
Data-centric Prompt Tuning for Dynamic Graphs
Yufei Peng∗

Beijing University of Posts and Telecommunications
Beijing, China

astral_requiem@bupt.edu.cn

Cheng Yang∗
Beijing University of Posts and Telecommunications

Beijing, China
yangcheng@bupt.edu.cn

Zhengjie Fan†
Tsinghua University

Beijing, China
zjfanster@gmail.com

Chuan Shi†
Beijing University of Posts and Telecommunications

Beijing, China
shichuan@bupt.edu.cn

Abstract
Dynamic graphs have attracted increasing attention due to their
ability to model complex and evolving relationships in real-world
scenarios. Traditional approaches typically pre-train models us-
ing dynamic link prediction and directly apply the resulting node
temporal embeddings to specific downstream tasks. However, the
significant differences among downstream tasks often lead to per-
formance degradation, especially under few-shot settings. Prompt
tuning has emerged as an effective solution to this problem. Exist-
ing prompting methods are often strongly coupled with specific
model architectures or pretraining tasks, which makes it difficult to
adapt to recent or future model designs. Moreover, their exclusive
focus on modifying node or temporal features while neglecting
spatial structural information leads to limited expressiveness and
degraded performance. To address these limitations, we propose
DDGPrompt, a data-centric prompting framework designed to ef-
fectively refine pre-trained node embeddings at the input data level,
enabling better adaptability to diverse downstream tasks. We first
define a unified node expression feature matrix that aggregates
all relevant temporal and structural information of each node, en-
suring compatibility with a wide range of dynamic graph models.
Then, we introduce three prompt matrices (temporal bias, edge
weight, and feature mask) to adjust the feature matrix completely,
achieving task-specific adaptation of node embeddings.We evaluate
DDGPrompt under a strict few-shot setting on four public dynamic
graph datasets. Experimental results demonstrate that our method
significantly outperforms traditional methods and prompting ap-
proaches in scenarios with limited labels and cold-start conditions.

CCS Concepts
• Computing methodologies→Machine learning.

∗Co-first author with equal contribution.
†Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’25, Seoul, Republic of Korea.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2040-6/2025/11
https://doi.org/10.1145/3746252.3761161

Keywords
Dynamic Graphs, Graph Neural Networks, Prompt Learning

ACM Reference Format:
Yufei Peng, Cheng Yang, Zhengjie Fan, and Chuan Shi. 2025. Data-centric
Prompt Tuning for Dynamic Graphs. In Proceedings of the 34th ACM Inter-
national Conference on Information and Knowledge Management (CIKM ’25),
November 10–14, 2025, Seoul, Republic of Korea. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3746252.3761161

1 Introduction

𝑡2

𝑡1

𝑡3

𝑣

𝑡2

𝑡1

𝑡3

𝑣

Pre-trained

Model

Node Temporal Embedding

Downstream

Task

+

Node Feature

Prompt Feature

Pre-trained

Model

Node Temporal Embedding

𝑡2

𝑡1

𝑡3

𝑣 +

Prompt Feature

Pre-trained

Model

Node Temporal Embedding

(a) Traditional dynamic graph pre-training paradigm

(b) Pre-prompt feature tuning

(c) Post-prompt feature tuning

Figure 1: Comparison of (a) traditional dynamic graph meth-
ods and (b) (c) existing dynamic graph prompt works

Dynamic graphs have attracted increasing attention [7] for their
ability tomodel real-world systems and capture, predict, and explain
time-evolving behaviors more effectively. Compared with static
graphs, dynamic graphs can more effectively represent complex
relationships and interactions between entities in domains such as
social networks [42] and recommendation systems [24], which are
critical for understanding and predicting entity behavior.

Trodictional dynamic graph methods [3, 14, 25, 29, 30, 33, 37]
learn node temporal embeddings through dynamic link prediction

https://doi.org/10.1145/3746252.3761161
https://doi.org/10.1145/3746252.3761161

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea. Yufei Peng, Cheng Yang, Zhengjie Fan and Chuan Shi

losses using node interaction data during pretraining, and then
directly apply these embeddings to downstream tasks. These meth-
ods have shown excellent performance, particularly on dynamic
link prediction. Despite this progress, current dynamic graph meth-
ods still have some shortcomings. First, when adapting to various
downstream tasks, traditional methods typically take one of two ap-
proaches: (1) freezing the parameters of the pre-trained model and
training a lightweight decoder to map node temporal embeddings
to the task; or (2) fully retraining the model for each new task. The
former may introduce noise due to discrepancies between tasks,
while the latter incurs considerable computational and memory
costs. Second, although current methods perform well in data-rich
scenarios, they often struggle in real-world applications where la-
beled data is scarce or where cold-start issues arise. In such few-shot
or sparsely labeled settings, models that rely heavily on large-scale
labeled data typically fail to generalize.

In order to solve the above problems in dynamic graphs, some
recent approaches have explored prompt tuning [2, 39], which
has proven effective in the field of static graphs [4, 13, 18, 27].
As shown in Fig. 1, these methods introduce lightweight prompt
modules that adjust graph input features or output embeddings
with minimal additional parameters. Specifically, TIGPrompt [2]
incorporates recent interaction features as post-prompt added to
pre-trained node temporal embeddings. DyGPrompt [39] applies a
unified learnable embedding to all node and time features, further
fine-tuned by pre-prompt based on the interaction of node and time
features.

However, recent prompting methods for dynamic graphs still
suffer from two critical limitations. First, existing approaches often
require intervention into model-specific structures or adopt entirely
different pretraining and inference paradigms from prior works.
For instance, DyGPrompt aligns downstream tasks with link-based
pretraining objectives through its prompting mechanism, deviat-
ing from the common paradigm where node embeddings are di-
rectly fed into task-specific classifiers. This design makes it difficult
to integrate DyGPrompt into existing models and may result in
significant performance loss. Additionally, both TIGPrompt and
DyGPrompt focus solely on modifying node or time features, com-
pletely ignoring the spatial neighborhood structure that is intrinsic
to dynamic graphs. This under-expressive prompting strategy ham-
pers their ability to comprehensively capture task-relevant patterns,
ultimately constraining downstream performance.

To address these two challenges, we propose DDGPrompt, a
novel data-centric prompting framework for dynamic graphs. DDG-
Prompt adjusts the input data structure in a unified and model-
agnostic manner, enabling better alignment between pre-trained
models and downstream tasks. Specifically, to tackle the first chal-
lenge, we define a node expression feature matrix inspired by exist-
ing dynamic graph models. This matrix is compatible with a wide
range of traditional architectures and designed to remain exten-
sible to future frameworks. It encodes a node’s recent first-order
neighborhood information, including node features, edge features,
and time features, and serves as input to various backbone models
to get node temporal embeddings. To address the second challenge,
we introduce three complementary prompt matrices (temporal bias,
edge weight, and feature mask) to comprehensively adjust the node
expression feature matrix. The temporal bias prompt dynamically

adjusts the temporal features of each neighbor; the edge weight
prompt assigns a learnable importance score to each neighbor, cap-
turing spatial structural relevance; and the feature mask prompt
leverages a task-aware enhancement network to selectively modu-
late feature dimensions. These prompts are integrated into the node
expression matrix through different weights, allowing the resulting
temporal embeddings to be more expressive and better adapted to
diverse downstream tasks.

Finally, we conduct extensive experiments on four public dy-
namic graph datasets. Thanks to our proposed node expression fea-
ture matrix and prompting strategy, DDGPrompt achieves strong
performance across various challenging few-shot scenarios. It is
compatible with existing dynamic graph models and consistently
outperforms both backbone baselines and recent prompt-based
methods.

Our contributions are summarized as follows:
•We define a node expression feature matrix for efficient prompt

tuning in dynamic graphs. This matrix encodes the historical in-
teraction information of each node and maintains compatibility
with all existing methods. It serves as the model input to generate
node temporal embeddings that are transferable across different
downstream tasks.
•We propose a novel data-centric prompting framework, DDG-

Prompt, which integrates temporal bias, edge weight, and feature
mask prompts. By jointly capturing node, temporal, and spatial
information, it adaptively refines the node expression matrix for
task-specific tuning.
• Extensive few-shot experiments on four dynamic graph datasets

demonstrate that DDGPrompt consistently outperforms various
backbones and prompt methods, highlighting its robustness and
effectiveness.

