used cosine similarity
is adopted in our method. Specifically, we first encode both
node identifiers and the extracted keywords using a seman-
tic embedding model f : K, U Ky — X, U &y, where
Xy = {x, }vey represents the embeddings of node identi-

fiers, and X, = {z,,} L’i‘il denotes the embeddings of the ex-
tracted keywords. Based on the obtained embeddings above,
we then iterate over X, to search the most relevant nodes
among X with the embedding similarity, until a predefined

number N of nodes is reached. The resulting subset of re-
trieved nodes is denoted as V, C V.

Path Retrieval

In this subsection, we introduce the path retrieval module
that aggregates textual chunks in the form of relational paths
to capture the connections between retrieved nodes.

Given two distinct retrieved nodes vy, Vena € Vg, there
could be many reachable paths between them. Since not all
paths are helpful to the task, further refinement is needed
to enhance both effectiveness and efficiency. Inspired by the
resource allocation strategy (Lii and Zhou 2011; Lin et al.
2015), we propose a flow-based pruning algorithm with dis-
tance awareness to extract key paths.

Formally, we denote the sets of nodes pointing to v;
and nodes pointed by v; as N(-,v;) and N (v;,), respec-
tively. We define the resource of node v; as S(v;). We set
S(vgart) = 1 and initialize other resources to 0, followed by
propagating the resources through the neighborhood. The re-
source flowing to v; is defined as:

Z a-S(vy) 2)

S(UZ) =)
Lo WGy

where « represents the decay rate of information propaga-
tion along the edges. Based on the assumption that the closer
two nodes are in the indexing graph, the stronger their con-
nection will be, we introduce this penalty mechanism to en-
able the retriever to perceive distance. It is crucial to empha-
size that our approach differs from strictly sorting paths with
a limited number of hops. Detailed comparative experiments
will be presented in subsequent sections.

Notably, due to the decay penalty and neighbor allocation,
nodes located far from the initial node are assigned with neg-
ligible resources. Therefore, we introduce an early stopping
strategy to prune paths in advance when

S(vs)

N =" @
where 6 is the pruning threshold. This ensures that the algo-
rithm terminates early for nodes that contribute minimally to
the overall propagation. For efficiency concerns, we update
the resource of a node at most once.

We denote each path as an ordered sequence P = vy —
ey Dy = (Vp, Ep), where v; and ¢; represent the i-th
node and directed edge, and Vp and Ep represent the set of
nodes and edges in the path P, respectively. For each path
P = (Vp,Ep), we calculate the average resource values
flowing through its edges as the measurement of reliability,
which can be formulated as:

S(P)zﬁ > Sw), 4

v;EVp

where |Ep| is the number of edges in the path. Then, we sort
these paths based on the reliability S(P) and retain only the
most reliable relational paths for this node pair. These paths
are added to the global candidate pool in the form of path-
reliability pair (P, S(P)). We repeat the above process for

competition
i ~—1
spider .

What ©rganic ’
methods) have [extract organic methods) !
been effective in = i
reducing [Dost pest populations, i
populations)? !

Query

|
Keywords Node __i [ladybugs|=— fecd

1
Retrieval :
'

.%_’ i

\

~
fee/ competition s
P tion —<__

parasitic
wasp

feed

| aphids
stage ive "
(lant—"
(larva) ivo produce
d ttract
sun} Mot (pee) ™ foneybes

feed

+ “The question is: What organic methods have been
effective in reducing pest populations?
The retrieved path information is: -.....

la . description > is connected to
descr through the edge < competitio

. description_> is conn,
descripi rough tho odge < feed , dese

< [parasitic wasp) , description > is connected to </aphids) ,
description > through tho odge < foed , description >.

—!

1
'
'
'
'
1 s [ladybugs) , description> is connected to <(aphids) ,
| description > through the cdge < foed , description =.

\ Please answer the question based on the path information.

0B RN .
parasitic

wasp

0.
spider
~
0175 >\
0175 0.165

'
'
> 1
— H
— ~ '
— 0175 0.08T— '

=
ladybugs — " H
'
]
1
'
'

= aphids
oos_——

0175

0.030<0.0!

12
'
1
1
|
I
I
1
1
1
1
1
H 0.061
'

}

Top paths
ladybugs > aphids

ladybugs }»[P3asitic), [‘aphids

arasitic|
ladybugs ‘aphids
ladybugs aphids.
ladybugs |>(_spider |>[aphids

~

Top paths \

ladybugs |»| aphids

Flow value
avgR=0.175
avgR=(0.175+0.165)/2
=0.170

0.165)/3=0.134.
avgR=(0.175+0.061)/2
=0.118
avgR=(0.1754+0.061)/2
=0.118

Pi’:ﬁ":‘c |»{ aphids

parasitic W
ladybugs wash | +|_aphids
parasitic
spider Wase'© |+ aphids

v
'
'
'
]
avgR=(0.175+0.061+ |
]
]
]
]
]

p3rasitic|| aphids

Node pairs

Candidate path (other node pairs)

Candidate path pool

Figure 2: The overall framework of our proposed PathRAG with three main stages. 1) Node Retrieval Stage: Relevant nodes are
retrieved from the indexing graph based on the keywords in the query; 2) Path Retrieval Stage: We design a flow-based pruning
algorithm to extract key relational paths between each pair of retrieved nodes, and then retrieve paths with the highest reliability
scores; 3) Answer Generation Stage: The retrieved paths are placed into prompts in ascending order of reliability scores, and

finally fed into an LLM for answer generation.

each distinct node pair, ultimately obtaining all candidate
paths. Then the top-K reliable paths can be obtained from
the candidate pool to serve as the retrieval information of
query g for subsequent generation, which we denote as P,,.

