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Multi-label classification refers to the task of predicting potentially multiple labels for a given instance.
Conventional multi-label classification approaches focus on single objective setting, where the learning
algorithm optimizes over a single performance criterion (e.g., Ranking Loss) or a heuristic function. The basic
assumption is that the optimization over one single objective can improve the overall performance of multi-
label classification and meet the requirements of various applications. However, in many real applications,
an optimal multi-label classifier may need to consider the trade-offs among multiple inconsistent objectives,
such as minimizing Hamming Loss while maximizing Micro F1. In this article, we study the problem of
multi-objective multi-label classification and propose a novel solution (called MOML) to optimize over multiple
objectives simultaneously. Note that optimization objectives may be inconsistent, even conflicting, thus one
cannot identify a single solution that is optimal on all objectives. Our MOML algorithm finds a set of non-
dominated solutions which are optimal according to different trade-offs among multiple objectives. So users
can flexibly construct various predictive models from the solution set, which provides more meaningful
classification results in different application scenarios. Empirical studies on real-world tasks demonstrate
that the MOML can effectively boost the overall performance of multi-label classification by optimizing over
multiple objectives simultaneously.
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1. INTRODUCTION

Traditional supervised learning works on the single label scenario. That is, each in-
stance is associated with one single label within a finite set of labels. However, in many
applications, each instance can be associated with more than one label simultaneously.
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Fig. 1. Illustration of optimizing over multiple objectives.

For example, in text categorization, one document can belong to multiple categories
[Yang et al. 2009]; in image classification, an image is usually associated with multiple
labels which are characterized by different regions in the image [Zha et al. 2008]; in
bioinformatics, one gene sequence may serve multiple functions [Elisseeff and Weston
2002]; in video annotation, an video can be tagged with multiple labels simultaneously
[Zha et al. 2009]. This setting is called multi-label classification, which corresponds to
the problem of classifying each instance with a set of labels. Multi-label classification
has been drawing increasing attention from the machine learning and data mining
communities in the past decade [Dembczyński et al. 2010a; Petterson and Caetano
2010; Zhang and Zhang 2010].

Conventional multi-label classification approaches focus on the single objective set-
ting, where the learning algorithm trains one model that optimizes over one single
objective. The objective can be a performance evaluation criterion (e.g., Hamming Loss
[Tsoumakas et al. 2010]) or a heuristic function (e.g., the posteriori principle in ML-KNN

[Zhang and Zhou 2007]). The basic assumption of single-objective multi-label classifi-
cation is that one single objective can evaluate the overall performance of a multi-label
classifier. Thus, the optimization over one single objective can comprehensively im-
prove the classifier’s performance. However, in multi-label classification, many criteria
are proposed to evaluate the classification performance from different perspectives,
and some criteria are inconsistent [Gao and Zhou 2011] or even conflict [Dembczyński
et al. 2010b]. Gao and Zhou [2011] prove that no convex surrogate loss is consistent
with the ranking loss. Dembczyński et al. [2010b] elaborate the connection among
these criteria and point out that some loss functions are essentially conflicting, such as
Hamming Loss [Tsoumakas et al. 2010] and Subset 0/1 Loss [Ghamrawi and McCallum
2005]. So the optimization over one single objective may not lead to the performance
improvement on the other objectives. For example, in a multi-label classification task
where the performances on Hamming Loss [Tsoumakas et al. 2010] and Micro F1
[Ghamrawi and McCallum 2005] are concerned, one may minimize Hamming Loss,
maximize Micro F1 (i.e., minimize 1 − Micro F1), or optimize both of them simulta-
neously. An example of results is shown in Figure 1. Due to the inconsistency existing
in these two objectives in some conditions, only optimizing over Hamming Loss may
lead to bad performance on Micro F1 (e.g., solution B), or vice versa (e.g., solution A).
However, it is obvious that solution C is better than A and B when we concern the
classification performances on both Hamming Loss and Micro F1. As a consequence, it
is necessary to simultaneously optimize over multiple objectives for multi-label classi-
fication in such conditions where the concerned objectives are inconsistent or potential
conflicting. This helps to balance the trade-off among these objectives and compre-
hensively improve performances of multi-label classification, not limiting to one single
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Fig. 2. Comparison of single- and multiple-objective multi-label classification.

criterion. In addition, the simultaneous optimization over multiple objectives is also
practically needed in many multi-label classification tasks [Tsoumakas et al. 2010].
For example, in a news-filtering application, users must be presented with those in-
teresting articles, but it is also important to only see the most interesting one. So the
performances of the multi-label classifier on One Error [Tsoumakas et al. 2010] and
Micro F1 [Ghamrawi and McCallum 2005] both need to be considered.

In conventional multi-label classification (i.e., single-objective multi-label classifica-
tion, as shown in Figure 2(a)), one single solution is usually returned to satisfy the
requirements of all users. However, it is often the case that users in different applica-
tion scenarios can have very different expectations on a multi-label classifier [Petterson
and Caetano 2010]. With multiple optimization objectives employed, there is usually
no single best solution for this multi-label classification task, but instead, a set of non-
dominated solutions that correspond to different trade-offs among those objectives so
that users can flexibly select appropriate solutions in items of their different applica-
tions. For example, in Figure 1, one can select A in a Hamming Loss-aware application,
or select C in a Hamming Loss and Micro F1 -aware application.

Formally, the multi-objective multi-label classification (as shown in Figure 2(b)) cor-
responds to simultaneously optimizing over multiple objectives and obtaining a set of
multi-label classification models. Despite its value and significance, the multi-objective
multi-label classification has not been studied in this context so far, due to the following
research challenges. (1) Most evaluation objectives in multi-label classification cannot
be directly optimized even in the single objective setting [Gao and Zhou 2011]. The
loss functions in multi-label classification are usually difficult to optimize directly be-
cause of non-convexity and discontinuity. Many multi-label classification approaches
work with surrogate loss functions, such as Ranking Loss [Tsoumakas et al. 2010] and
Hamming Loss [Tsoumakas et al. 2010]). (2) Multi-objective optimization is much more
difficult than single objective optimization. It is not easy to effectively trade-off mul-
tiple objectives in multi-label classification. Multi-objective optimization can be con-
verted into single objective optimization with the scalarization method (e.g., weighted
sum method [Furnkranz and Flach 2003]) and the trade-offs among objectives can be
exploited by tuning weights. However, it is hard to choose the weights in real appli-
cations and cannot discover the solutions in the concave Pareto front [Freitas 2006].
For example, the weighted sum method can find A and B in Figure 1, but it cannot
discover C.

In this article, we study the problem of multi-objective multi-label classification and
propose a novel solution, called MOML (multi-objective-based multi-label algorithm).
Different from conventional multi-label classification approaches, the proposed
MOML can simultaneously optimize over multiple objectives based on evolutionary
multi-objective optimization (EMO). EMO has unique properties to effectively solve
these challenges. (1) EMO does not require the optimization objectives to be differ-
entiable, and thus any evaluation metric in multi-label classification can be used as
optimization objectives in our MOML. (2) It can automatically balance the trade-offs
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among multiple objectives with population optimization. Due to multiple optimization
objectives, MOML returns a set of classification models with different preferences on
these objectives, so we propose two model selection strategies to make full use of
these models and make predictions on the testing data. And thus, users can flexibly
apply these model selection strategies in different applications. Experiments on seven
real-world multi-label classification tasks justify the effectiveness of our MOML with
nine popular performance evaluation criteria. Results show that MOML can compre-
hensively boost the multi-label classification performance on most of the performance
criteria. Moreover, in comparison experiments of model selection strategies, MOML can
effectively adapt to the user’s preferences in different applications by achieving better
performances on the preferred objectives.