2 Related work
2.1 Dynamic Graph Learning
Dynamic graphs can be categorized into discrete-time dynamic
graph (DTDG) and continuous-time dynamic graph (CTDG) based
on the granularity of their temporal information [1, 12, 26]. In re-
cent years, CTDGs have attracted increasing attention due to their
closer alignment with real-world scenarios [3, 14, 25, 30, 33, 37].
Most existing CTDG methods share a common architecture: they
design a backbone encoder to extract spatio-temporal information
from the evolving graph and obtain node representations, followed
by a decoder that leverages these embeddings to perform down-
stream tasks. For instance, TGN [25] introduces a memory module
to store and update node embeddings over time. GraphMixer [3]
employs a lightweight MLP-based architecture that significantly
reduces memory and computation cost while maintaining competi-
tive performance. TCL [30], built upon contrastive learning, uses
a transformer-based backbone to capture temporal dynamics. Our
work also focuses on the CTDG setting.

While these methods have achieved perfect performance on dy-
namic link prediction, they often fall short when applied to other
downstream tasks. This limitation is particularly pronounced in
dynamic graphs due to inherent temporal gaps and node preference
variability over time, leading to even greater performance degra-
dation across tasks compared to static graphs. Furthermore, most

Data-centric Prompt Tuning for Dynamic Graphs CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea.

existing approaches overlook few-shot and cold-start scenarios. In
practical settings where labeled data is scarce or user-item inter-
actions are sparse, such models tend to generalize poorly and lack
robustness.

2.2 Graph pretraining
Pretraining has emerged as a prevalent paradigm in graph learning
[8–10, 19, 23]. By training models on large-scale datasets and then
fine-tuning them for specific downstream tasks, pretraining signifi-
cantly boosts performance. This paradigm leverages the power of
transfer learning [20, 31, 43], allowing models to generalize better
by reusing the knowledge acquired during pretraining.

Recent dynamic graph learning methods have begun to adopt
pretraining strategies to enable transferability across multiple tasks
[37]. Typically, these methods perform supervised pretraining using
dynamic link prediction task. When adapting to new downstream
tasks, they freeze the parameters of the pre-trained model and
retrain only a task-specific classifier based on the node temporal
embeddings produced during pretraining.

However, this approach has inherent limitations. Since the tem-
poral embeddings are optimized for a specific task during super-
vised pretraining, they may encode task-biased information, result-
ing in suboptimal generalization to other downstream tasks. To
address this issue, it is critical to incorporate task-agnostic self-
supervised signals during pretraining. It can enhance the versa-
tility of node embeddings, improve performance across diverse
downstream tasks, and offer greater robustness in low-resource or
few-shot scenarios where labeled data are scarce.

2.3 Prompt Learning on Graphs
In the past two years, prompt learning has been increasingly applied
to the graph learning domain and has achieved remarkable success
[4, 5, 13, 18, 27, 28, 38, 40]. These studies explore ways to align
diverse downstream tasks with pre-trained graph models and have
shown strong performance, particularly in few-shot settings. Some
works even aim to unify various tasks and datasets under a single
graph foundation model [6, 16, 17, 32, 40]. Existing prompt learning
approaches for static graphs can be broadly categorized into two
types [34]: (1) Pre-prompt usually modifies the model input. This
idea is analogous to the prompt in natural language processing. For
instance, GPF [4] proposes universal feature prompts for all nodes,
while All-in-one [13] explicitly alters the graph structure to encode
task-specific signals. (2) Post-prompt usually uses the prompt vector
to modify the node embedding obtained by the model to adapt
to different downstream tasks. For example, GraphPrompt [18]
introduces a prompt tensor that multiplies the node embeddings,
enabling the generation of task-specific node representations via
a unified prompt template. Beyond general graph tasks, prompt
learning has also been applied to more specialized settings [5, 35].

Recently, a fewworks have extended prompt learning to dynamic
graphs [2, 39]. TIGPrompt [2] injects recent interaction history as
prompt signals to enhance node embeddings. DyGPrompt [39], in-
spired by GraphPrompt, designs global feature prompts for both
node and time features while incorporating their interactions. How-
ever, despite these efforts, such methods often struggle to generalize

across different datasets due to the limited expressiveness of the
learned prompt representations.

3 Preliminary
Definition 1. Dynamic Graph Dynamic graph can be represented
as 𝐺 = (𝑉 , 𝐸) [11]. 𝑉 and 𝐸 are denoted as the node set and the
edge set, respectively. Each edge consists of a triple 𝑒 = (𝑢, 𝑣, 𝑡) ∈ 𝐸,
where 𝑢 ∈ 𝑉 is the source node, 𝑣 ∈ 𝑉 is the destination node, and
𝑡 is the timestamp, indicating that 𝑢 and 𝑣 interact at timestamp 𝑡 .

The features corresponding to nodes 𝑢, 𝑣 and edge 𝑒 are denoted
as 𝑓𝑢 , 𝑓𝑣 ∈ R𝑑𝑁 and 𝑓𝑒 ∈ R𝑑𝐸 , respectively. 𝑑𝑁 and 𝑑𝐸 are feature
dimensions.

Definition 2. Problem Formalization.
Dynamic link prediction: For a pair of nodes 𝑢 and 𝑣 in a dynamic

graph𝐺 and a given time 𝑡 , the purpose of dynamic link prediction
is to predict whether there will be a link between the two nodes
at time 𝑡 based on all interactions {(𝑢′, 𝑣 ′, 𝑡 ′) |𝑡 ′ < 𝑡} before the
timestamp.

Dynamic node classification: For each edge 𝑒 = (𝑢, 𝑣, 𝑡) in the
dynamic graph 𝐺 , source node 𝑢 corresponds to a label 𝑙 ∈ 𝐿 at
timestamp 𝑡 , where the labels of all source nodes constitute the
label set 𝐿. The goal of dynamic node classification is to predict the
label of the source node 𝑢 at timestamp 𝑡 .

In this paper, we focus on two fundamental tasks on dynamic
graphs under the few-shot setting, as real-world dynamic graphs
often suffer from limited supervision signals [15, 22, 36, 41].

4 Methodology
4.1 Overall Framework
The overall framework consists of two parts: pretraining and down-
stream task fine-tuning. In the pretraining stage, we first train
the model using a large amount of unlabeled data through self-
supervised contrastive learning [21] based on link prediction. Af-
terwards, we first define a node expression feature matrix for each
node. This matrix is then adjusted using three prompt matrices.
The result is used as the input of the pre-trained model with frozen
parameters, and the node temporal embedding modified by prompt
is obtained for different downstream tasks. The overall framework
of DDGPrompt is shown in Fig. 2.