Answer Generation

For better answer generation, we establish path prioritization
based on their reliability, then strategically position these
paths to align with LLMs’ performance patterns (Qin et al.
2023; Liu et al. 2024; Cuconasu et al. 2024).

Formally, for each retrieved relational path, we concate-
nate the textual chunks of all nodes and edges within the
path to obtain a textual relational path, which can be formu-

lated as:
tp = concat([- -+ sty i te;stoys 0]),s 5)

where concat(-) denotes the concatenation operation, v; and
e; are the i-th node and edge in the path P, respectively.

Considering the “lost in the middle” issue (Liu et al. 2024;
Cao et al. 2025) for LLMs in long-context scenarios, directly
aggregating the query with different relational paths may
lead to suboptimal results. Therefore, we position the most
critical information at the two ends of the template, which
is regarded as the golden memory region for LLM compre-
hension. Specifically, we place the query at the beginning
of the template and organize the textual relational paths in
a reliability ascending order, ensuring that the most reliable
relational path is positioned at the end of the template. The
final prompt can be denoted as:

M(q;R(q,G)) = concat([g; tpy; -~ 5tp]), (6)
where P; is the most reliable path and Py is the K-th reli-
able path. This simple prompting strategy can significantly
improve the response performance of LLM compared with
placing the paths in a random or reliability ascending order
in our experiments.

Discussion

Path Selection Algorithms in RAG. While previous meth-
ods in KG-RAG enhance model reasoning performance
through path selection algorithms (Asai et al. 2019; Sun
et al. 2023; Chen et al. 2024), they are primarily designed
for tasks that can be answered by the information contained
in a single node or edge, making them unsuitable for global-
level tasks. Moreover, in prior approaches, paths are typi-
cally used as a means to obtain retrieval results rather than
being part of the retrieval output itself. When multiple paths
lead to retrieval results, no efficient method exists to filter the
paths. In contrast, PathRAG employs a flow-based pruning
algorithm to evaluate multiple paths between nodes, select-
ing relevant paths as part of the retrieval result to address
global-level tasks.

Complexity Analysis of Path Retrieval. After the i-th

step of resource propagation, there are at most % nodes
alive due to the decay penalty and early stopping. Hence
the total number of nodes involved in this propagation is at
most Y .o a'/f = m. Thus the complexity of extract-
2
(11_\[70[)9) In
our settings, the number of retrieved nodes N € [10,60] is
much less than the total number of nodes in the indexing

graph |V| ~ 10*. Thus the time complexity is completely
acceptable. Further details are provided in Appendix H.

ing candidate paths between all node pairs is O(

Necessity of Path-based Prompting. Note that different
retrieved paths may have shared nodes or edges. To reduce
the prompt length, it is possible to flatten the paths and re-
move duplications as a set of nodes and edges. However,
this conversion will lose the semantic relations between the
two endpoints of each path. We also validate the necessity
of path-based prompting in the experiments.

Table 1: Performance across six datasets and five evaluation dimensions in terms of win rates.