2. RELATED WORK

Multi-label classification has been well developed in the past decade. There are two
basic ways to solve this problem: problem transformation and algorithm adaptation.
In problem transformation, a multi-label problem is transformed into multiple single-
label problems. For each single-label problem, a single-label classifier is learnt, and
then these single-label classifiers are combined for the original multi-label problem.
Many base learners have been employed in problem transformation approaches, such
as Support Vector Machines [Godbole and Sarawagi 2004], Naive Bayes [Ji et al. 2008],
and k-Nearest-Neighbor methods [Zhang and Zhou 2007]. In algorithm adaptation, it
modifies specific learning algorithms to solve multi-label data directly. The represen-
tative approaches involve decision trees [Vens et al. 2008], AdaBoost [Schapire and
Singer 2000], and BP-MLL [Zhang and Zhou 2006]. These algorithms usually optimize
only one evaluation metric explicitly or implicitly, whereas our MOML explicitly opti-
mizes multiple objectives at the same time.

Since ensemble learning can effectively improve learners’ generalization perfor-
mances, it has been widely applied in multi-label learning to build a set of base learn-
ers [Read et al. 2008, 2009; Shi et al. 2011; Tsoumakas et al. 2008; Tsoumakas and
Vlahavas 2007]. For example, RAKEL [Tsoumakas and Vlahavas 2007] trains each
single-label base learner for the prediction of each element in the powerset of the
label set, and the single-label base learner in EPS [Read et al. 2008] is built for a
pruning label subset. Similar to these approaches, MOML also employs the ensemble
method in the model selection phase, whereas MOML generates the solution set through
evolutionary multi-objective optimization. Recently, some researches began to be
aware of conflict existing in measure criteria [Dembczyński et al. 2010b; Petterson
and Caetano 2010; Xu and Xu 2010]. Petterson and Caetano [2010] point out the
evaluation measures are as diverse as the applications. However, their method still
optimizes a single criterion by appropriate surrogate. Different from ML-2OKM [Xu
and Xu 2010] which also optimizes two particular objectives with an existing EMO,
MOML’s optimization objectives can be any evaluation metrics and its base model is a
multi-label classifier. Dembczyński et al. [2010b] analyze the connection between loss
functions in multi-label classification, which helps to select appropriate optimization
objectives in MOML. In addition, there is an increasing attention on the consistency of
multi-label learning [Gao and Zhou 2011; Kotlowski et al. 2011; Dembczyński et al.
2012]. Since multi-label loss functions are usually difficult to optimize directly owing to
non-convexity and discontinuity, the surrogate loss functions are widely used in multi-
label classification. However, Gao and Zhou [2011] find that no convex surrogate loss
is consistent with the ranking loss. Then Dembczyński et al. [2012] prove that com-
mon convex surrogates used for binary classification are consistent for the minimiza-
tion of rank loss. These theoretical analysis further disclose the inconsistency among
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surrogate loss functions, which implies the importance of multi-objective multi-label
classification.

Multi-objective optimization is the process of simultaneously optimizing two or more
conflicting objectives subject to certain constraints, which is widely existing in many
fields (e.g., decision and optimization). Many methods have been proposed to solve this
problem (e.g., weighted sum method [Furnkranz and Flach 2003]), among which evo-
lutionary algorithm [Goldberg 1989] has been proven to be an effective solution. This
kind of solutions is also called EMO technique [Deb 2001]. EMO simultaneously opti-
mizes multiple objectives through population evolution, in which individuals reproduce
through evolutionary operation (e.g., crossover and mutation) and obey the Darwinian
evolution: survival of the fittest. Traditional EMO focuses on numerical optimization
problems [Deb et al. 2002]. However, EMO begins to be applied in data mining
problems in recent years [Freitas 2006], such as data clustering [Handle and Knowles
2007] and click prediction [Agarwal et al. 2011]. Shi et al. [2011] use EMO to generate a
set of classifiers, while their work focuses on the ensemble of classifiers. Chen and Yao
[2010] employ the multi-objective neural network ensemble to improve classification
performances, whereas it focuses on the single-label classification problem.

3. PROBLEM DEFINITION

Let χ = Rd be the d-dimensional input space and L = {1, 2, . . . , L} be the finite set of L
possible classes. Given a multi-label training set D = {(xi, Yi)|1 ≤ i ≤ m}, where xi ∈ χ
is an instance and Yi ⊆ L is the label set associated with xi. The task of multi-label
learning is to learn a multi-label classifier h : χ → 2L from D, which predicts a set of
labels for each unseen instance.

Conventional multi-label classification approaches can be roughly classified into two
categories: (1) one type of approach trains one single model by explicitly or implicitly
optimizing a performance criterion. For example, ML-RBF [Zhang 2009] explicitly op-
timizes the Hamming Loss, while Ranking Loss is optimized in BP-MLL [Zhang and
Zhou 2006] and RANK-SVM [Elisseeff and Weston 2002]. (2) The second type of approach
does not explicitly optimize those performance criteria, but implicitly optimizes one
single heuristic function which is not directly related to any performance criteria. For
example, ECC [Read et al. 2009] and LEAD [Zhang and Zhang 2010] optimize the gen-
eralization risk for multi-label predictions by encoding label correlations, and ML-KNN

[Zhang and Zhou 2007] maximizes the posteriori principle in multi-label learning. In
both types of approaches, the multi-label learning is regarded as a single objective
optimization problem (SOP), which can be defined as follows.

Definition 1. Single objective multi-label classification. It determines a model M∗
through optimizing one single objective function.

minimize O1(M)
s.t. M ∈ �.

(1)

� is the set of feasible models, M is a predictive model in �. O1 : � → R is an objective
function, which can be a performance criterion (e.g., metrics in Section 5.1.2) or any
other implicit heuristic function. Without loss of generality, we assume O1 is to be
minimized. Most of conventional algorithms are based on solving this SOP. Different
algorithms may vary in the objective function O1 and optimization techniques.

This article first formulates multi-label learning as a multi-objective optimization
problem (MOP) [Deb 2001], which can be defined as follows.
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Definition 2. Multi-objective multi-label classification. It determines models M∗
through simultaneously optimizing multiple objective functions.

minimize O(M) = (O1(M), O2(M), . . . , Ot(M))
s.t. M ∈ �.

(2)

t is the number of objectives, and Oi represents the ith objective.
For the MOP, each objective corresponds to an optimal solution. We have to incorpo-

rate the different trade-offs among the multiple objectives. One fundamental difference
between SOP and MOP is that, for a MOP, we can find a set of optimal solutions where
no single solution can be said to be better than any other. Solving a MOP often im-
plies to search for the set of optimal solutions as opposed to one single solution for a
SOP. Here, we define the concept of domination relation to compare the performance
of multi-label classification models, similar to Deb [2001].