4.2 Node Expression Feature Matrix
In this section, we first define a node expression feature matrix for
each node based on the common design patterns of existing dy-
namic graph models, aiming to optimize node temporal embeddings
through prompt tuning. Previous works [3, 30, 37] have shown
that it is sufficient to capture the general characteristics of a node
through its first-order interactions in its recent history. Specifically,
for an interaction (𝑢, 𝑣, 𝑡), we take node 𝑢 as an example and ex-
tract the most recent sequence of interactions 𝑆𝑡𝑢 = {(𝑢, 𝑣 ′, 𝑡 ′) |𝑡 ′ <
𝑡} ∈ 𝐺 of node 𝑢 from the interaction history. The original features
of all neighbor nodes are F𝑡

𝑢,𝑛𝑒𝑖𝑔ℎ
∈ R |𝑆𝑡𝑢 |×𝑑𝑁 . Consequently, the

edge features and the time features are F𝑡
𝑢,𝑒𝑑𝑔𝑒

∈ R |𝑆
𝑡
𝑢 |×𝑑𝐸 and

F𝑡
𝑢,𝑡𝑖𝑚𝑒

∈ R |𝑆𝑡𝑢 |×𝑑𝑇 . For time features, previous works [3, 33] use
time encoding function 𝑓𝑡𝑖𝑚𝑒 (Δ𝑡 ;𝜔) to encode the time interval

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea. Yufei Peng, Cheng Yang, Zhengjie Fan and Chuan Shi

𝑣1𝑣2

𝑣3

𝑣4

𝑢

𝑡1𝑡2

𝑡3

𝑡4

𝑒1
𝑒2

𝑒3

𝑒4

𝑡1

𝑡4

𝑍𝑢,𝑛
𝑡 𝑍𝑢,𝑒

𝑡 𝑍𝑢,𝑡
𝑡 𝑍𝑢,𝑎

𝑡

Node Expression Feature Matrix

𝑢′s neighborhood information

Temporal bias Prompt

Edge weight Prompt

Feature mask Prompt

Node Expression Feature Matrix

Feature Enhancement

Network

edge weight 𝜶𝒗
𝒕

Δ𝑡 𝑡 + Δ𝑡

+𝑡 Pre-trained

time encoder
𝑍𝑢,𝑛
𝑡

[𝑍𝑢,𝑛
𝑡 , 𝑍𝑢,𝑒

𝑡]

T′E F

Pre-trained

encoder

Downstream task
[𝑍𝑢,𝑛

𝑡 , 𝑍𝑢,𝑒
𝑡 , 𝑍𝑢,𝑡

𝑡 , 𝑍𝑢,𝑎
𝑡]

𝜶𝒗
𝒕 ⊙

𝑍𝑢,𝑛
𝑡 𝑍𝑢,𝑒

𝑡 𝑍𝑢,𝑡′
𝑡𝑍𝑢,𝑡′

𝑡 𝑍𝑢,𝑎
𝑡

𝑍𝑢,𝑛
𝑡 𝑍𝑢,𝑒

𝑡 𝑍𝑢,𝑡
𝑡 𝑍𝑢,𝑎

𝑡

Node temporal embedding

Figure 2: The overall framework of our proposed DDGPrompt

Δ𝑡 = 𝑡 − 𝑡 ′ into T-dimensional time features F𝑡
𝑢,𝑡𝑖𝑚𝑒

, where 𝜔 is the
parameter of the time encoding function.

Next, we use a linear layer to project each original feature into
the same feature space so that they have the same dimension 𝑑 and
obtain the embedding of each feature.

Z𝑡
𝑢,𝑛𝑒𝑖𝑔ℎ

= Projection(F𝑡
𝑢,𝑛𝑒𝑖𝑔ℎ

) ∈ R |𝑆
𝑡
𝑢 |×𝑑 (1)

Z𝑡
𝑢,𝑒𝑑𝑔𝑒

= Projection(F𝑡
𝑢,𝑒𝑑𝑔𝑒

) ∈ R |𝑆
𝑡
𝑢 |×𝑑 (2)

Z𝑡𝑢,𝑡𝑖𝑚𝑒 = Projection(F𝑡𝑢,𝑡𝑖𝑚𝑒) ∈ R
|𝑆𝑡𝑢 |×𝑑 (3)

We define the node expression feature matrix of node 𝑢 at times-
tamp 𝑡 as follows:

Z𝑡𝑢 = Z𝑡
𝑢,𝑛𝑒𝑖𝑔ℎ

| |Z𝑡
𝑢,𝑒𝑑𝑔𝑒

| |Z𝑡𝑢,𝑡𝑖𝑚𝑒 ∈ R
|𝑆𝑡𝑢 |×3𝑑 (4)

where | | represents the concatenate operation.
In addition, for some specific methods, they may propose some

additional features to improve the performance of specific tasks.
For example, DyGFormer [37] proposes a co-occurrence feature
Z𝑡𝑢,𝑜𝑐𝑐 ∈ R |𝑆

𝑡
𝑢 |×𝑑 between a pair of nodes to extract the implicit

information. We will collectively denote this additional features
as Z𝑡

𝑢,𝑎𝑑𝑑
. If Z𝑡

𝑢,𝑎𝑑𝑑
exists, we add it to the end as Z𝑡𝑢 | |Z𝑡𝑢,𝑎𝑑𝑑 . This

makes it compatiblewith existingmethods and directly extensible to
future work. Obviously, the matrix Z𝑡𝑢 is a combination of features
for each historical neighbor of the node 𝑢 at timestamp 𝑡 .

Afterwards, the feature matrix Z𝑡𝑢 will be used as input to differ-
ent backbone models to extract the information from node 𝑢 and
output the node temporal embedding ℎ𝑡𝑢 .

4.3 Self-supervised pretraining
We leverage the node expression feature matrix introduced in Sec-
tion 4.2 to pretrain the backbone model using a large amount of
unlabeled dynamic graph data, resulting in the initial node tempo-
ral embeddingℎ𝑡𝑢 . To optimize the pre-trained model, we adopt a
self-supervised contrastive learning loss based on link prediction,

as the dynamic interactions between nodes inherently capture rich
temporal and structural information from the graph.

Specifically, for an interaction (𝑢, 𝑣, 𝑡) ∈ 𝐺𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛 of node
𝑢 in the dynamic graph 𝐺 , where 𝐺𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛 is the pretraining
dataset split on 𝐺 . We randomly sample another node 𝑣−, which
forms a triple (𝑢, 𝑣−, 𝑡) with 𝑢 as a negative sample, indicating that
there is no edge between 𝑢 and 𝑣 up to the timestamp 𝑡 . We use
contrastive learning to make the embeddings of two nodes with a
link relationship similar and the embeddings of two nodes without
a link relationship far away from each other. Therefore, for each
interaction, we use the following loss function to optimize the
pre-trained model:

Lpre (Φ) = −
∑︁

(𝑢,𝑣,𝑡) ∈𝐺𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛

ln
𝑒

1
𝜏
sim(ℎ𝑡𝑢 ,ℎ𝑡𝑣)

𝑒
1
𝜏
sim(ℎ𝑡𝑢 ,ℎ𝑡𝑣) + 𝑒

1
𝜏
sim(ℎ𝑡𝑢 ,ℎ𝑡𝑣−)

(5)

where Φ is the trainable parameter of the pre-trained backbone. 𝜏
is the temperature parameter.ℎ𝑡𝑢 , ℎ𝑡𝑣, ℎ𝑡𝑣− is the temporal embedding
of the node at timestamp 𝑡 for downstream tasks, which is calcu-
lated by the pre-trained model with Φ. sim(·) is used to measure
the similarity between node embeddings, and we use the cosine
similarity.

4.4 Data-centric Dynamic Graph Prompt
To bridge the gap between pre-trained embeddings and downstream
tasks, we introduce three types of prompts that refine the node
expression feature matrix from node, temporal, and spatial perspec-
tives. These prompts adjust the resulting temporal embeddings,
enabling the pre-trained model to adapt to downstream tasks more
efficiently and effectively.

4.4.1 Temporal bias prompt matrix. The relationship between the
node attribute and its time feature is a key point that distinguishes
dynamic graphs from traditional graphs. However, prior methods
often model the features of neighboring nodes and their correspond-
ing timestamps independently, overlooking the crucial interactions
between them [3, 33, 37]. In fact, enhancing the time features based

Data-centric Prompt Tuning for Dynamic Graphs CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea.

on the neighbor node feature can more accurately capture the be-
havioral preferences of the current node. For instance, adjusting a
neighbor’s interaction timestamp to be closer to the current time
may indicate a stronger preference or relevance to that neighbor.
To capture this intuition, we propose a temporal bias prompt that
explicitly modifies the time feature to reflect such dynamics.

We first extract the neighbor node feature Z𝑡
𝑢,𝑛𝑒𝑖𝑔ℎ

of the node
expression feature matrix and generate a one-dimensional temporal
bias 𝛿𝑡 through a linear layer as the time gap that needs to be
modified for different neighbor nodes.