Legal History Biology Mix SQuUALITY SummScreen
NaiveRAG PathRAG NaiveRAG PathRAG NaiveRAG PathRAG NaiveRAG PathRAG NaiveRAG PathRAG NaiveRAG PathRAG
Comprehensiveness 31.6% 68.4% 33.2% 66.8% 29.8% 70.2% 26.2% 73.8% 35.2% 64.8% 30.0% 70.0%
Diversity 24.4% 75.6% 38.4% 601.6% 35.2% 04.8% 33.2% 66.8% 29.2% 70.8% 24.2% 75.8%
Logicality 35.2% 64.8% 40.4% 59.6% 34.4% 65.6% 36.2% 63.8% 34.4% 65.6% 30.2% 69.8%
Relevance 27.2% 72.8% 37.2% 62.8% 42.0% 58.0% 38.4% 61.6% 31.4% 68.6% 33.0% 67.0%
Coherence 34.0% 66.0% 42.4% 57.6% 38.4% 61.6% 42.0% 58.0% 37.2% 62.8% 30.2% 69.8%
HyDE PathRAG HyDE PathRAG HyDE PathRAG HyDE PathRAG HyDE PathRAG HyDE PathRAG
Comprehensiveness 38.4% 61.6% 34.8% 65.2% 332% 66.8% 42.8% 57.2% 37.2% 62.8% 30.2% 69.8%
Diversity 21.6% 78.4% 35.2% 64.8% 36.0% 64.0% 33.8% 66.2% 33.2% 66.8% 30.0% 70.0%
Logicality 30.2% 69.8% 38.4% 61.6% 45.2% 54.8% 45.6% 54.4% 35.6% 64.4% 35.2% 64.8%
Relevance 35.6% 64.4% 35.6% 64.4% 46.4% 53.6% 43.4% 56.6% 40.4% 59.6% 31.4% 68.6%
Coherence 42.0% 58.0% 40.4% 59.6% 42.4% 57.6% 45.6% 54.4% 40.0% 60.0% 35.6% 64.4%
G-retriever ~ PathRAG G-retriever ~ PathRAG G-retriever ~ PathRAG G-retriever ~ PathRAG G-retriever ~ PathRAG G-retriever ~ PathRAG
Comprehensiveness 33.8% 06.2% 41.2% 58.8% 43.6% 56.4% 27.4% 72.6% 35.2% 64.8% 44.2% 55.8%
Diversity 35.2% 04.8% 43.6% 56.4% 32.0% 68.0% 24.4% 75.6% 38.4% 61.6% 30.0% 70.0%
Logicality 34.4% 05.6% 42.0% 58.0% 40.0% 60.0% 30.2% 09.8% 40.2% 59.8% 44.8% 55.2%
Relevance 35.6% 64.4% 44.0% 56.0% 38.4% 61.6% 36.2% 63.8% 40.0% 60.0% 41.2% 58.8%
Coherence 38.0% 62.0% 46.6% 53.4% 35.2% 64.8% 34.4% 65.6% 37.2% 62.8% 43.6% 56.4%
HippoRAG ~ PathRAG HippoRAG ~ PathRAG HippoRAG ~ PathRAG HippoRAG ~ PathRAG HippoRAG ~ PathRAG HippoRAG PathRAG
Comprehensiveness 34.4% 65.6% 43.6% 56.4% 46.0% 54.0% 35.8% 64.2% 43.0% 57.0% 30.0% 70.0%
Diversity 38.0% 62.0% 38.4% 61.6% 24.4% 75.6% 37.2% 62.8% 27.2% 72.8% 26.4% 73.6%
Logicality 34.4% 65.6% 45.6% 54.4% 41.8% 58.2% 402% 59.8% 47.2% 52.8% 33.0% 67.0%
Relevance 40.2% 59.8% 432% 56.8% 40.0% 60.0% 44.0% 56.0% 46.6% 53.4% 34.4% 65.6%
Coherence 41.2% 58.8% 44.4% 55.6% 43.6% 56.4% 45.4% 54.6% 42.6% 57.4% 31.8% 68.2%
GraphRAG ~ PathRAG GraphRAG PathRAG GraphRAG PathRAG GraphRAG PathRAG GraphRAG PathRAG GraphRAG PathRAG
Comprehensiveness 33.8% 66.2% 41.0% 59.0% 39.6% 60.4% 41.2% 58.8% 42.0% 58.0% 37.0% 63.0%
Diversity 29.8% 70.2% 36.6% 63.4% 38.2% 61.8% 36.2% 63.8% 38.4% 61.6% 41.2% 58.8%
Logicality 41.6% 58.4% 43.6% 56.4% 34.4% 05.6% 42.0% 58.0% 42.0% 58.0% 40.0% 60.0%
Relevance 40.6% 59.4% 44.0% 56.0% 42.4% 57.6% 40.4% 59.6% 42.4% 57.6% 44.4% 55.6%
Coherence 38.2% 61.8% 40.8% 59.2% 43.6% 56.4% 41.6% 58.4% 41.6% 58.4% 43.6% 56.4%
LightRAG PathRAG LightRAG PathRAG LightRAG PathRAG LightRAG PathRAG LightRAG PathRAG LightRAG PathRAG
Comprehensiveness 36.6% 63.4% 44.0% 56.0% 42.6% 57.4% 40.4% 59.6% 44.0% 56.0% 46.4% 53.6%
Diversity 38.2% 61.8% 432% 56.8% 43.6% 56.4% 42.0% 58.0% 432% 56.8% 46.4% 53.6%
Logicality 37.2% 62.8% 41.6% 58.4% 452% 54.8% 43.6% 56.4% 44.8% 55.2% 44.8% 55.2%
Relevance 40.0% 60.0% 44.0% 56.0% 44.8% 55.2% 44.0% 56.0% 45.6% 54.4% 44.4% 55.6%
Coherence 38.8% 61.2% 44.4% 55.6% 44.4% 55.6% 38.4% 61.6% 44.4% 55.6% 46.4% 53.6%
Experiments et al. 2024), GraphRAG (Edge et al. 2024), and LightRAG

We conduct extensive experiments to answer the following
research questions (RQs): RQ1: How effective is our pro-
posed PathRAG compared to the state-of-the-art baselines?
RQ2: Has each component of our framework played its role
effectively? RQ3: How does the model perform with index-
ing graphs of varying sparsity levels? RQ4: How does our
framework perform under different LLM backbones? RQS5:
How much token cost does PathRAG require to achieve the
performance of state-of-the art baseline?

Experimental Setup

Datasets. We follow the experimental settings of Ligh-
tRAG (Guo et al. 2024), and additionally consider four
datasets from UltraDomain (Qian et al. 2024), SQuAL-
ITY (Wang et al. 2022) and SummScreen (Chen et al.
2022) for a thorough evaluation. These datasets vary signif-
icantly in scale, with token counts ranging from 180, 000
to 5,000, 000. We tune hyperparameters on Agriculture and
CS datasets, and then test on the other six datasets.
Baselines. We compare PathRAG with six state-of-the-art
methods: NaiveRAG (Gao et al. 2023b), HyDE (Gao et al.
2023a), G-retriever (He et al. 2025), HippoRAG (Gutiérrez

(Guo et al. 2024). These methods cover cutting-edge text-
based, KG-based and graph-based RAG approaches.