Definition 3. Domination. For two models M1,M2 ∈ �, M1 dominates M2 (denoted
as M1 � M2) if and only if

∀ i ∈ {1, . . . , t} Oi(M1) ≤ Oi(M2) ∧ ∃ i ∈ {1, . . . , t} Oi(M1) < Oi(M2). (3)

Similarly, if M1 � M2 and M2 � M1, M1 is non-dominated with M2. A model M ∈ �
is said to be Pareto optimal [Deb 2001] if and only if M is not dominated by any other
model in �. The set of all Pareto-optimal models is called the Pareto-optimal set, or
Pareto front. An example is shown in Figure 1. Model C dominates the model D, and C
is non-dominated with A and B. A, B, and C are the Pareto-optimal set or Pareto front.

4. THE MOML ALGORITHM

In order to solve the multi-objective multi-label classification problem, a simple ap-
proach is to convert multiple objectives into a single objective by using certain schemes
and user-specified parameters, such as the weighted sum method [Furnkranz and
Flach 2003]. However, this method cannot be directly applied to multi-label classifica-
tion problem, since many objectives may not be easily optimized even in SOP setting
and the parameter settings are very difficult for these methods. Here we apply EMO
to solve the multi-objective multi-label classification problem. Although EMO has been
successfully applied in many numeric optimization problems and some data mining
problems, it is seldom applied in classification. The reason lies in these two difficulties:
(1) the classifier model is difficult to be effectively encoded in evolutionary algorithm;
(2) it is far more difficult to trade off the self-learning of classifiers and information
exchange among classifiers in EMO.

This article, proposes a method based on EMO to solve the multi-objective multi-
label classification problem. The method is called multi-objective multi-label algorithm
(MOML) which includes two phases: model training and selection. Briefly, MOML designs
an effective multi-objective optimization mechanism and a novel method of generating
new solutions based on a modified ml-RBF base model in the model training phase. In
the model selection phase, two model selection strategies are proposed to help users
flexibly select their preferred models in terms of their application scenarios.

4.1. Model Training

A good EMO algorithm needs to generate a set of solutions that uniformly distribute
along the Pareto front [Veldhuizen and Lamont 2000], which includes two key issues:
(1) solutions prone to converge to the Pareto front and maintain diversity in the evolu-
tionary process; (2) generating promising solutions in each generation. In order to make
EMO fit for multi-label learning, we design many novel mechanisms in the following
two sections.
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Fig. 3. Illustration of non-dominated-sort and diversity-estimate.

4.1.1. Multi-Objective Optimization Mechanism. Since a good solution is expected to con-
verge to the Pareto front and maintain diversity, the fitness of the solution can be
determined by its convergence and diversity. We apply the non-dominated-sort and
diversity-estimate process to effectively evaluate these two measures. Furthermore,
the proposed select-individuals process selects the best solutions as the next genera-
tion population in terms of these measures.

Non-dominated-sort. The non-dominated-sort process sorts solutions according to
their raw fitness (i.e., objective value Oi). The different value range of objectives (e.g.,
Coverage >1 and HammingLoss <1) may lead to the situation that some base models
reproduce too rapidly. Instead of the raw fitness, this article employs the rank-based
fitness assignment [Goldberg 1989] to reassign the fitness (i.e., a rank value) to the
solutions, because this method behaves in a more robust manner. In the rank-based
fitness assignment, the solution set is divided into different fronts with different ranks.
The solutions in the same front are non-dominated to each other and solutions in the
higher front are always dominated by some solutions in the lower front. Figure 3
shows an example that 12 solutions are divided into three fronts according to their
domination relations. In this way, each solution (i.e., model) Mi in a front Fa has a
rank value Mrank

i = a. It is evident that solution Mi is better than solution M j when
Mrank

i < Mrank
j . For example, the solutions in F1 are better than those in F2. Note that

the minimization problem is considered in this article.

Diversity-estimate. Along with convergence to the Pareto front, it is also desired that
an evolutionary algorithm maintains a good spread of solutions. So the solution in the
crowded region is more likely to be deleted. To get a diversity estimate of solutions
surrounding a particular solution in the population, we design the diversity-estimate
process that calculates the average Euclidean distance of two solutions on either side of
this solution along each of objectives. It is simple and effective to estimate the diversity
of solutions. The diversity estimation of solution Mi, Mdistance

i , serves as the perimeter
of the cuboid formed by using the nearest neighbors as the vertices. As shown in
Figure 3, the diversity of this ith solution in its front is the average side length of
the cuboid. The small Mdistance

i means solution Mi is in a more crowded region, which
implies a bad diversity.

Select-individuals. Every solution Mi in the population has two feature values:
(1) non-domination rank Mrank

i ; (2) diversity estimation Mdistance
i . We define a partial

order ≺ to compare two solutions, which comprehensively considers both of features.
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Fig. 4. (a) Architecture of ml-RBF and its genetic representation. (b) The crossover operation. The crossover
point j is selected between two prototype vectors.

Definition 4. Partial Order ≺. For two solutions Mi and M j , Mi ≺ M j , if and only
if

Mrank
i < Mrank

j ∨ (
Mrank

i = Mrank
j ∧ Mdistance

i > Mdistance
j

)
(4)

That is, between two solutions with different non-domination ranks, we prefer the so-
lution with the lower rank. Otherwise, if both solutions belong to the same front, then
we prefer the solution that is located in a less crowded region. After sorting the pop-
ulation with ≺, the select-individuals process selects top solutions, which guarantees
that good solutions (with low rank and high diversity) will be kept. In the meantime,
those promising solutions are also likely to be contained in the population.

4.1.2. Base Model and Evolutionary Operations. In the framework of MOML, many classi-
fication models can be used, such as decision tree [Schietgat et al. 2010], Back Propa-
gation (BP) [Zhang and Zhou 2006], and Radical Basis Function (RBF) [Zhang 2009]
neural network. Different base models will lead to different genetic representation and
operation. Because the structure can be effectively encoded and the weights can be ef-
ficiently calculated in close form, the ml-RBF neural network in ML-RBF [Zhang 2009]
is selected as the base model in MOML, however with an additional regularization term
added to reduce overfitting risks as explained later.

The architecture of ml-RBF is shown in Figure 4(a). It can be briefly summarized as
follows: (1) the input of a ml-RBF corresponds to a d-dimension feature vector. (2) The
hidden layer of ml-RBF is composed of L sets of prototype vectors, that is,

⋃L
l=1 Cl. Here,

Cl consists of kl prototype vectors <cl
1, cl

2, . . . , cl
kl
>. For each class l ∈ L, the popular

k-means clustering is performed on the set of instances Ul with label l. Thereafter, kl
clustered groups are formed for class l and the jth centroid (1 ≤ j ≤ kl) is regarded
as a prototype vector cl

j of basis function φl
j(·). (3) Each output neuron is related to a

possible class. In the hidden layer of ml-RBF, the number of clusters kl is settled to be
a fraction α of the number of instances in Ul:

kl = α × |Ul|. (5)

The scale coefficient α controls the structure and complexity of ml-RBF model.
Different from the error function in the original ml-RBF, we add a regularization

term into the error function. The regularization term greatly reduces the overfitting
risk and improves the stability of solutions as observed in the experiments.