𝛿𝑡 = Linear(Z𝑡
𝑢,𝑡𝑖𝑚𝑒 ;𝜂) (6)

where 𝜂 is the learnable parameter of the linear layer. Subse-
quently, we modified the the original time interval Δ𝑡 using tempo-
ral bias 𝛿𝑡 so that the interaction time of neighbor are adjusted to
either a more recent or more distant point in time. We use ReLU as
the activation function to prevent the time interval from being less
than 0.

Δ𝑡 = ReLu(Δ𝑡 + 𝛿𝑡) (7)

The modified time interval Δ𝑡 will be used as input to obtain
new time features Z

𝑡
𝑢,𝑡𝑖𝑚𝑒 using the time encoding function and

projection layer of the pre-trained model as before.

Z
𝑡
𝑢,𝑡𝑖𝑚𝑒 = Projection(TimeEncoder(Δ𝑡)) (8)

We use Z
𝑡
𝑢,𝑡𝑖𝑚𝑒 to replace the original time feature and obtain the

temporal bias prompt matrix P𝑡𝑒𝑚𝑝of the same size as the original
node expression feature matrix.

P𝑡𝑒𝑚𝑝 = Z𝑡
𝑢,𝑛𝑒𝑖𝑔ℎ

| |Z𝑡
𝑢,𝑒𝑑𝑔𝑒

| |Z𝑡
𝑢,𝑡𝑖𝑚𝑒 ∈ R |𝑆

𝑡
𝑢 |×3𝑑 (9)

4.4.2 Edge weight prompt matrix. Previous traditional and prompt
methods overlook the varying importance of different neighbors
when aggregating neighborhood information. They typically as-
sign equal weights to all neighbors [2, 3, 30, 37, 39]. However, this
uniform treatment becomes a critical limitation when adapting to
different downstream tasks, often resulting in significant perfor-
mance degradation. For example, in dynamic link prediction, it is
beneficial to assign higher weights to frequently interacting node
pairs, whereas dynamic node classification may prioritize the most
recent interactions. Therefore, capturing task-specific neighbor im-
portance is essential for improving generalization across diverse
tasks.

Therefore, we generate the edge weights according to the differ-
ent neighbor node features and edge features to adaptively adjust
the information expression on different edges. Specifically, for node
𝑢’s neighbor node 𝑣 at timestamp 𝑡 , we concatenate the neighbor
node features 𝑧𝑡

𝑢𝑣,𝑛𝑒𝑖𝑔ℎ
and edge features 𝑧𝑡

𝑢𝑣,𝑒𝑑𝑔𝑒
and use them as

the input of a linear layer to get the edge weight𝑤𝑡
𝑢𝑣 .

𝑤𝑡
𝑢𝑣 = Linear(𝑧𝑡

𝑢𝑣,𝑛𝑒𝑖𝑔ℎ
| |𝑧𝑡

𝑢𝑣,𝑒𝑑𝑔𝑒
; 𝜁) (10)

where 𝜁 is the learnable parameter of the linear layer. The weight
of all edges is denoted by𝑤𝑡

𝑢 . We then multiply the weight by the
corresponding edge.

P𝑒𝑑𝑔𝑒 = 𝑤𝑡
𝑢 ⊙ Z𝑡

𝑢 (11)

where (⊙) is the element-wise multiplication. It modifies all
feature information on an edge through a broadcast mechanism.
Finally, we get the edge weight prompt matrix P𝑒𝑑𝑔𝑒 .

4.4.3 Feature mask prompt matrix. Finally, we introduce a feature
mask prompt matrix to enhance the representation of each neigh-
bor’s features. The goal is to adaptively refine the original node
feature matrix through a Feature Enhancement Network (FEN).
To keep the architecture lightweight, we employ a two-layer MLP
with a bottleneck structure. The enhancement process is defined as
follows:

P𝑓 𝑒𝑎𝑡 = MLP(Z𝑡𝑢 ;Ω) = W2 · Relu(W1 · Z𝑡
𝑢 + 𝑏1) + 𝑏2 (12)

Here, W1,W2 and 𝑏1, 𝑏2 denoted as Ω are the learnable parame-
ters of the MLP. The output P𝑓 𝑒𝑎𝑡 also maintains the same dimen-
sionality as the original feature matrix, ensuring compatibility for
subsequent operations. This design is also commonly adopted in
traditional static graph learning. It does not assume any specific
structure or distribution of node features, making it applicable to a
wide range of graph-based tasks.

Finally, we add the three prompt matrices to the original node
expression feature matrix with different weights.

Z
𝑡
𝑢 = Z𝑡

𝑢 + 𝛼 ⊙ P𝑡𝑒𝑚𝑝 + 𝛽 ⊙ P𝑒𝑑𝑔𝑒 + 𝛾 ⊙ P𝑓 𝑒𝑎𝑡 (13)

𝛼, 𝛽,𝛾 are the weight hyperparameters corresponding to the
three prompts, which are used to further adjust the expression of
the three prompts on the original feature matrix. Z

𝑡
𝑢 is the prompt-

adjusted node expression feature matrix. It is treated as input and
passes through pre-trained backbone Pre-train(Φ) to generate new
node temporal embedding ℎ

𝑡

𝑢 .

ℎ
𝑡

𝑢 = Pre-train(Z𝑡
𝑢 ;Φ) (14)

4.5 Downstream Task Tuning
In line with previous methods [30, 33, 37], we finally train MLP as
a classifier to apply prompt-adjusted node temporal embeddings
to different downstream tasks. Both dynamic link prediction and
dynamic node classification are formulated as binary classifica-
tion problems, and we adopt the binary cross-entropy (BCE) loss
function for optimization. Additionally, a regularization term is
introduced for the FEN to mitigate overfitting. For dynamic link
prediction, we apply the following loss on the downstream training
set 𝐺 𝑓 𝑖𝑛𝑒−𝑡𝑢𝑛𝑒 ∈ 𝐺 , optimizing only the prompt parameters and
the classifier, while keeping the backbone frozen. Here, 𝑙 denotes
the ground-truth label in 𝐺 𝑓 𝑖𝑛𝑒−𝑡𝑢𝑛𝑒 .

Llink (𝜂, 𝜁 ,Ω,Θ) = Cross-Entropy(MLP(ℎ𝑡𝑢 | |ℎ
𝑡

𝑣 ;Θ), 𝑙) + 𝜆 | |Ω | |2
(15)

𝜂, 𝜁 ,Ω are the trainable parameters for prompt. Θ is the trainable
parameters of the MLP. 𝜆 represents the strength of regularization,
and | | · | | is L2-norm.

Similarly, the loss for dynamic node classification is as follows:

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea. Yufei Peng, Cheng Yang, Zhengjie Fan and Chuan Shi

Lnode (𝜂, 𝜁 ,Ω,Θ) = Cross-Entropy(MLP(ℎ𝑡𝑢 ;Θ), 𝑙) + 𝜆 | |Ω | |2 (16)

Algorithm 1 DDGPrompt Pretraining and Fine-tuning Framework
Input: Dynamic graph pretraining dataset 𝐺𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛 and fine-

tuning dataset 𝐺 𝑓 𝑖𝑛𝑒−𝑡𝑢𝑛𝑒 , node features set 𝐹𝑁 , edge features
set 𝐹𝐸 , label set label 𝐿, backbone model 𝑓Φ with parameters Φ

1: // Pretraining Stage:
2: for each edge 𝑒 = (𝑢, 𝑣, 𝑡) ∈ 𝐺𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛 do
3: for node 𝑢, extract the features F𝑡

𝑢,𝑛𝑒𝑖𝑔ℎ
, F𝑡

𝑢,𝑒𝑑𝑔𝑒
, F𝑡

𝑢,𝑡𝑖𝑚𝑒
of

the node’s one-hop neighbors
4: Calculate project features Z𝑡

𝑢,𝑛𝑒𝑖𝑔ℎ
,Z𝑡

𝑢,𝑒𝑑𝑔𝑒
,Z𝑡

𝑢,𝑡𝑖𝑚𝑒
via

Eq. 3
5: Z𝑡𝑢 ← 𝐶𝑜𝑛𝑡𝑎𝑐𝑡 (Z𝑡

𝑢,𝑛𝑒𝑖𝑔ℎ
,Z𝑡

𝑢,𝑒𝑑𝑔𝑒
,Z𝑡

𝑢,𝑡𝑖𝑚𝑒
)