Implementation Details. To ensure fairness in the ex-
perimental process, we uniformly use “GPT-40-mini” as the
base model for all methods, and adopt the “text-embedding-
3-small” model for embedding. In addition, we construct the
indexing graph following the method of GraphRAG (Edge
et al. 2024), and the retrieved edges corresponding to the
global keywords in LightRAG (Guo et al. 2024) are placed
after the query. For components involving randomness, we
average over ten trials. The maximum input token length for
the LLMs is limited to 8, 000 to ensure fair handling of dif-
ferent forms of retrieved information. The hyperparameters
of PathRAG are fixedas N = 40, K = 15, and o« = 0.7.

Evaluation Metrics. Due to the absence of ground truth
answers, we follow the LLM-based evaluation procedures as
GraphRAG and LightRAG. Specifically, we utilize “GPT-
4o0-mini” to evaluate the generated answers across multi-
ple dimensions. The evaluation dimensions are based on
those from GraphRAG and LightRAG, including Compre-
hensiveness and Diversity, while also incorporating three
new dimensions from recent advances in LLM-based eval-

Table 2: Ablation study on the path retrieval algorithm of PathRAG.

Legal History Biology Mix SQuALITY SummScreen

Random Flow-based Random Flow-based Random Flow-based Random Flow-based Random Flow-based Random Flow-based
Comprehensiveness 44.0% 56.0% 46.0% 54.0% 44.0% 56.0% 42.8% 572% 45.6% 54.4% 46.6% 53.4%
Diversity 45.2% 54.8% 31.4% 68.6% 29.8% 70.2% 46.0% 54.0% 44.4% 55.6% 42.8% 57.2%
Logicality 46.6% 53.4% 44.0% 56.0% 42.0% 58.0% 46.4% 53.6% 41.8% 58.2% 43.6% 56.4%
Relevance 44.8% 552% 46.0% 54.0% 45.8% 54.2% 45.6% 54.4% 45.6% 54.4% 44.8% 552%
Coherence 44.6% 55.4% 41.0% 59.0% 41.6% 58.4% 44.0% 56.0% 43.6% 56.4% 46.4% 53.6%

Hop-first ~ Flow-based Hop-first ~ Flow-based Hop-first ~ Flow-based Hop-first ~ Flow-based Hop-first ~ Flow-based Hop-first ~ Flow-based
Comprehensiveness 44.4% 55.6% 45.8% 54.2% 48.8% 51.2% 43.2% 56.8% 45.2% 54.8% 46.4% 53.6%
Diversity 36.0% 64.0% 49.6% 50.4% 46.0% 54.0% 47.6% 52.4% 44.0% 56.0% 45.4% 54.6%
Logicality 45.2% 54.8% 41.2% 58.8% 44.8% 552% 43.6% 56.4% 46.0% 54.0% 46.0% 54.0%
Relevance 43.6% 56.4% 46.0% 54.0% 37.4% 62.6% 41.4% 58.6% 44.8% 55.2% 46.8% 53.2%
Coherence 41.0% 59.0% 40.0% 60.0% 42.6% 57.4% 44.8% 552% 46.8% 53.2% 46.4% 53.6%

Table 3: Ablation study on the prompt format of PathRAG.
Legal History Biology Mix SQuALITY SummScreen

Flat Path-based Flat Path-based Flat Path-based Flat Path-based Flat Path-based Flat Path-based
Comprehensiveness 40.0% 60.0% 48.8% 51.2% 45.6% 54.4% 49.6% 50.4% 47.2% 52.8% 46.8% 53.2%
Diversity 42.0% 58.0% 39.6% 60.4% 44.4% 55.6% 43.2% 56.8% 44.4% 55.6% 45.2% 54.8%
Logicality 37.2% 62.8% 45.6% 54.4% 48.0% 52.0% 42.0% 58.0% 47.6% 52.4% 43.2% 56.8%
Relevance 44.8% 55.2% 49.0% 51.0% 47.4% 52.6% 44.8% 55.2% 45.4% 54.6% 46.0% 54.0%
Coherence 39.2% 60.8% 45.6% 54.4% 44.6% 55.4% 42.4% 57.6% 48.0% 52.0% 46.8% 53.2%

uation (Chan et al. 2023), namely Logicality, Relevance,
and Coherence. We compare the answers generated by each
baseline and our method and conduct win-rate statistics. A
higher win rate indicates a greater performance advantage
over the other. Note that the presentation order of two an-
swers will be alternated, and the average win rates will be
reported. More experimental setup details are provided in
Appendices A, B, C, and D.

Main Results (RQ1)

As shown in Table 1, PathRAG consistently outper-
forms the baselines across all evaluation dimensions and
datasets. From the perspective of evaluation dimensions,
compared to all baselines, PathRAG shows an average win
rate of 62.52% in Comprehensiveness, 65.37% in Diversity,
60.68% in Logicality, 59.92% in Relevance, and 59.43%
in Coherence on average. These advantages highlight the
effectiveness of our proposed path-based retrieval, which
contributes to better performance across multiple aspects of
the generated responses. From a dataset-level perspective,
PathRAG achieves notable average win rates of 64.66%,
58.94%, 60.44%, and 61.59% on the Legal, History, Biol-
ogy, and Mix datasets, respectively. Furthermore, it demon-
strates robust performance on the more challenging and
unconventional SQUALITY and SummScreen benchmarks,
with average win rates of 60.67% and 63.20%. These results
collectively indicate that PathRAG offers superior multi-
domain adaptability and consistently outperforms baseline
models across diverse evaluation scenarios.

