
PIRLLS: Pretraining with Imitation and RL Finetuning for Logic

Synthesis

Guande Dong∗, Jianwang Zhai∗,†, Hongtao Cheng, Xiao Yang, Chuan Shi, Kang Zhao†

Beijing University of Posts and Telecommunications, Beijing, China

{dongguande,zhaijw,zhaokang}@bupt.edu.cn

Abstract
As a key step in digital integrated circuit (IC) design, logic synthe-

sis involves various logic optimization algorithms, where the quality

of results (QoR) depends heavily on the optimization sequence used.

Exploring the optimization space is challenging as the number of

potential optimal permutations grows exponentially. Traditional

methods rely on manual adjustments by experts, but are difficult

to deal with complex and different circuits, leading to significant

optimality gaps. Many automatic methods have been introduced,

but still face problems of low generalization and low efficiency.

In this work, we propose PIRLLS, a two-stage learning framework

for imitation learning on expert trajectories followed by reinforce-

ment learning (RL) finetuning, to efficiently explore the optimal

synthesis flows. Firstly, PIRLLS uses imitation learning to pretrain

fast and high-performance intelligent policy, to fully leverage the of-

fline knowledge of a large corpus of high-quality expert trajectories.

Then, the pretrained policy is finetuned for target circuits using the

proximal policy optimization (PPO) algorithm and policy distillation

to obtain better results. Compared with the state-of-the-art (SOTA)

method, our framework can effectively improve the quality of logic

optimization and significantly speed up the exploration time.

ACM Reference Format:

Guande Dong∗, Jianwang Zhai∗,†, Hongtao Cheng, Xiao Yang, Chuan Shi,

Kang Zhao†. 2025. PIRLLS: Pretraining with Imitation and RL Finetuning

for Logic Synthesis . In Proceedings of 30th Asia and South Pacific Design

Automation Conference (ASPDAC 2025). ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/3658617.3697786

1 Introduction
Logic synthesis converts a high-level circuit description at the

register transfer level (RTL) into an optimized gate-level netlist, in-

volving multiple stages such as translation, technology-independent

optimization, and technology mapping. The goal of technology-

independent optimization is to apply a series of optimization algo-

rithms that reduce the depth and number of nodes in the circuit’s

Boolean network, thereby enhancing the circuit’s performance and

quality. ABC [1] is a popular open-source logic synthesis tool that

utilizes an And-Inverter Graph (AIG) as its subject graph and pro-

vides heuristic synthesis flows like resyn2 and compress2 to optimize

∗Co-first authors with equal contribution.
†Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPDAC 2025, January 20–23, 2025, Tokyo, Japan

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0635-6/25/01
https://doi.org/10.1145/3658617.3697786

Circuit Set

Genetic Algorithm

Expert Trajectories

Expert Trajectories Generation

PPO Algorithms

Student Policy Teacher Policy

RL Finetuning

Fseature
Extraction

Behavioral
Cloning

Pretrained
Policy

Imitation Learning

Policy Distillation

Initialize Weights

Figure 1: Illustration of PIRLLS Framework

the structure of AIGs. Although this synthesis workflow is widely

adopted, it can sometimes result in suboptimal results due to the

different optimization strategies required by various circuits.

As the demand for higher QoR continues to increase, machine

learning (ML) techniques are used to classify or predict the final

QoR of these synthesis flows, as documented in studies [2, 3], have

been proposed. However, these prediction methods suffer from lim-

ited accuracy and are difficult to efficiently explore different circuits.

Furthermore, people use reinforcement learning (RL) to conceptual-

ize the generation of synthesis flows as Markov decision processes

(MDPs) to autonomously generate synthesis sequences. The DRiLLS

framework [4] introduces an advanced system enabling an A2C

agent to flexibly select optimal transformations. Zhu et al. [5] em-

ploy Graph Neural Networks (GNNs) to capture the topology of

AIGs and integrate it with historical decisions, thereby enriching

the state information to enhance decision-making efficacy. Zhou et

al. [6] apply random forests to conduct feature importance analy-

sis, enabling feature pruning and investigating the generalization

capabilities of RL within this context.