6: Sample negetive node and get Z𝑡𝑣,Z𝑡𝑣− similarity
7: Calculate embeddings ℎ𝑡𝑢 , ℎ𝑡𝑣, ℎ𝑡𝑣− from 𝑓Φ
8: Calculate loss Lpre (Φ) and optimize model paremeter Φ
9: end for
10: // Fine-tuning Stage:
11: for each edge 𝑒 = (𝑢, 𝑣, 𝑡) ∈ 𝐺 𝑓 𝑖𝑛𝑒−𝑡𝑢𝑛𝑒 do
12: 𝛿𝑡 ← Linear(Z𝑡

𝑢,𝑡𝑖𝑚𝑒
;𝜂),Δ𝑡 ← ReLu(Δ𝑡 + 𝛿𝑡)

13: Calculate time bias prompt P𝑡𝑒𝑚𝑝 via Eq. 9
14: 𝑤𝑡

𝑢 ← 𝐿𝑖𝑛𝑒𝑎𝑟 (Z𝑡
𝑢,𝑛𝑒𝑖𝑔ℎ

| |Z𝑡
𝑢,𝑒𝑑𝑔𝑒

; 𝜁)
15: Calculate edge weight prompt P𝑒𝑑𝑔𝑒 via Eq. 11
16: Calculate feature mask prompt P𝑓 𝑒𝑎𝑡 ← MLP(Z𝑡𝑢 ;Ω) via

Eq. 12
17: 𝑍

𝑡
𝑢 ← 𝐹𝑖𝑛𝑒 − 𝑡𝑢𝑛𝑖𝑛𝑔(P𝑛𝑒𝑖𝑔ℎ, P𝑒𝑑𝑔𝑒 , P𝑓 𝑒𝑎𝑡) via Eq. 13

18: Calculate embeddings ℎ
𝑡

𝑢 , ℎ
𝑡

𝑣, ℎ
𝑡

𝑣− from freezed pre-trained
model 𝑓Φ

19: Calculate loss Llink or Lnode and optimize prompt pareme-
ter 𝜂, 𝜁 ,Ω and MLP classifier Θ via Eq. 15 or Eq. 16

20: end for

5 Experiment
In this section, we conduct extensive experiments to evaluate the
performance of our model in the scenario where labeled data is
scarce.

5.1 Experimental Setup
5.1.1 Datasets. We evaluate our approach and baselines using
four widely used benchmark datasets (Wikipedia, Reddit, MOOC,
and a large-scale dataset LastFM) on dynamic graphs. The detailed
description of the dataset is as follows:
•Wikipedia records the editing history and interaction behav-

ior of users on the platform. The nodes represent different users or
pages, and the edges represent the interaction information between
users and pages.
• Reddit is similar to Wikipedia, recording the interactions

between users and different sub-posts on the Reddit website. The
timestamp indicates the time of the interaction.
•MOOC is derived from the learning activities and interactive

behaviors on the online course platform, reflecting the students’
participation in MOOC courses.

Table 1: Detailed statistics of Datasets

Datasets Wikipedia Reddit MOOC LastFM

Nodes 9227 11000 7144 1980
Edges 157474 672447 411749 1293103
Feature dimension 172 172 172 0
Node classes nums 2 2 2 0
Dynamic labels 217 366 4066 0
Timespan 30 days 30 days 30 days 30 days

• LastFM records the listening history of users on the music
platformwithin a month, but there are no dynamic labels to indicate
the user’s status. It is a commonly used large dataset with 1.29
million interactions for link prediction on dynamic graphs.

5.1.2 Task Setting. We evaluate our method on two fundamental
tasks in dynamic graphs: dynamic link prediction and dynamic node
classification. For link prediction, we consider both transductive and
inductive settings. In the transductive setting, the model has access
to all nodes in the graph during training. In contrast, the inductive
setting requires the model to predict links involving nodes that are
entirely unseen during training. Due to the absence of dynamic
labels, we only conduct experiments on the dynamic link prediction
task using the LastFM dataset.

In our few-shot setting, we adopt a strict and challenging ex-
perimental protocol to evaluate the effectiveness of our method
with extremely limited labeled samples. Specifically, we split the
four datasets in the following ways: (1) First, we select the first
80% of the interaction data in chronological order as the pretrain-
ing set 𝐺𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛 for self-supervised pretraining. (2) Second, for
the remaining 20% of the data, we then select K interactions as
K-shot training data to fine-tune in different downstream tasks.
Similarly, we continuously select K samples as the validation set
for fine-tuning, denoted as 𝐺 𝑓 𝑖𝑛𝑒−𝑡𝑢𝑛𝑒 and𝐺𝑣𝑎𝑙 . Finally, for all the
remaining data, we use it as the test set𝐺𝑡𝑒𝑠𝑡 for downstream tasks.
We just select K = 70 as the 70-shot scenario for all downstream
tasks in the main experiment, which accounts for only 0.05 percent
of all interactions for the smallest dataset, Wikipedia.

Besides, for the dynamic node classification task, we first ensure
that at least one node is selected in each class when constructing
the fine-tuning set and the validation set.

5.1.3 Baselines. We compare DDGPrompt with the following two
types of baseline models. (1) Dynamic graph learning: JOIDE
[14], TGAT [33], TGN [25], GraphMixer [3], TCL [30], DyGFormer
[37]. (2) Dynamic graph prompt: TIGPrompt [2], DyGPrompt
[39].

For TIGPrompt and DyGPrompt, we adopt the best implementa-
tion setting reported in their original papers by default, i.e., using
TGN as the backbone. Since the code of TIGPrompt and DyGPrompt
are not available, we implemented them based on the descriptions
provided in their respective papers. Additionally, to ensure a fair
comparison, we also integrated the prompts into several recent
dynamic graph methods and reported the corresponding results in
the main experiments.

Data-centric Prompt Tuning for Dynamic Graphs CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea.

Table 2: Experimental results of few-shot scenario

Methods
Transductive Link Prediction Inductive Link Prediction Node Classification

Wikipedia Reddit MOOC LastFM Wikipedia Reddit MOOC LastFM Wikipedia Reddit MOOC

Metrics AP↑ AUC↑ AP↑ AUC↑ AP↑ AUC↑ AP↑ AUC↑ AP↑ AUC↑ AP↑ AUC↑ AP↑ AUC↑ AP↑ AUC↑ AUC↑ AUC↑ AUC↑

JODIE 52.26 50.22 56.28 55.08 49.15 49.29 49.09 45.88 52.86 50.52 58.54 55.35 47.66 47.51 48.74 42.84 72.93 57.12 52.42
TGN 58.67 56.63 57.45 54.34 53.92 55.39 54.17 53.81 58.64 56.41 53.36 49.59 54.13 54.39 50.73 49.70 41.54 51.86 49.20
TGAT 73.98 71.32 63.83 64.43 69.19 68.99 59.20 51.88 75.80 73.65 61.31 62.84 67.93 69.12 53.82 52.73 61.92 57.38 49.17
GraphMixer 74.63 73.52 81.13 79.88 72.03 71.19 51.40 50.33 74.43 73.70 78.25 77.78 72.19 72.03 51.40 50.27 54.53 55.01 57.82
TCL 80.37 74.57 87.54 88.77 78.14 79.65 52.81 50.82 80.42 74.90 86.14 87.57 77.30 79.28 52.72 50.81 61.71 54.01 52.56
DyGFormer 85.78 83.03 97.66 97.50 70.94 69.49 64.83 66.44 86.93 83.58 97.97 97.56 68.74 67.17 64.94 66.72 63.67 60.07 54.45