Considering the human-written summaries in the SQuAL-
ITY dataset, we further evaluate the alignment between gen-
erated answers and references using automated metrics such
as BLEU, ROUGE, and METEOR. As shown in Table 4,
PathRAG achieves superior performance across all metrics,
with a 7.06% average improvement over the best baseline.

In future work, we will also integrate human evaluation and
other semantic-level assessment methods.

Table 4: Evaluation on the SQUALITY dataset using human-
written summaries.

BLEU-1 BLEU-2 ROUGE-1-F1 ROUGE-2-F1 METEOR
NaiveRAG 31.78% 12.31% 13.80% 3.51% 16.90%
HyDE 31.68% 11.84% 13.95% 3.50% 16.95%
G-retriever 32.42% 12.03% 14.02% 3.12% 17.50%
HippoRAG 32.12% 11.89% 14.18% 3.39% 17.61%
GraphRAG 32.98% 12.27% 14.23% 3.59% 17.52%
LightRAG 33.37% 12.42% 14.56% 3.30% 17.66%
PathRAG 35.41% 13.81% 15.35% 3.95% 18.53%
Ablation Study (RQ2)

We conduct ablation experiments to validate the design of
PathRAG. A detailed introduction to the variants can be
found in Appendix G.

Necessity of Path Ordering. We consider two different
strategies to rank the retrieved paths in the prompt, namely
random and hop-first. As shown in the Table 2, the average
win rates of PathRAG compared to the random and hop-first
variants are respectively 56.44% and 55.64%, indicating the
necessity of path ordering in the prompts.

Necessity of Path-based Prompting. While retrieval is
conducted using paths, the retrieved information in the
prompts does not necessarily need to be organized in the
same manner. To assess the necessity of path-based organi-
zation, we compare prompts structured by paths with those
using a flat organization. As shown in Table 3, path-based
prompts achieve an average win rate of 55.19%, outperform-
ing the flat format. In PathRAG, node and edge informa-
tion within a path is inherently interconnected, and separat-
ing them can result in information loss. Therefore, after path
retrieval, prompts should remain structured to preserve con-
textual relationships and enhance answer quality.

Graph Sparsity Analysis (RQ3)

To assess the robustness of PathRAG under varying levels
of graph sparsity, we conduct experiments on the Agricul-
ture and CS datasets. We simulate different sparsity levels
by randomly removing 10%, 20%, 30%, 40%, and 50% of
the edges from the original indexing graphs. Subsequently,
we perform pairwise comparisons among PathRAG, Ligh-
tRAG, and NaiveRAG under each sparsity condition. The
results of this evaluation are presented in Figure 3.

—@— PathRAG vs. LightRAG
(a) Agriculture dataset

PathRAG vs. NaiveRAG —®— LightRAG vs. NaiveRAG
(b) CS dataset

0.58 4 0.70

0.68 1
0.56 0.65 1

L]

& 0.621

£
0.54 - £ 0.60 -

Avg. Win Rate

g
< 0.57 4

0.52
0.55 A

0.53 —o—* * ®
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Reduction Ratio Reduction Ratio

0.50 -+

Figure 3: Performance of PathRAG, LightRAG, and
NaiveRAG under different levels of graph sparsity on the
Agriculture and CS datasets.

Although graph-based methods exhibit a degree of
performance degradation when applied to increasingly
sparse indexing graphs, PathRAG continues to demon-
strate practical robustness. The simulation of sparsity
through the random removal of a substantial proportion
of edges does lead to a measurable decline in effective-
ness. Nevertheless, PathRAG consistently outperforms both
LightRAG, which similarly relies on graph structure and
NaiveRAG, which operates independently of any graph-
based context. Specifically, on the Agriculture and CS
datasets, PathRAG achieves average win rates ranging from
54.84% to 57.32% and from 51.72% to 54.92%, respec-
tively, when compared with NaiveRAG. Against LightRAG,
PathRAG maintains win rates between 50.92% and 53.24%
on Agriculture, and between 52.24% and 53.28% on CS.
These findings underscore the robustness and generalizabil-
ity of PathRAG, even under conditions characterized by se-
vere graph sparsity.

Performance under Different LLMs (RQ4)

Considering that LLMs with different performance levels
may affect the overall effectiveness of the framework and
the reliability of evaluation, we uniformly replace “GPT-
4o-mini” with either “GPT-40” or “DeepSeek-V3” as the
base and evaluation models for comparative experiments.
As shown in Table 5, when “GPT-40-mini” is used as
both the base and evaluation model, PathRAG achieves
an average win rate of 53.92% on the Agriculture and
CS datasets. When the “DeepSeek-V3” model is used, the
average win rate increases to 56.48%. With the highest-
performing model, “GPT-40”, the win rate reaches a peak
of 58.36%. These results indicate that the stronger the LLM
used, the better the overall framework performance, and that

Table 5: Performance comparison of PathRAG and Ligh-
tRAG across different base and evaluation models.