E = 1
2

m∑

i=1

L∑

l=1

(
yl(xi) − ti

l

)2 + γ

K∑

j=0

L∑

l=1

w2
jl, (6)
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where yl(xi) represents the predicted value of instance xi on label l, ti
l is the real value

of instance i on label l, K = ∑L
l=1 kl, and γ is the regularization coefficient. Similar to

the derivation of minimizing the error function by scaled-conjugate-gradient descent
in Chen and Yao [2010], the optimal output weights W can be computed in closed form
by

W = (�′� + γ I)−1�′T . (7)

Here � = [φi j]m×(K+1) with elements φi j = φ j(xi), W = [w jl](K+1)×L with elements w jl,
and T = [til]m×L with elements til = ti

l . Through extensive experiments, the regulariza-
tion coefficient γ is fixed at 0.1 in this article.

Genetic representation. According to the structure of ml-RBF, we propose a novel
genetic representation that is the sequence of prototypes <bias, c1

1, c2
1, . . . cL

kL
>. An ex-

ample is shown in Figure 4(a). The genetic representation has the following advantages.
(1) When the prototypes (c) are determined, the basis functions (φ) and the weights
(W) can be efficiently computed, which means the performance of RBF mostly depends
on the selection of the prototypes. (2) It is easy to design the crossover and mutation
operators by tuning these prototypes.

Initialization. When the base model is ml-RBF, the initialization operation of MOML

generates a set of ml-RBF models with different scale coefficient α. As suggested in
Zhang [2009], α is randomly selected from [0.01, 0.02] in the experiments. An advantage
of this Initialization operation is that it generates a set of ml-RBF models with different
structures, which contributes to the population diversity.

Generate-individuals. Generating new solutions is realized by the generate-
individuals process. The basic idea is to randomly select parent solutions from the cur-
rent population based on the roulette wheel selection [Baker 1985] and do crossover and
mutation operation to generate new solutions with the ratio of cro Rat and 1−cro Rat,
respectively. In this article, cro Rat is fixed at 0.8, which helps to converge to the
Pareto front and maintain the appropriate diversity of the population. MOML applies
the roulette wheel selection [Baker 1985] to assign each solution with an appropriate
selection pressure. That is, the solutions in the lower front have a higher selection
probability. It guarantees that the better solution has a high yet appropriate selection
probability.

Since different ml-RBFs may have different numbers of prototypes, We adapt the cut
and splice crossover [Goldberg et al. 1993] which randomly chooses a crossover point
for two ml-RBFs and swaps their prototypes beyond this point. Different from the
traditional cut and splice crossover, the crossover point in MOML is randomly selected
between two prototype vectors, rather than in an arbitrary position. Figure 4(b) shows
such an example, in which the crossover point j is selected between the prototype
vector <ci

1, . . . , ci
ai
> and <ci+1

1 , . . . , ci+1
ai+1

>. It guarantees that each prototype vector in
the newly generated ml-RBF is unabridged cluster centroid. The width of the centroid
of the new ml-RBF is recalculated as in Zhang [2009]. The weights are calculated
following Equation (7).

According to the structure of ml-RBF, two mutation operations are designed. The
mutation operator randomly selects some prototype vectors in a ml-RBF and does
the following two structural mutation operations with the same probability. (1) Delete
one prototype. Randomly select one prototype and delete it. (2) Add one prototype. The
center of the new prototype is determined by a random combination of all centroids in
this prototype vector.
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ALGORITHM 1: MOML-Training
Input: D: training data; M: base model; N: # base models; G: # generations
Output: model set P
procedure TRAINING

Randomly generate P = {M1,M2, . . . ,MN}
for t = 1 : G do

Q=generate-individuals(P)
R = P

⋃
Q

F = (F1,F2, . . .)=non-dominated-sort(R)
diversity-estimate(F)
P=select-individuals(F)

end for
return P

end procedure

Although the crossover and mutation operations may not generate the optimal combi-
nation of prototypes, they provide an effective method to search the prototypes space of
ml-RBF. The crossover operator reassembles the prototypes of parent solutions, which
not only maintains the good genes but also generates new combinations. The mutation
operator deletes and adds new prototypes, which helps to extend the search space and
maintain diversity. Once a good solution is found in the space of prototypes, it will be
kept in population until it becomes a bad one.

4.1.3. Algorithm Framework. The training phase of MOML is described in Algorithm 1.
MOML transforms the t optimization objectives to a fitness measure by the creation of
a number of fronts, sorted according to non-dominated-sort. After the fronts have been
created, diversity-estimate assigns its members density value later to be used for diver-
sity maintenance. In each generation, N new solutions are generated with generate-
individuals. Of the 2N solutions, select-individuals selects the N best solutions for the
next generation. In this way, a huge elite can be kept from generation to generation.

In MOML, the multi-objective optimization mechanism guides the solutions to con-
verge to Pareto front and maintain the diversity. The genetic operations effectively
search the prototypes space of ml-RBF and generate promising solutions. A particular
advantage of MOML is that any function can be used as the optimized objective, only if
the function can be calculated, without the requirement of being differentiable.

4.2. Model Selection

The model training phase of MOML returns a solution set, which is a unique feature
of the multi-objective multi-label classification. The user can make full use of these
solutions in terms of their applications. For example, users can select one good model
according to some criteria, such as AUPRC [Vens et al. 2008]. Here we design two
strategies to select a set of prediction models according to users’ preferences.

The dynamic model selection strategy (called DYN) selects the top-k models on the
preference objective and then makes predictions with a majority vote. Assume that
instances are independently and identically distributed, these selected models will
also perform well on the corresponding objective on the testing data. This dynamic
model selection strategy not only can flexibly select the preferred models in terms
of users’ applications but also can improve the generalization performances with en-
semble learning. Note that the preference objective may be or not be the optimization
objects. As we know, the model training process is expensive and is not often done.
The optimization objectives are usually fixed ahead of time. In different applications,
users have diverse preference on performances, so they can flexibly determine their
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ALGORITHM 2: MOML-Testing-DYN
Input: U : testing data; O: preference objective; P: model set; k: # top models
Output: label set Y
procedure TESTING

Sort P in an ascending order by O
Select top-k models {M1, . . . ,Mk} from P
for x ∈ U do

Y (x) = {l| 1
k

∑k
i=1 Mi(x, l) > 0, l ∈ L}

end for
end procedure

ALGORITHM 3: MOML-Testing-EN
Input: U : testing data; P: model set; N: # models
Output: label set Y
procedure TESTING

for x ∈ U do
Y (x) = {l| 1

N

∑N
i=1 Mi(x, l) > 0,Mi ∈ P, l ∈ L}

end for
end procedure

preference objectives. Since the prediction process is fast, it can be done online accord-
ing to different user preferences. The DYN strategy is shown in Algorithm 2, in which
Mi(x, l) means the output of model Mi on label l for instance x.

The ensemble model selection strategy (called EN) combines all models and then
makes predictions with a majority vote, which can be seen in Algorithm 3. On the one
hand, this strategy can be used for users without obvious preferences. The EN strategy
ensembles all models, so it may have no preference on a certain objective. On the other
hand, it is promising to uniformly promote the performances on all criteria, since the
ensemble learning is employed.