TIGPrompt 58.35 56.64 54.72 51.62 54.76 55.30 53.22 52.77 57.73 55.93 51.57 47.33 54.91 54.65 50.60 49.51 46.13 53.85 56.46
DyGPrompt 50.65 49.56 55.41 52.49 52.92 54.83 48.97 47.05 50.86 49.90 52.03 49.14 54.23 54.34 48.66 46.46 46.16 49.60 48.98

TIGPrompt(T) 81.32 76.08 85.99 86.19 77.66 78.83 54.39 52.32 81.37 76.36 83.73 85.09 76.62 78.15 54.33 52.43 59.34 55.16 59.13
DyGPrompt(T) 79.89 77.53 83.80 86.50 53.30 55.24 51.32 50.67 79.15 76.58 82.33 84.29 53.17 55.76 51.37 50.75 75.03 55.42 42.08
DDGPrompt(T) 88.06 84.23 86.35 87.57 79.41 80.96 50.59 49.63 87.42 83.49 84.81 86.32 78.47 80.43 50.53 49.58 66.24 55.99 49.62

TIGPrompt(D) 84.45 81.83 98.45 98.22 69.88 68.49 62.11 63.96 85.78 82.47 98.54 98.32 67.61 65.89 62.14 64.17 65.96 53.82 57.20
DyGPrompt(D) 92.76 90.33 60.19 58.86 67.17 67.08 72.25 69.23 92.85 90.38 60.06 58.72 65.58 66.02 72.46 68.96 67.81 57.35 45.12
DDGPrompt 97.15 96.32 98.53 98.36 72.22 71.03 80.48 76.29 96.91 96.01 98.59 98.41 70.76 69.67 80.53 76.28 74.32 61.30 59.60

Table 3: Experimental results of sparse interaction data scenario

Methods
Transductive Link Prediction Inductive Link Prediction Node Classification

Wikipedia Reddit MOOC LastFM Wikipedia Reddit MOOC LastFM Wikipedia Reddit MOOC

Metrics AP↑ AUC↑ AP↑ AUC↑ AP↑ AUC↑ AP↑ AUC↑ AP↑ AUC↑ AP↑ AUC↑ AP↑ AUC↑ AP↑ AUC↑ AUC↑ AUC↑ AUC↑

JODIE 44.90 40.01 52.48 49.38 50.19 50.06 55.14 57.91 48.87 44.86 51.95 48.84 51.89 50.51 40.81 35.76 66.17 55.17 51.91
TGN 54.94 52.40 58.64 56.81 52.82 54.33 55.38 55.32 54.10 51.88 55.70 52.89 52.73 54.06 57.87 56.92 36.11 54.22 50.24
TGAT 46.99 43.72 66.71 65.43 52.06 51.16 51.05 50.25 47.74 44.11 62.90 62.75 51.88 51.07 50.91 49.97 54.03 56.59 45.53
GraphMixer 52.29 49.26 80.62 79.01 58.82 57.45 45.25 42.26 51.47 48.35 76.92 75.39 57.94 56.75 46.60 44.43 45.57 54.32 50.91
TCL 81.00 78.03 54.24 52.03 70.10 71.35 50.84 50.23 80.73 78.07 54.31 52.38 69.40 71.00 51.10 50.46 69.72 55.97 54.25
DyGFormer 80.60 75.26 84.55 84.66 72.93 69.60 85.33 80.55 81.38 75.88 85.27 84.48 71.99 68.24 83.53 78.66 61.68 57.75 55.70

TIGPrompt 52.97 51.46 56.19 52.99 52.15 52.24 53.37 53.51 52.64 51.22 54.58 51.35 51.92 51.86 56.04 55.48 46.49 55.83 56.16
DyGPrompt 55.22 54.51 54.63 53.40 51.26 53.68 54.97 54.31 53.71 52.27 53.43 52.47 53.31 56.15 52.69 50.51 59.24 57.36 48.27

TIGPrompt(D) 70.78 65.22 79.70 79.94 69.69 69.15 85.57 80.70 71.31 65.72 80.71 80.13 68.78 63.84 83.93 78.95 57.73 57.62 56.23
DyGPrompt(D) 76.07 72.80 85.47 83.08 52.33 51.53 86.19 81.38 75.81 72.23 85.54 83.08 52.24 51.59 84.57 79.59 66.53 56.54 47.37
DDGPrompt 88.35 85.04 89.82 89.60 75.13 72.64 86.52 82.17 89.33 86.04 90.76 90.12 74.23 71.55 84.88 80.38 74.64 58.13 58.62

5.1.4 Evaluation Metrics. Following the previous work, we use
Average Precision (AP) and Area Under the Receiver Operating
Characteristic Curve (AUC-ROC) as evaluation metrics for the dy-
namic link prediction. For the dynamic node classification, we only
use AUC-ROC due to label imbalance.

5.1.5 Hyperparameter Settings and Implementation. We build and
evaluate all baselines using the DyGLib [37] benchmark. In pretrain-
ing, we set all baseline epochs to 100, the learning rate to 0.0001,
do not deploy early stopping, and save the best model. The temper-
ature parameter 𝜏 of contrastive learning loss in pretraining is set
to 0.2. For all downstream tasks, we load and freeze the pre-trained
models and use its baseline default parameters in DyGLib (usually
optimal) with 20 early stopping to tune the task classifier. We set
the learning rate for downstream tasks to 0.0001 for dynamic link
prediction and 0.001 for dynamic node classification.We run 5 times
with different seeds and calculate the average of all results as the
final performance of the model. All experiments were conducted
on a Linux server with a single GPU (GeForce RTX 3090).

5.2 Analysis of Main Experiments Performance
We evaluate all methods in four datasets using dynamic link pre-
diction, and in the dynamic node classification task on Wikipedia,

Reddit, and MOOC. In addition, for fairness we implement TIG-
Prompt and DyGPrompt on TCL and DyGFormer respectively, and
compare their performance with our DDGprompt. We use the first
letter to represent the selected backbone model for prompt. For
example, TIGPrompt (D) represents TIGPrompt based on the DyG-
Former. We use DyGFormer as the default backbone of our method.
The experimental results are shown in Table 2.

We bold the best result and underline the second-best result on
each dataset. From the results, we have the following observations.

(1) DDGPrompt achieves the best performance in most datasets
for different downstream tasks. Specifically, on dynamic link predic-
tion, DDGPrompt outperforms all baselines in the Wikipedia, Red-
dit, and LastFM datasets. For the Wikipedia, DDGPrompt improves
the backbone by 11.37% and 13.29% on AP and AUC, respectively.
On Reddit and MOOC, DDGPrompt still improves the selected
backbone. The limited improvement on Reddit is attributed to the
overall performance bottleneck. In the dynamic node classification
task, DDGPrompt also significantly improves the performance of
the selected backbone. The above results prove that DDGPrompt
can improve the performance of pre-trained models on different
downstream tasks, demonstrating the effectiveness of our proposed
method.

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea. Yufei Peng, Cheng Yang, Zhengjie Fan and Chuan Shi

(2) DDGprompt outperforms TIGPrompt and DyGPrompt when
using the same backbones. We take the AP evaluation indicator as
an example. When the backbone is DyGFormer, our DDGPrompt
outperforms TIGPrompt and DyGPrompt by 18.37% and 8.23% in
link prediction for LastFM. For the node classification, DDGPrompt
outperforms TIGPrompt and DyGPrompt by 8.36%/6.48%/2.4% and
6.51%/2.95%/14.48% respectively. The above observations demon-
strate that our proposed DDGprompt outperforms existing simple
dynamic graph prompting methods [2, 39] by more comprehen-
sively tuning the temporal embeddings of nodes according to down-
stream tasks.

(3) In addition, different backbones also has a great impact on the
final performance. For the dynamic link prediction , we notice that
when DDGPrompt selects the best backbone DyGFormer, although
it has a certain improvement on MOOC, the final result is inferior
to the result when TCL is the backbone. This may be because the
performance of the DyGFormer is seriously weaker than TCL in
the current experimental setting.