Agriculture CS
GPT-40-mini LightRAG PathRAG LightRAG PathRAG
Comprehensiveness 47.6% 52.4% 47.6% 52.4%
Diversity 44.4% 55.6% 42.6% 57.4%
Logicality 48.0% 52.0% 42.6% 57.4%
Relevance 46.6% 53.4% 45.2% 54.8%
Coherence 45.6% 54.4% 47.2% 52.8%
GPT-40 LightRAG PathRAG LightRAG PathRAG
Comprehensiveness 47.4% 52.6% 32.8% 67.2%
Diversity 43.2% 56.8% 34.0% 66.0%
Logicality 45.6% 54.4% 42.4% 57.6%
Relevance 42.0% 58.0% 41.6% 58.4%
Coherence 42.2% 57.8% 45.2% 54.8%
DeepSeek-V3 LightRAG PathRAG LightRAG PathRAG
Comprehensiveness 47.4% 52.6% 46.0% 54.0%
Diversity 42.0% 58.0% 42.4% 57.6%
Logicality 44.0% 56.0% 42.0% 58.0%
Relevance 44.4% 55.6% 42.2% 57.8%
Coherence 43.2% 56.8% 41.6% 58.4%

PathRAG maintains stable performance across models with
varying capabilities.

Token Cost Analysis (RQS5)

For a fair comparison focusing on token consumption, we
also consider a lightweight version of PathRAG with N =
20 and K = 5, dubbed as PathRAG-I1t. PathRAG-It performs
on par with LightRAG in overall performance, achieving an
average win rate of 50.56%, with detailed results provided
in the Appendix L.

Table 6: Comparison of LightRAG, PathRAG-It and
PathRAG in terms of token, time, and monetary cost.

LightRAG PathRAG-It PathRAG

token cost 16,728 9,968 14,438
monetary cost 2.51 x 1073$ 1.50 x 1073 2.17 x 1073$

As shown in Table 6, PathRAG achieves significantly
better performance while reducing token consumption by
13.69%, with a corresponding cost of only 0.002%. Mean-
while, PathRAG-It reduces token usage by 40.41% while
maintaining similar performance to LightRAG. These re-
sults demonstrate the token efficiency of our method.

Conclusion

In this paper, we propose PathRAG, a novel graph-based
RAG method that focuses on retrieving key relational paths
from the indexing graph to alleviate noise. PathRAG can
efficiently identify key paths with a flow-based pruning al-
gorithm, and effectively generate answers with path-based
LLM prompting. Experimental results demonstrate that
PathRAG consistently outperforms baseline methods on six
datasets. In future work, we will optimize the indexing graph
construction process, and consider to collect more human-
annotated datasets for graph-based RAG. It is also possi-
ble to explore other substructures besides paths to enhance
model performance.

Acknowledgments

This work is supported in part by the National Natural
Science Foundation of China (N0.62192784, 62236003,
62576082), Young Elite Scientists Sponsorship Program
(No0.2023QNRCO001) by CAST, and Beijing Natural Science
Foundation(No.L.253004).

References

Alon, U.; Xu, F.; He, J.; Sengupta, S.; Roth, D.; and Neu-
big, G. 2022. Neuro-symbolic language modeling with
automaton-augmented retrieval. In ICML 2023.

Asai, A.; Hashimoto, K.; Hajishirzi, H.; Socher, R.; and
Xiong, C. 2019. Learning to retrieve reasoning paths over
wikipedia graph for question answering. In /CLR 2020.

Bordes, A.; Usunier, N.; Chopra, S.; and Weston, J. 2015.
Large-scale simple question answering with memory net-
works. arXiv preprint arXiv:1506.02075.

Cao, Y.; Han, S.; Gao, Z.; Ding, Z.; Xie, X.; and Zhou, S. K.
2025. Graphinsight: Unlocking insights in large language
models for graph structure understanding. In ACL 2025.

Chan, C.-M.; Chen, W.; Su, Y.; Yu, J.; Xue, W.; Zhang, S.;
Fu, J.; and Liu, Z. 2023. ChatEval: Towards Better LLM-
based Evaluators through Multi-Agent Debate. In ICLR
2024.

Chen, L.; Tong, P; Jin, Z.; Sun, Y.; Ye, J.; and Xiong, H.
2024. Plan-on-graph: Self-correcting adaptive planning of
large language model on knowledge graphs. In NeurIPS
2024.

Chen, M.; Chu, Z.; Wiseman, S.; and Gimpel, K. 2022.
SummScreen: A Dataset for Abstractive Screenplay Sum-
marization. In ACL 2022.

Cheng, X.; Luo, D.; Chen, X.; Liu, L.; Zhao, D.; and Yan, R.
2023. Lift yourself up: Retrieval-augmented text generation
with self-memory. In NeurIPS 2023.

Cuconasu, F.; Trappolini, G.; Siciliano, F.; Filice, S.; Cam-
pagnano, C.; Maarek, Y.; Tonellotto, N.; and Silvestri, F.
2024. The power of noise: Redefining retrieval for rag sys-
tems. In SIGIR 2024.

Dehghan, M.; Alomrani, M.; Bagga, S.; Alfonso-Hermelo,
D.; Bibi, K.; Ghaddar, A.; Zhang, Y.; Li, X.; Hao, J.; Liu,
Q.; et al. 2024. EWEK-QA: Enhanced Web and Effi-
cient Knowledge Graph Retrieval for Citation-based Ques-
tion Answering Systems. In ACL 2024.