4.3. Complexity Analysis

Let d be the number of features of instances, m and n be the number of training
and testing instances respectively, L be the number of labels. We consider the time
complexity of ml-RBF first. Two main time-consuming components of ml-RBF are the
k-means clustering and calculating � = [φi j]m×(K+1) for all training instances. For
simplicity, suppose each label has the same number of instances m

L , and thus the
number of centroid is α m

L . The complexity of a k-means clustering is O(α( m
L )2) (the

iteration number in k-means is fixed, so it is omitted here). L k-means clustering are
needed, so the total complexity is O(αm2/L). φi j needs to calculate the distance to each
prototype vector c j for each instance xi, and thus its complexity is O(αdm2). In all, the
ml-RBF has the following complexity:

O(αm2/L + αdm2). (8)

For MOML, it needs to generate N ml-RBFs and evaluate NG new ml-RBFs. The
complexity of MOML in ml-RBF is O(αNm2/L+αNGdm2). The complexity of the genetic
operation in MOML is O(GN2). Since N � m, the total time complexity of MOML in the
training phase is

O(αNm2/L + αNGdm2). (9)
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Table I. Summary of the Experimental Datasets

Dataset
Property Yeast Image RCV1-1 RCV1-2 RCV1-3 RCV1-4 RCV1-5
# instances 2,417 2,000 3,000 3,000 3,000 3,000 3,000
# features 103 294 472 472 472 472 472
# labels 14 5 101 101 101 101 101
Domain biology media text text text text text

There are k models to make predictions on the testing data (k is N for the EN strategy),
so the time complexity of the testing phase is

O(αkdn2). (10)

Since k � NG, the testing phase is much faster than the training phase.

5. EXPERIMENTS

5.1. Experimental Setup

5.1.1. Data Collection. We tested our algorithm on seven real-world multi-label datasets
from three different domain, as summarized in Table I. The first dataset is Yeast [Read
et al. 2009; Zhang 2009; Zhang and Zhang 2010; Zhang and Zhou 2006] in biology,
where the task is to predict the gene functional classes of the Yeast Saccharomyces
cerevisiae. The second dataset Image [Read et al. 2009; Zhang 2009; Zhang and Zhang
2010; Zhang and Zhou 2006] involves the task of automatic image annotation for scene
images. The other five datasets RCV1-1–RCV1-5 are the subsets of RCV1 [Yang et al.
2009; Zhang and Zhang 2010], where the task is to predict topic categories of each text
document. These five datasets have different multi-label distributions, such as label
cardinality and density [Zhang and Zhang 2010].

5.1.2. Evaluation Metrics. The performance evaluation for multi-label learning is much
more complicated than single-label problems. Here, we adopt nine state-of-the-art
multi-label evaluation metrics which are most popular in the literature. To the best of
our knowledge, few works on multi-label learning have conducted experimental eval-
uation on such comprehensive comparisons over the nine metrics. These metrics are
briefly summarized in Table II, where “↓” indicates the smaller the value, the better the
performance; “↑” indicates the larger the value, the better the performance. Assume
we have a multi-label dataset U containing n multi-label instances (xi, yi), where yi ∈
{0, 1}L(i = 1, . . . , n). Let h(xi) denote a multi-label classifier’s predicted label set for xi.

5.1.3. Compared Methods. We compare our method with four baseline methods which
optimize over different single objectives. In MOML, any subset of metrics listed here
can be used as the optimization objectives. Here, we employ two pairs representa-
tive subsets of evaluation metrics, that is, {HL, RL} and {MicF1, AP}. The {HL, RL}
objective subset includes two popular objectives that have already been directly opti-
mized in previous single objective approaches [Elisseeff and Weston 2002; Zhang 2009;
Zhang and Zhou 2006]. The {MicF1, AP} objective subset includes two most useful
performance criteria which are not often been directly optimized before. In addition,
these two pairs of objectives are potentially conflicting. Here the DYN model selection
strategy is employed. These compared methods are summarized as follows.

—MOML{HL,RL}. The proposed MOML approach with the first objective subset ({HL, RL}),
which outputs a set of models with different preferences on each objective. In order
to verify the quality of the outputted solution set, we report two versions of the DYN
model selection based on the top k models in terms of HL and RL, respectively. The
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corresponding algorithms are called MOML{HL,RL} and MOML{HL,RL}. These two com-
bined models correspond to the two application preferences over the two optimization
objectives.

—MOML{MicF1,AP}. The proposed MOML approach with the second objective subset
{MicF1, AP}. Similarly, we report two versions of the DYN model selection in terms
of MicF1 and AP and the corresponding algorithms are called MOML{MicF1,AP} and
MOML{MicF1,AP}, respectively. Note that, in order to be fit for the minimization prob-
lem, 1 − MicF1 and 1 − AP are used in MOML.

—ML-RBF [Zhang 2009]. Based on ml-RBF neural network, the method explicitly opti-
mizes the HL criterion.

—BP-MLL [Zhang and Zhou 2006]. This method is based on BP neural network, which
explicitly optimizes the RL criterion.

—ML-KNN [Zhang and Zhou 2007]. The KNN based lazy multi-label learning method
optimizes a posterior principle which is not directly related to any single performance
criterion.

—ECC [Read et al. 2009]. It is an ensemble of classifier chains which encode the multi-
label correlations in the multi-label classification process.

The population size and running generation of MOML are set as 30 and 10. k is 9
(i.e., 30% of the population size) in the top-k model selection. ML-RBF is implemented
with fixed parameters of α = 0.01 and μ = 1.0, as suggested in the literature [Zhang
2009]. For BP-MLL, as indicated in the literature [Zhang and Zhou 2006], the number
of hidden neurons is set to be 20% of the number of input neurons, and the number of
training epochs is fixed at 100 with learning rate of 0.05. For ML-KNN, the number of
nearest neighbors considered is set to 10 and Euclidean distance is used as the distance
measure [Zhang and Zhou 2007]. For ECC, the ensemble size is set to 10 and sampling
ratio is set to 67% [Read et al. 2009].

5.2. Performance Comparison

Ten-fold cross-validation is performed on each experimental dataset. On each dataset,
we report the average values of each algorithm with the ranks based on its results. All
experiments are conducted on machines with Intel Xeon Quad-Core CPUs of 2.26GHz
and 24GB RAM.