5.3 Analysis of Model Performance on Sparse
Interaction Data

In this section, we focus on scenarios with limited interaction data.
By filtering and analyzing datasets with sparse interaction nodes,
we aim to demonstrate how DDGPrompt can effectively adapt and
perform well under the more stringent condition. Specifically, we
filter all nodes that have fewer than a specified interaction threshold,
retaining only the corresponding interactions for these nodes from
the previous datasets, thereby limiting both the sample number
and the interaction frequency. For LastFM, we set the interaction
threshold to 1000, while for the other three datasets, the threshold
is set to 100. This results in the labeled data for each dataset being
at most half of the 70-shot scenario in Section 5.2. We show the
performance of each baseline under sparse interaction data in Table
3.

We can observe that under this setting, DDGPrompt achieves
the best performance on all datasets, highlighting the robustness
of our method. It can maintain high performance even when only
a small number of interactions are available. This analysis not
only emphasizes the advantages of our model but also significantly
contributes to enhancing its applicability in real-world scenarios
involving cold starts.

5.4 Analysis of Model Components
In this section, we perform ablation experiments on DDGPrompt
to verify the effectiveness of each prompt component. We explore
three variants based on DDGPrompt and compare them with DDG-
Prompt. Fig. 3 shows the corresponding results of these variants
on the dynamic link prediction task in four datasets. The variable
w/o t.b. refers to DDGPrompt with the temporal bias prompt re-
moved. Variant w/o e.w. and variant w/o f.m. represent without
edge weight prompt and feature mask prompt, respectively.

We can see that all three proposed prompts are advantageous
for dynamic link prediction, and they demonstrate a similar pattern
across different datasets. For most datasets, the model performance
degrades the most when the temporal bias prompt is absent. Addi-
tionally, the effects of the prompts vary across different datasets. In

Figure 3: Ablation Studies of prompt components

particular, for the Wikipedia and LastFM datasets, each prompt con-
tributes significantly to overall performance improvement. Overall,
these observations suggest that the components of our proposed
DDGPrompt can adjust node temporal embeddings from different
perspectives to better fit specific downstream tasks.

5.5 Analysis of Model Hyperparameters

(a) 𝛼 (b) 𝛽 (c) 𝛾

Transductive link prediction

(a) 𝛼 (c) 𝛾(b) 𝛽

Node classification

Figure 4: Performance under different hyperparameters on
transductive link prediction

Then, we analyze the hyperparameter of DDGPrompt. Specifi-
cally, we evaluate the weights of each prompt when added to the
original node expression feature matrix under the transductive link
prediction, i.e. 𝛼 , 𝛽 , 𝛾 in Eq. 13. We tested the results of the three
hyperparameter values on Wikipedia and MOOC, reflecting the
impact of different prompts on the backbone across various datasets.
The results for different downstream tasks are presented in Fig. 4.

Data-centric Prompt Tuning for Dynamic Graphs CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea.

We can observe that in the transductive link prediction, as we
increase the weight 𝛼 of the temporal bias prompt, the performance
of DDGPrompt continuously improves in the Wikipedia dataset
while declining in the MOOC. This indicates a larger time gap in
the Wikipedia dataset, while the opposite holds for the MOOC. The
weight 𝛾 of the feature mask prompt shows a similar trend.

5.6 Analysis of Model Scalability
In this section, we analyze the scalability and effectiveness of our
proposed DDGPrompt on different backbones. We can notice the
performance and improvement of DDGPrompt on different state-
of-the-art backbone networks in Table 2. In the previous section,
we can notice that although existing prompt works improve the
performance of some tasks, their performance is often disappoint-
ing when faced with different datasets. In contrast, we observe in
Table 2 that although different backbone networks have an impact
on the final results, our DDGPrompt improves the backbone that do
not use prompt. In particular, for the current best backbone DyG-
Former, our DDGPrompt has the greatest improvement. This proves
the scalability and effectiveness of our proposed DDGPrompt on
different backbones.

5.7 Analysis of Node Feature Distribution
To better demonstrate the effectiveness of our method, we visualize
the node feature distribution with and without DDGPrompt on
DyGFormer. Specifically, we randomly sample 200 node pairs from
the test sets of Wikipedia and LastFM, and perform dimensionality
reduction for visualization. Fig. 5 presents the link prediction results,
where each point represents a node involved in either a positive
or negative sample pair. We expect the node representations of
positive pairs to be close to each other, while those of negative
pairs should be far apart in dynamic link prediction task. As shown
in Fig. 5, after applying DDGPrompt, positive and negative pairs
become more clearly separable in the embedding space, and the
nodes within positive pairs aremore tightly clustered. This indicates
that the model, guided by DDGPrompt, is better at distinguishing
whether two entities are likely to interact, demonstrating its ability
to enhance semantic discrimination in downstream tasks.

5.8 Analysis of Time and Memory Consumption
In addition, we test the training overhead of existing dynamic graph
prompt methods, including time and memory consumption in the
main experimental setting. We test on Wikipedia and the large
dataset LastFM and calculate the average results of five experiments.
Table 4 and Table 5 show the experimental data of dynamic link
prediction and dynamic node classification tasks respectively.

Table 4: Dynamic graph prompt methods training overhead
for dynamic link prediction

Time(s) Memory(MB)
Wikipedia LastFM Wikipedia LastFM

TIGPrompt 98 954 1010 2582
DyGPrompt 126 1096 946 2542
DDGPrompt 102 1098 894 2480

WiKipedia LastFM

W
it

h
 p

ro
m

p
t

W
it

h
o

u
t

p
ro

m
p

t

Source Node Target Node(Positve) Target Node(Negative)

Figure 5: Visualization of node feature distributions with
and without DDGPrompt on dynamic link prediction (DyG-
Former as the backbone)

Table 5: Dynamic graph prompt methods training overhead
for dynamic node classification

Time(s) Memory(MB)
Wikipedia Wikipedia

TIGPrompt 24 992
DyGPrompt 28 932
DDGPrompt 18 888

We can observe that the training costs of the three dynamic
image prompting methods are close to each other. Although our
proposed DDGPrompt involves a weighted combination of multiple
prompt matrices, it still has a small training time overhead because
the time complexity is still linear. In terms of memory overhead,
TIGPrompt has the largestmemory consumption due to its inclusion
of transformers, followed by DyGPrompt with a dual MLP network.
DDGPrompt has the smallest memory consumption due to the least
trainable parameters.

6 Conclusion
In this paper, we propose DDGPrompt, a novel data-centric prompt-
ing framework for dynamic graphs. It bridges the gap between pre-
trained models and downstream tasks by adaptively refining node
embeddings based on interaction patterns through three prompts.
Extensive experiments on four dynamic graph datasets under few-
shot settings show that DDGPrompt outperforms both traditional
baselines and existing prompt-based methods.

Acknowledgments
This work was supported by the National Key Research and Devel
opment Program of China (No.2023YFC3303800)

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea. Yufei Peng, Cheng Yang, Zhengjie Fan and Chuan Shi

References
[1] Claudio DT Barros, Matheus RF Mendonça, Alex B Vieira, and Artur Ziviani.

2021. A survey on embedding dynamic graphs. ACM Computing Surveys (CSUR)
55, 1 (2021), 1–37.

[2] Xi Chen, Siwei Zhang, Yun Xiong, Xixi Wu, Jiawei Zhang, Xiangguo Sun, Yao
Zhang, Yinglong Zhao, and Yulin Kang. 2024. Prompt learning on temporal
interaction graphs. arXiv preprint arXiv:2402.06326 (2024).

[3] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hang-
hang Tong, and Mehrdad Mahdavi. 2023. Do we really need complicated model
architectures for temporal networks? arXiv preprint arXiv:2302.11636 (2023).

[4] Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. 2024.
Universal prompt tuning for graph neural networks. Advances in Neural Infor-
mation Processing Systems 36 (2024).

[5] Yuxin Guo, Cheng Yang, Yuluo Chen, Jixi Liu, Chuan Shi, and Junping Du. 2023.
A Data-centric Framework to Endow Graph Neural Networks with Out-Of-
Distribution Detection Ability. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining. 638–648.