Edge, D.; Trinh, H.; Cheng, N.; Bradley, J.; Chao, A.; Mody,
A.; Truitt, S.; and Larson, J. 2024. From local to global: A
graph rag approach to query-focused summarization. arXiv
preprint arXiv:2404.16130.

Fan, T.; Wang, J.; Ren, X.; and Huang, C. 2025. MiniRAG:
Towards Extremely Simple Retrieval-Augmented Genera-
tion. arXiv preprint arXiv:2501.06713.

Fan, W.; Ding, Y.; Ning, L.; Wang, S.; Li, H.; Yin, D.; Chua,
T.-S.; and Li, Q. 2024. A survey on rag meeting llms: To-

wards retrieval-augmented large language models. In KDD
2024.

Fang, F; Bai, Y.; Ni, S.; Yang, M.; Chen, X.; and Xu, R.
2024. Enhancing Noise Robustness of Retrieval-Augmented
Language Models with Adaptive Adversarial Training. In
ACL 2024.

Fang, J.; Meng, Z.; and Macdonald, C. 2024. Reano: Op-
timising retrieval-augmented reader models through knowl-
edge graph generation. In ACL 2024.

Gao, H.; Wu, L.; Hu, P; Wei, Z.; Xu, F;; and Long, B. 2022.
Graph-augmented learning to rank for querying large-scale
knowledge graph. In AACL 2022.

Gao, L.; Ma, X.; Lin, J.; and Callan, J. 2023a. Precise Zero-
Shot Dense Retrieval without Relevance Labels. In ACL
2023.

Gao, Y.; Xiong, Y.; Gao, X.; Jia, K.; Pan, J.; Bi, Y.; Dai, Y.;
Sun, J.; and Wang, H. 2023b. Retrieval-augmented gener-
ation for large language models: A survey. arXiv preprint
arXiv:2312.10997.

Gu, Y.; Kase, S.; Vanni, M.; Sadler, B.; Liang, P.; Yan, X.;
and Su, Y. 2021. Beyond IID: three levels of generalization
for question answering on knowledge bases. In WWW 2021.
Guo, Z.; Xia, L.; Yu, Y.; Ao, T.; and Huang, C. 2024. Ligh-
trag: Simple and fast retrieval-augmented generation. arXiv
preprint arXiv:2410.05779.

Gutiérrez, B. J.; Shu, Y.; Gu, Y.; Yasunaga, M.; and Su,
Y. 2024. Hipporag: Neurobiologically inspired long-term
memory for large language models. In NeurIPS 2024.

Guu, K.; Lee, K.; Tung, Z.; Pasupat, P.; and Chang, M. 2020.
Retrieval augmented language model pre-training. In /ICML
2020.

He, X.; Tian, Y.; Sun, Y.; Chawla, N.; Laurent, T.; LeCun,
Y.; Bresson, X.; and Hooi, B. 2025. G-retriever: Retrieval-
augmented generation for textual graph understanding and
question answering. In NeurlPS 2024.

Ho, X.; Nguyen, A.-K. D.; Sugawara, S.; and Aizawa, A.
2020. Constructing a multi-hop QA dataset for comprehen-
sive evaluation of reasoning steps. In COLING 2020.

Hofstitter, S.; Chen, J.; Raman, K.; and Zamani, H. 2023.
Fid-light: Efficient and effective retrieval-augmented text
generation. In SIGIR 2023.

Jiang, Z.; Xu, F. F,; Gao, L.; Sun, Z.; Liu, Q.; Dwivedi-Yu,
J.; Yang, Y.; Callan, J.; and Neubig, G. 2023. Active retrieval
augmented generation. In EMNLP 2023.

Joshi, M.; Choi, E.; Weld, D. S.; and Zettlemoyer, L. 2017.
TriviaQA: A Large Scale Distantly Supervised Challenge
Dataset for Reading Comprehension. In ACL 2017.

Kwiatkowski, T.; Palomaki, J.; Redfield, O.; Collins, M.;
Parikh, A.; Alberti, C.; Epstein, D.; Polosukhin, I.; Devlin,
J.; Lee, K.; et al. 2019. Natural questions: a benchmark for
question answering research. TACL 2019.

Lewis, P.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V,;
Goyal, N.; Kiittler, H.; Lewis, M.; Yih, W.-t.; Rocktéschel,
T.; et al. 2020. Retrieval-augmented generation for
knowledge-intensive nlp tasks. In NeurlPS 2020.

Li, C.; Liu, Z.; Xiao, S.; Shao, Y.; and Lian, D. 2024.
Llama2vec: Unsupervised adaptation of large language
models for dense retrieval. In ACL 2024.

Li, M.; Miao, S.; and Li, P. 2024. Simple is effective: The
roles of graphs and large language models in knowledge-
graph-based retrieval-augmented generation. In ICLR 2025.
Lin, Y.; Liu, Z.; Luan, H.; Sun, M.; Rao, S.; and Liu, S.
2015. Modeling Relation Paths for Representation Learning
of Knowledge Bases. In EMNLP 2015.