Due to the limited space, we only show the results of the average values of nine
metrics on Yeast, Image and RCV1-1 in Tables III–V, where ‘*’ indicates the best
result on each criterion and ‘ ’ indicates the performance of MOML on its preference
objective. The other four datasets on RCV1 have similar results with RCV1-1. From
these tables, we can observe that the four versions of the MOML method rank among the
first four on most metrics and they always have the best average ranks on each dataset.
Furthermore, Table VI summarizes the mean and standard deviation of the rank values
for each method over nine metrics on all seven datasets. To statistically measure the
significance of performance improvement, pairwise t-test at 5% significance level are
conducted between MOML and other compared algorithms for each dataset. Here the
MOML’s performances are the average performances of four versions of MOML. Table VII
illustrates the number of win/tie/loss of MOML against other compared algorithms
on all seven datasets. The results indicate that, although MOML only optimizes two
objectives, the performances of MOML are significantly better than the baselines on
most metrics. Moreover, Table VI shows that each variant of the four MOML algorithms
does provide the best average rank on its primary objective, such as MOML{HL,RL} on
HL, MOML{HL,RL} on RL, etc. Other methods may occasionally outperform our approach
on some of the metrics in a few of the datasets, but not consistently. These results
validate our intuition that the multi-objective optimization in our MOML can effectively
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Table III. Results of Different Algorithms on the Yeast Dataset

Methods
Criteria MOML{HL,RL} MOML{HL,RL} MOML{MicF1,AP} MOML{MicF1,AP} ML-RBF BP-MLL ML-KNN ECC

HL ↓ 0.1883 (1)* 0.1887 (3) 0.1885 (2) 0.1889 (4) 0.1935 (5) 0.2120 (8) 0.1949 (6) 0.2056 (7)
RL ↓ 0.1596 (2) 0.1595 (1)* 0.1600 (3) 0.1603 (4) 0.1621 (5) 0.1723 (7) 0.1669 (6) 0.2776 (8)
SL ↓ 0.8051 (5) 0.8039 (3) 0.7997 (2) 0.8047 (4) 0.8163 (6) 0.8519 (8) 0.8167 (7) 0.7968 (1)*
OE ↓ 0.2197 (6) 0.2172 (2) 0.2193 (5) 0.2180 (3) 0.2189 (4) 0.2308 (8) 0.2304 (7) 0.1742 (1)*
Cov ↓ 6.2027 (3) 6.2122 (4) 6.1868 (2) 6.1861 (1)* 6.2465 (5) 6.3562 (7) 6.2647 (6) 7.1431 (8)
MicF1 ↑ 0.6572 (3) 0.6562 (5) 0.6576 (1)* 0.6569 (4) 0.6486 (6) 0.6468 (7) 0.6398 (8) 0.6574 (2)
AP ↑ 0.7752 (4) 0.7753 (3) 0.7756 (2) 0.7759 (1)* 0.7720 (5) 0.7534 (7) 0.7650 (6) 0.7313 (8)
Acc ↑ 0.5267 (2) 0.5248 (5) 0.5261 (3) 0.5257 (4) 0.5170 (7) 0.5185 (6) 0.5087 (8) 0.5404 (1)*
MacF1 ↑ 0.3888 (3) 0.3871 (4) 0.3889 (2) 0.3897 (1)* 0.3668 (6) 0.3457 (8) 0.3737 (5) 0.3647 (7)
AveRank↓ (3.22) (3.33) (2.44) (2.89) (5.44) (7.33) (6.56) (4.78)

Note: The results are reported as “average performance + (rank)”, where “↓” indicates that the smaller the
value, the better the performance; “↑” indicates the larger the better.

Table IV. Results of Different Algorithms on the Image Dataset

Methods
Criteria MOML{HL,RL} MOML{HL,RL} MOML{MicF1,AP} MOML{MicF1,AP} ML-RBF BP-MLL ML-KNN ECC

HL ↓ 0.1581 (1)* 0.1591 (4) 0.1589 (3) 0.1583 (2) 0.1653 (5) 0.2559 (8) 0.1703 (6) 0.1786 (7)
RL ↓ 0.1468 (2) 0.1454 (1)* 0.1476 (3) 0.1479 (4) 0.1558 (5) 0.3532 (8) 0.1708 (6) 0.2411 (7)
SL ↓ 0.5695 (2) 0.5750 (4) 0.5765 (6) 0.5745 (3) 0.6020 (7) 0.7890 (8) 0.5755 (5) 0.5385 (1)*
OE ↓ 0.2695 (4) 0.2655 (2) 0.2680 (3) 0.2650 (1)* 0.2860 (5) 0.5700 (8) 0.3150 (7) 0.2935 (6)
Cov ↓ 0.8615 (3) 0.8610 (2) 0.8650 (4) 0.8570 (1)* 0.8955 (5) 1.6790 (8) 0.9500 (6) 0.9715 (7)
MicF1 ↑ 0.6062 (3) 0.6038 (5) 0.6067 (2) 0.6052 (4) 0.5798 (7) 0.3524 (8) 0.5925 (6) 0.6380 (1)*
AP ↑ 0.8223 (3) 0.8232 (2) 0.8219 (4) 0.8241 (1)* 0.8118 (5) 0.6139 (8) 0.7967 (7) 0.7977 (6)
Acc ↑ 0.5126 (2) 0.5083 (6) 0.5084 (5) 0.5096 (4) 0.4778 (7) 0.2769 (8) 0.5097 (3) 0.5985 (1)*
MacF1 ↑ 0.6065 (2) 0.6033 (5) 0.6048 (4) 0.6054 (3) 0.5773 (7) 0.2687 (8) 0.5936 (6) 0.6441 (1)*
AveRank ↓ (2.44) (3.44) (3.78) (2.56) (5.89) (8.00) (5.56) (4.33)

Note: The results are reported as “average performance + (rank)”, where “↓” indicates that the smaller the
value, the better the performance; “↑” indicates the larger the better.

Table V. Results of Different Algorithms on the RCV1-1 Dataset

Methods
Criteria MOML{HL,RL} MOML{HL,RL} MOML{MicF1,AP} MOML{MicF1,AP} ML-RBF BP-MLL ML-KNN ECC

HL ↓ 0.0147 (1)* 0.0149 (3) 0.0148 (2) 0.0150 (4) 0.0165 (5) 0.0320 (8) 0.0222 (7) 0.0214 (6)
RL ↓ 0.0180 (1)* 0.0181 (2) 0.0183 (4) 0.0182 (3) 0.0196 (5) 0.0826 (7) 0.0684 (6) 0.2506 (8)
SL ↓ 0.6423 (4) 0.6410 (2) 0.6373 (1)* 0.6411 (3) 0.6873 (6) 1.0000 (8) 0.7770 (7) 0.6673 (5)
OE ↓ 0.0647 (3) 0.0650 (4) 0.0640 (2) 0.0637 (1)* 0.0743 (5) 0.5340 (8) 0.2850 (7) 0.1033 (6)
Cov ↓ 6.7567(1)* 6.7630 (2) 6.7893 (3) 6.7993 (4) 6.9390 (5) 20.597 (7) 17.523 (6) 35.973 (8)
MicF1 ↑ 0.7097 (2) 0.7082 (3) 0.7098 (1)* 0.7081 (4) 0.6774 (5) 0.4177 (8) 0.5421 (7) 0.6483 (6)
AP ↑ 0.8620 (4) 0.8629 (1)* 0.8624 (3) 0.8628 (2) 0.8443 (5) 0.4717 (8) 0.6666 (7) 0.6990 (6)
Acc ↑ 0.6070 (2) 0.6063 (3) 0.6079 (1)* 0.6058 (4) 0.5689 (6) 0.2655 (8) 0.4113 (7) 0.5820 (5)
MacF1 ↑ 0.2546 (2) 0.2537 (4) 0.2553 (1)* 0.2543 (3) 0.2203 (5) 0.0539 (8) 0.1960 (7) 0.2177 (6)
AveRank ↓ (2.22) (2.67) (2.00) (3.11) (5.22) (7.78) (6.78) (6.22)

Note: The results are reported as “average performance + (rank)”, where “↓” indicates that the smaller the
value, the better the performance; “↑” indicates the larger the better.

tradeoff among multiple objectives and avoid the local optimal to improve the overall
performance almost on all metrics.