[6] Yufei He and Bryan Hooi. 2024. UniGraph: Learning a Cross-Domain Graph
Foundation Model From Natural Language. arXiv preprint arXiv:2402.13630
(2024).

[7] Petter Holme and Jari Saramäki. 2012. Temporal networks. Physics reports 519, 3
(2012), 97–125.

[8] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. 2019. Strategies for pre-training graph neural networks. arXiv
preprint arXiv:1905.12265 (2019).

[9] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
Gpt-gnn: Generative pre-training of graph neural networks. In Proceedings of
the 26th ACM SIGKDD international conference on knowledge discovery & data
mining. 1857–1867.

[10] Xunqiang Jiang, Tianrui Jia, Yuan Fang, Chuan Shi, Zhe Lin, and Hui Wang. 2021.
Pre-training on large-scale heterogeneous graph. In Proceedings of the 27th ACM
SIGKDD conference on knowledge discovery & data mining. 756–766.

[11] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,
Peter Forsyth, and Pascal Poupart. 2019. Relational representation learning for
dynamic (knowledge) graphs: A survey. arXiv preprint arXiv:1905.11485 12 (2019).

[12] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,
Peter Forsyth, and Pascal Poupart. 2020. Representation learning for dynamic
graphs: A survey. Journal of Machine Learning Research 21, 70 (2020), 1–73.

[13] Elena Kochkina, Maria Liakata, and Arkaitz Zubiaga. 2018. All-in-one: Multi-task
learning for rumour verification. arXiv preprint arXiv:1806.03713 (2018).

[14] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic em-
bedding trajectory in temporal interaction networks. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
1269–1278.

[15] Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee Chung. 2019.
Melu: Meta-learned user preference estimator for cold-start recommendation.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 1073–1082.

[16] Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen,
and Muhan Zhang. 2023. One for all: Towards training one graph model for all
classification tasks. arXiv preprint arXiv:2310.00149 (2023).

[17] Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting
Bai, Yuan Fang, Lichao Sun, Philip S Yu, et al. 2023. Towards graph foundation
models: A survey and beyond. arXiv preprint arXiv:2310.11829 (2023).

[18] Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. 2023. Graphprompt:
Unifying pre-training and downstream tasks for graph neural networks. In Pro-
ceedings of the ACM Web Conference 2023. 417–428.

[19] Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. 2021. Learning to pre-
train graph neural networks. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 35. 4276–4284.

[20] Shuteng Niu, Yongxin Liu, Jian Wang, and Houbing Song. 2020. A decade survey
of transfer learning (2010–2020). IEEE Transactions on Artificial Intelligence 1, 2
(2020), 151–166.

[21] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[22] Feiyang Pan, Shuokai Li, Xiang Ao, Pingzhong Tang, and Qing He. 2019. Warm
up cold-start advertisements: Improving ctr predictions via learning to learn id
embeddings. In Proceedings of the 42nd International ACM SIGIR Conference on

Research and Development in Information Retrieval. 695–704.
[23] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,

Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph
neural network pre-training. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining. 1150–1160.

[24] Liang Qu, Ningzhi Tang, Ruiqi Zheng, Quoc Viet Hung Nguyen, Zi Huang, Yuhui
Shi, and Hongzhi Yin. 2023. Semi-decentralized federated ego graph learning for
recommendation. In Proceedings of the ACM Web Conference 2023. 339–348.

[25] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael Bronstein. 2020. Temporal graph networks for deep learning
on dynamic graphs. arXiv preprint arXiv:2006.10637 (2020).

[26] Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. 2021. Foundations and
modeling of dynamic networks using dynamic graph neural networks: A survey.
iEEE Access 9 (2021), 79143–79168.

[27] Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. 2022. Gppt:
Graph pre-training and prompt tuning to generalize graph neural networks. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 1717–1727.

[28] Xiangguo Sun, Jiawen Zhang, Xixi Wu, Hong Cheng, Yun Xiong, and Jia Li. 2023.
Graph prompt learning: A comprehensive survey and beyond. arXiv preprint
arXiv:2311.16534 (2023).

[29] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. 2019.
Dyrep: Learning representations over dynamic graphs. In International conference
on learning representations.

[30] Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He,
Le Song, Jingren Zhou, and Hongxia Yang. 2021. Tcl: Transformer-based dynamic
graph modelling via contrastive learning. arXiv preprint arXiv:2105.07944 (2021).

[31] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. 2016. A survey of
transfer learning. Journal of Big data 3 (2016), 1–40.

[32] Lianghao Xia, Ben Kao, and Chao Huang. 2024. Opengraph: Towards open graph
foundation models. arXiv preprint arXiv:2403.01121 (2024).

[33] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan.
2020. Inductive representation learning on temporal graphs. arXiv preprint
arXiv:2002.07962 (2020).

[34] Cheng Yang, Deyu Bo, Jixi Liu, Yufei Peng, Boyu Chen, Haoran Dai, Ao Sun,
Yue Yu, Yixin Xiao, Qi Zhang, et al. 2023. Data-centric graph learning: A survey.
arXiv preprint arXiv:2310.04987 (2023).

[35] Cheng Yang, Chengdong Yang, Chuan Shi, Yawen Li, Zhiqiang Zhang, and Jun
Zhou. 2024. Calibrating Graph Neural Networks from a Data-centric Perspective.
In Proceedings of the ACM on Web Conference 2024. 745–755.

[36] Huaxiu Yao, Chuxu Zhang, YingWei, Meng Jiang, SuhangWang, Junzhou Huang,
Nitesh Chawla, and Zhenhui Li. 2020. Graph few-shot learning via knowledge
transfer. In Proceedings of the AAAI conference on artificial intelligence, Vol. 34.
6656–6663.

[37] Le Yu, Leilei Sun, BowenDu, andWeifeng Lv. 2023. Towards better dynamic graph
learning: New architecture and unified library. Advances in Neural Information
Processing Systems 36 (2023), 67686–67700.

[38] Xingtong Yu, Yuan Fang, Zemin Liu, and Xinming Zhang. 2024. Hgprompt:
Bridging homogeneous and heterogeneous graphs for few-shot prompt learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38. 16578–
16586.

[39] Xingtong Yu, Zhenghao Liu, Yuan Fang, and Xinming Zhang. 2024. DyG-
Prompt: Learning Feature and Time Prompts on Dynamic Graphs. arXiv preprint
arXiv:2405.13937 (2024).

[40] Xingtong Yu, Chang Zhou, Yuan Fang, and Xinming Zhang. 2024. MultiGPrompt
for multi-task pre-training and prompting on graphs. In Proceedings of the ACM
on Web Conference 2024. 515–526.

[41] Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji
Geng. 2019. Meta-gnn: On few-shot node classification in graph meta-learning.
In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. 2357–2360.

[42] Zhilun Zhou, Yu Liu, Jingtao Ding, Depeng Jin, and Yong Li. 2023. Hierarchi-
cal knowledge graph learning enabled socioeconomic indicator prediction in
location-based social network. In Proceedings of the ACM Web Conference 2023.
122–132.

[43] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. 2020. A comprehensive survey on transfer learning.
Proc. IEEE 109, 1 (2020), 43–76.

	Abstract
	1 Introduction
	2 Related work
	2.1 Dynamic Graph Learning
	2.2 Graph pretraining
	2.3 Prompt Learning on Graphs

	3 Preliminary
	4 Methodology
	4.1 Overall Framework
	4.2 Node Expression Feature Matrix
	4.3 Self-supervised pretraining
	4.4 Data-centric Dynamic Graph Prompt
	4.5 Downstream Task Tuning

	5 Experiment
	5.1 Experimental Setup
	5.2 Analysis of Main Experiments Performance
	5.3 Analysis of Model Performance on Sparse Interaction Data
	5.4 Analysis of Model Components
	5.5 Analysis of Model Hyperparameters
	5.6 Analysis of Model Scalability
	5.7 Analysis of Node Feature Distribution
	5.8 Analysis of Time and Memory Consumption

	6 Conclusion
	Acknowledgments
	References