Liu, N. F; Lin, K.; Hewitt, J.; Paranjape, A.; Bevilacqua,
M.; Petroni, F.; and Liang, P. 2024. Lost in the middle: How
language models use long contexts. TACL 2024.

Liu, Y.; Wan, Y.; He, L.; Peng, H.; and Philip, S. Y. 2021.
Kg-bart: Knowledge graph-augmented bart for generative
commonsense reasoning. In AAAI 2021.

Li, L.; and Zhou, T. 2011. Link prediction in complex net-
works: A survey. Physica A: statistical mechanics and its
applications, 390(6): 1150-1170.

Lyu, Y.; Li, Z.; Niu, S.; Xiong, F.; Tang, B.; Wang, W.; Wu,
H.; Liu, H.; Xu, T.; and Chen, E. 2025. Crud-rag: A com-
prehensive chinese benchmark for retrieval-augmented gen-
eration of large language models. TOIS 2025.

Mavromatis, C.; and Karypis, G. 2024. Gnn-rag: Graph
neural retrieval for large language model reasoning. arXiv
preprint arXiv:2405.20139.

Panda, P.; Agarwal, A.; Devaguptapu, C.; Kaul, M.; et al.
2024. HOLMES: Hyper-Relational Knowledge Graphs for
Multi-hop Question Answering using LLMs. In ACL 2024.

Procko, T. T.; and Ochoa, O. 2024. Graph retrieval-
augmented generation for large language models: A survey.
In AIXSET 2024. IEEE.

Qian, H.; Zhang, P; Liu, Z.; Mao, K.; and Dou, Z.
2024. Memorag: Moving towards next-gen rag via
memory-inspired knowledge discovery. arXiv preprint
arXiv:2409.05591.

Qin, Z.; Jagerman, R.; Hui, K.; Zhuang, H.; Wu, J.; Yan, L.;
Shen, J.; Liu, T.; Liu, J.; Metzler, D.; et al. 2023. Large lan-
guage models are effective text rankers with pairwise rank-
ing prompting. In NAACL 2024.

Schick, T.; Dwivedi-Yu, J.; Dessi, R.; Raileanu, R.; Lomeli,
M.; Hambro, E.; Zettlemoyer, L.; Cancedda, N.; and
Scialom, T. 2023. Toolformer: Language models can teach
themselves to use tools. In NeurIPS 2023.

Su, Y.; Fang, Y.; Zhou, Y.; Xu, Q.; and Yang, C. 2025. Clue-
RAG: Towards Accurate and Cost-Efficient Graph-based
RAG via Multi-Partite Graph and Query-Driven Iterative
Retrieval. arXiv preprint arXiv:2507.08445.

Sun, J.; Xu, C.; Tang, L.; Wang, S.; Lin, C.; Gong, Y.; Ni,
L. M.; Shum, H.-Y.; and Guo, J. 2023. Think-on-graph:
Deep and responsible reasoning of large language model on
knowledge graph. In ICLR 2024.

Talmor, A.; and Berant, J. 2018. The web as a knowledge-
base for answering complex questions. In NAACL 2018.
Tian, L.; Zhou, X.; Wu, Y.-P.; Zhou, W.-T.; Zhang, J.-H.;
and Zhang, T.-S. 2022. Knowledge graph and knowledge
reasoning: A systematic review. JEST 2022.

Wang, A.; Pang, R. Y.; Chen, A.; Phang, J.; and Bowman, S.
2022. SQUALITY: Building a Long-Document Summariza-
tion Dataset the Hard Way. In EMNLP 2022.

Wen, Y.; Wang, Z.; and Sun, J. 2024. MindMap: Knowl-
edge Graph Prompting Sparks Graph of Thoughts in Large
Language Models. In ACL 2024.

Xu, S.; Pang, L.; Yu, M.; Meng, F.; Shen, H.; Cheng, X.; and
Zhou, J. 2024. Unsupervised Information Refinement Train-
ing of Large Language Models for Retrieval-Augmented
Generation. In ACL 2024.

Yang, Z.; Qi, P; Zhang, S.; Bengio, Y.; Cohen, W. W.;
Salakhutdinov, R.; and Manning, C. D. 2018. HotpotQA: A
dataset for diverse, explainable multi-hop question answer-
ing. In EMNLP 2018.

Yasunaga, M.; Ren, H.; Bosselut, A.; Liang, P.; and
Leskovec, J. 2021. QA-GNN: Reasoning with language
models and knowledge graphs for question answering. In
NAACL 2021.

Yepes, A. J.; You, Y.; Milczek, J.; Laverde, S.; and Li, R.
2024. Financial report chunking for effective retrieval aug-
mented generation. arXiv preprint arXiv:2402.05131.

Zhang, H.; Feng, T.; and You, J. 2025. Graph of records:
Boosting retrieval augmented generation for long-context
summarization with graphs. In ACL 2025.

Zhang, L.; Yu, Y.; Wang, K.; and Zhang, C. 2024. Arl2:
Aligning retrievers for black-box large language models via
self-guided adaptive relevance labeling. In ACL 2024.

Zhu, K.; Feng, X.; Du, X.; Gu, Y.; Yu, W.; Wang, H.; Chen,
Q.; Chu, Z.; Chen, J.; and Qin, B. 2024. An Informa-
tion Bottleneck Perspective for Effective Noise Filtering on
Retrieval-Augmented Generation. In ACL 2024.