Table VIII shows the average running time. We only show one result of four versions
of MOML, since the four versions have the same time complexity. Although MOML is
slower than ML-RBF, ML-KNN and ECC, it is still faster than BP-MLL in the training
phase. In the testing phase, MOML is faster than BP-MLL and ECC.
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Table VI. The Average Ranks (mean±std) for Each Method over 7 Datasets

Methods
Criteria MOML{HL,RL} MOML{HL,RL} MOML{MicF1,AP} MOML{MicF1,AP} ML-RBF BP-MLL ML-KNN ECC

HL 1.14±0.38* 3.14±0.38 2.00±0.58 3.71±0.76 5.00±0.00 8.00±0.00 6.71±0.49 6.29±0.49
RL 1.71±0.49 1.29±0.49* 3.57±0.53 3.43±0.53 5.00±0.00 7.14±0.38 6.00±0.00 7.86±0.38
SL 3.43±1.40 2.43±0.98 2.14±1.77* 3.29±0.49 6.14±0.38 8.00±0.00 6.71±0.76 3.86±1.95
OE 3.57±1.13 3.43±0.98 2.57±1.13 1.29±0.76* 4.86±0.38 8.00±0.00 6.86±0.38 5.43±1.99
Cov 2.00±1.29* 2.29±0.76 3.00±0.58 2.71±1.60 5.00±0.00 7.14±0.38 6.00±0.00 7.86±0.38
MicF1 2.14±0.38 3.57±0.98 1.29±0.49* 4.00±0.67 5.43±0.79 7.86±0.38 7.00±0.58 4.71±2.21
AP 3.86±0.38 1.86±0.69 2.86±0.69 1.43±0.79* 5.00±0.00 7.57±0.53 6.43±0.53 7.00±1.00
Acc 2.00±1.32 3.71±1.25 1.86±1.57* 4.00±0.58 6.29±0.49 7.71±0.76 6.57±1.62 3.86±1.95
MacF1 2.14±0.69 4.14±0.38 1.57±1.13* 2.71±0.76 5.71±0.76 8.00±0.00 6.57±0.79 5.14±1.95

Table VII. The Win/Tie/Loss Results for MOML against the Compared Algorithms Based on Pairwise t-test
at 5% Significance Level on Seven Datasets in Terms of Different Evaluation Metrics

MOML against Criteria
compared methods HL RL SL OE Cov MicF1 AP Acc MacF1 In Total

ML-RBF 7/0/0 7/0/0 7/0/0 6/1/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 62/1/0
BP-MLL 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 63/0/0
ML-KNN 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 6/1/0 7/0/0 62/1/0
ECC 7/0/0 7/0/0 5/0/2 6/0/1 7/0/0 5/0/2 7/0/0 5/0/2 6/0/1 55/0/8

Table VIII. Average Running Time (Second)

Methods
Data MOML{HL,RL} ML-RBF BP-MLL ML-KNN ECC

Set Training Testing Training Testing Training Testing Training Testing Training Testing
Yeast 757 3.9 15.6 0.6 12,100 17.5 2.5 1.2 39.7 5.9
Image 343 1.6 2.8 0.2 12,500 5.3 9.1 1.2 39.3 4.2
RCV1-1 34,400 89 816 10.5 62,300 164 149 4.2 273 137

5.3. Parameter Settings

There are two genetic operation related parameters governing the MOML, that is, the
population size N and the running generations G. Figure 5 illustrates the evolutionary
characteristics of MOML{HL,RL} on the Yeast data with ten-fold cross-validation, under
different parameter configurations. Specifically, when the population size N increases
from 10 to 60 with an interval of 10, we report the average of performances, running
time and weights (the sum of absolute value of W) by combining all the models in the
population.

It is evident from Figure 5 that when the population size N is fixed, the performance
(i.e., Hamming Loss and Ranking Loss) of MOML consistently improves as the running
generation increases. In the meantime, the weights of ml-RBF and running time also
increase. Figure 5 also clearly shows that the large population size usually leads to
better performances accompanying with the increase of weights and running time.
Observing the trend of weight curves in Figure 5(c), we can find that although the
weights consistently increase, the rate of increase becomes small. If we do not add the
regularization term in the error function of ml-RBF (see Equation (6)), the weights will
increase sharply, which means these models are overfitting. Figure 5(d) illustrates that
the running time of MOML increases linearly with the population size N and running
generation G, which validates the time complexity of MOML in Equation (9).

In addition, the number of top models k also affects the performance of MOML. In
order to observe its effect on performance, we do experiments on Image data with
MOML{HL,RL} method. Figure 6 show the performance of MOML{HL,RL} on different k.
Note that MOML{HL,RL} has the same parameter setting with that in Section 5.2 and
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Fig. 5. The impact of the running generations and population size on performance. “↓” indicates the smaller
the better; “↑” indicates the larger the better.

Fig. 6. The effect of the parameter k on the performance of MOML{HL,RL}.

k is the ratio of selected models. Figure 6(a) clearly illustrates that MOML{HL,RL} has
the best performance on criteria Hamming Loss and Ranking Loss when k are 0.3
and 0.4. The same phenomenon is also shown in Figure 6(b). When k is small, there
are only few classifiers to make a prediction. When k becomes larger, more classifiers
will be ensembled, which usually leads to better performances. However, ensembling
more classifiers makes the prediction have less preference to the optimization objective,
so the performance of MOML{HL,RL} on criteria Hamming Loss and Ranking Loss will
degrade for large k. This is the reason why the performances of MOML{HL,RL} increase
first and then decrease as k increases. The experiments also imply that MOML will
achieve better performance when k is 0.3 and 0.4. In this setting, the model selection
process not only has the benefit of ensembling classifiers but also keeps the preference
on optimization objectives.

5.4. Influence of the Number of Objectives

Our previous experiments only show the cases with a pair of objectives. However, more
objective functions also can be included in MOML. In order to study the performances
of MOML with different numbers of objectives, here we consider four objective functions
(i.e., HL, RL, MicF1, and AP) and three versions of MOML which optimize the first 2, 3,
and 4 objectives, respectively. The corresponding algorithms are called MOML-{HL, RL},
MOML-{HL, RL, MicF1}, and MOML-{HL, RL, MicF1, AP}. We also consider a special
case of MOML, called MOML-{Ens}, where the running generation of MOML is 0. That
is, MOML-{Ens} does not do any genetic operation and multi-objective optimization.
So it is just the ensemble of multiple ml-RBFs, and its performances are constant
along the evolutionary process. Considering MOML-{Ens} as baseline, we observe the
improvement rate of performances of other algorithms against MOML-{Ens}. Ten-fold
cross-validation are reported on the Yeast data.

The results are shown in Figure 7. It is obvious that the three versions of MOML

achieve the consistent and steady performance promotion against MOML-{Ens} on all
four objectives. It illustrates that the genetic operation and multi-objective optimization
in MOML is really helpful to train better models. We can also find that MOML has
better performances on the optimization objectives than on non-optimization objectives.
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Fig. 7. Influence of the number of objectives on MOML. It shows the improvement rate of performances of
MOML against the ensemble of multiple base models.

Fig. 8. The effect of the regularization term on the performance of MOML{HL,RL}. When γ is 0, there is no
regularization term. The datasets D1–D7 denote the Yeast, Image, and RCV1(1-5), respectively.

However, when more objectives are included in MOML, the performance of MOML on the
optimization objectives will degrade. For example, compared to MOML-{HL, RL}, MOML-
{HL, RL, MicF1, AP} can achieve better performances on MicF1 and AP by including
them in its objective set, while its performances are slightly worse than MOML-{HL, RL}
on HL and RL. As the number of optimization objectives increases, the space of Pareto
frontier is greatly extended, which results in the exponential increase of the number
of non-dominated solutions [Saxena et al. 2013]. So the domination-based selection
operators in EMO do not work well in this case [Saxena et al. 2013].

5.5. Influence of Regularization Term

As we noted, a regularization term is added in the error function of MOML (see
Equation (6)), which is different from the error function in the original RRF [Zhang
2009]. This section will validate the effect of the regularization term on MOML. We run
MOML{HL,RL} with and without the regularization term on all seven datasets. The same
parameters are set with that in Section 5.2. Note that we only need to set γ with 0 (see
Equation (6)) for MOML{HL,RL} without the regularization term.

The experiment results are shown in Figure 8. It is clear that MOML with the
regularization term is better than that without the regularization term for almost
all the datasets. Particularly, the superiority is more obvious for the text data D3–
D7 (i.e., RCV1(1–5)). The experiments illustrate the importance of the regulariza-
tion term for MOML. Compared to ML-RBF [Zhang 2009], MOML has more overfitting
risk, since MOML trains models more times due to its evolution process. The regular-
ization term effectively reduces the overfitting risk, which helps MOML achieve good
performances.

5.6. Comparison of MOML and Weighted Sum Method

We know that a direct approach for the multi-objective multi-label classification prob-
lem is the weighted-sum method [Furnkranz and Flach 2003]. This section will compare
the MOML{HL,RL} with the weight-sum method. The weight-sum method optimizes the
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Fig. 9. The comparison of MOML and weighted-sum method.

objective:

w1 ∗ HL + w2 ∗ RL
s.t. : w1 + w2 = 1.

(11)

The optimization technique employs the same evolutionary algorithm framework with
MOML{HL,RL}. The experiments are done on Image data and the two methods have the
same parameters setting with that in Section 5.2. The weighted-sum method varies
w1 from 0 to 1 with the interval 0.1. For each weight setting, it obtains a best solution
and employs the solution to make a prediction. So the weighted-sum method generates
11 results for varying weights. After one run, MOML{HL,RL} returns a set of solutions,
from which we select the Pareto optimal solutions to make predictions. Figure 9 shows
the prediction performance on Hamming Loss and Ranking Loss. It clearly shows that
the solutions generated by MOML overwhelmingly dominate those of the weighted-sum
method. Moreover, the MOML’s solutions are widely spread, which implies that users
can flexibly select prediction models in terms of their preferences. The experiment not
only illustrates MOML’s potential to generate better solutions compared to the weighted-
sum method but also shows MOML’s advantages in computational efficiency. MOML only
needs to run once to generate these solutions. However, the weighted-sum method
needs to be run many times through varying weights. As a consequence, MOML is much
more convenient and efficient than the weighted-sum method.

5.7. Comparison of Model Selection Strategies

This section will compare different model selection strategies and clarify their char-
acteristics and application scenarios. In experiments, we use the same model training
phase with the optimization objectives HL and RL (see Algorithm 1) and different model
selection strategies (see Algorithm 2–3). These compared strategies and methods are
summarized as follows.

—DYN(HL) and DYN(RL). These two dynamic model selection strategies select the
optimization objective as the preference objective. The DYN(HL) denotes the strat-
egy selects the top models according to the optimization objective HL. Similarly,
the DYN(RL) selects models according to RL. In fact, DYN(HL) and DYN(RL) are
MOML{HL,RL} and MOML{HL,RL} in Section 5.2, respectively.

—DYN(MicF1) and DYN(AP). The preference objective in these two dynamic model
selection strategies is not the optimization objective. The DYN(MicF1) and DYN(AP)
denotes the strategy selects the top models according to the preference objective
MicF1 and AP, respectively.

—EN. This is the ensembling model selection strategy.
—ML-RBF [Zhang 2009]. This is the base model in our algorithm, which is used as

baseline.
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Table IX. The Average Ranks (mean±std) for Each Model Selection Strategy over 7 Datasets

Ave. ranks Methods
for criteria DYN(HL) DYN(RL) DYN(MicF1) DYN(AP) EN ML-RBF

HL 1.71±1.11* 3.43±1.71 4.00±1.52 2.43±0.78 2.71±1.38 6.00±0.00
RL 3.71±1.25 2.29±1.70* 2.29±1.11* 2.57±1.27 3.86±1.46 6.00±0.00
SL 2.71±1.11 3.00±1.41 2.00±1.73* 3.00±1.15 4.14±1.21 6.00±0.00
OE 2.29±1.97* 2.71±1.38 3.43±1.13 4.14±1.46 2.57±1.27 5.57±0.78
Cov 3.86±0.69 3.86±0.89 1.86±0.69 1.29±0.48* 4.29±1.38 5.86±0.37
MicF1 2.29±0.75 3.57±0.97 1.43±1.13* 3.29±1.25 4.43±0.97 6.00±0.00
AP 2.57±1.13 2.57±1.27 4.00±1.73 1.17±0.95* 4.00±0.57 6.00±0.00
Acc 2.43±0.97 4.29±0.48 2.57±1.13 1.29±0.48* 4.43±0.78 6.00±0.00
MacF1 2.00±1.15* 3.14±1.46 3.86±1.34 3.86±1.34 2.14±0.89 6.00±0.00

Note: The “*” indicates the best rank for each criterion.

We do experiments on all seven datasets with the same parameters in Section 5.1.3.
Similarly, we test the average values of all strategies on nine metrics and summa-
rize their rank values. We only show the average rank results in Table IX due to the
space limitation. Generally, these strategies achieve their best performances on differ-
ent criteria and they consistently and significantly outperform the baseline ML-RBF. In
addition, we can find that MOML usually achieves best performances on its preference
objective no matter whether the preference objective is or not the optimization objec-
tive. For example, DYN(HL) and DYN(RL) perform best on their preference objectives
HL and RL, DYN(MicF1) and DYN(AP) have the performance improvement on the
preference objectives (i.e., MicF1 and AP) as well as other objectives (e.g., SL, Cov,
Acc). Compared to the baseline ML-RBF, the ensembling model selection strategy (i.e.,
EN) overall improves performances on almost all objectives, but it cannot achieve best
performances on any special objectives. As we have noted, the time-consuming model
training phase can be done offline, whereas the model selection phase is fast, which can
be done online according to user’s preference. If a user has apparent preference, he can
employ the preference objective in the DYN strategy to make better classification on
his preference. If users have no obvious preferences, the EN strategy can be adopted.

6. CONCLUSION

In this article, we first studied the multi-objective multi-label classification problem
and proposed a novel algorithm MOML. MOML can simultaneously optimize over multiple
objectives and return a set of solutions. In applications, users can flexibly select models
in terms of their preferences. Experiments show that MOML not only achieves the better
performances on the optimization objectives, but also improves the performances on
most of the other state-of-the-art criteria for multi-label classification.
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