Recent studies have focused on developing synthesis flows tai-

lored to specific circuits to enhance logic synthesis quality. Online

learning frameworks such as CBTune [7] and AlphaSyn [8] show-

case advanced optimization strategies. CBTune utilizes a contextual

bandit approach with the Syn-LinUCB algorithm to efficiently ex-

plore the solution space and circumvent local optima by considering

circuit characteristics and long-term impacts. Conversely, AlphaSyn

employs a domain-specific Monte Carlo tree search (MCTS) with the

SynUCT algorithm for precise selection and a parallel exploration

process, showing significant improvements in area reduction and

runtime over traditional methods.

Online learning methods can provide customized optimization,

but face challenges in generalization across different scenarios. Most

existing methods require fresh learning and exploration for each new

circuit, lacking effective utilization of existing data and knowledge.

Just like humans, we can learn offline knowledge from a large amount

of existing data and use it to handle and improve new situations.

Therefore, an ideal policy should consider how to learn general

65

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658617.3697786&domain=pdf&date_stamp=2025-03-04

ASPDAC 2025, January 20–23, 2025, Tokyo, Japan Dong et al.

offline knowledge from existing circuits and synthesis flows and

finetune it for new target circuits.

This work proposes PIRLLS, a framework for pretraining via

imitation and RL finetuning to facilitate logic optimization. PIRLLS

uses a genetic algorithm to generate expert trajectories, pretrains

policies via imitation learning, and fine-tunes them on target circuits

with PPO and policy distillation, leveraging offline knowledge to

facilitate exploration. The main contributions are as follows:

• To obtain high-quality offline knowledge, we design a genetic

algorithm to efficiently generate a large number of expert

trajectories for training circuits.

• To better characterize the circuit state, we use carefully de-

signed scalar features and a pretrained BERT model to extract

features from AIG and historical operations.

• We use behavior cloning to imitate expert trajectories and

learn offline knowledge, and the pretrained policy can opti-

mize unseen circuits rapidly and effectively.

• For more targeted optimization of target circuits, we use PPO

and policy distillation to finetune the pretrained policy and

maintain its advantage of efficient exploration.

2 Preliminaries

2.1 Logic Optimization and Technology Mapping
Logic optimization improves a circuit’s efficiency and compact-

ness by transforming and simplifying its logical representation, typ-

ically in the form of AIGs. Various algorithms like rewriting, bal-

ancing, refactoring, and resubstitution reduce the number of logic

nodes and AIG depth, speeding up the circuit and lowering hard-

ware requirements. Technology mapping converts the optimized

network into a gate-level netlist using a specific technology library.

Logic optimization directly influences the area and delay of the final

netlist. This paper focuses on optimizing 6-input LUTs in FPGA using

various ABC operators, exploring the optimization space through

different combinations of operators.

2.2 Imitation Learning
Imitation Learning, or Behavior Cloning, is an ML technique

where agents learn to perform tasks by mimicking expert behav-

ior. This approach bypasses the need for a direct reward mecha-

nism, instead using expert demonstrations to infer the mapping

between observations and actions. By training on these demonstra-

tions, the agent approximates the expert’s decision-making process.

AlphaGo [9], the first robot to defeat top human players, is pre-

trained using imitation learning on human game records to acquire

human-level strategies. AlphaGo’s success is largely attributed to its

ability to learn from a vast database of historical Go games, further

enhanced by reinforcement learning, which enabled AlphaGo to

surpass human experts. Therefore, we exploit behavior cloning to

learn offline knowledge from high-quality expert trajectories for

pretraining to achieve efficient logic optimization.

2.3 RL and Policy Distillation
Reinforcement Learning is a key area of Machine Learning, in-

volving states, actions, and rewards. Let 𝜏 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡) represent a
sequence of state, action, and reward tuples. The goal of RL is to find

a policy 𝜋𝜃 (𝑎 | 𝑠) that maximizes the expected sum of discounted
future rewards. At each time step 𝑡 , the state 𝑠𝑡 describes the envi-
ronment’s current conditions and serves as the input to the policy.

The action 𝑎𝑡 , chosen based on 𝜋𝜃 (𝑎 | 𝑠𝑡), affects the environment

and leads to the next state. The reward 𝑟𝑡 is received after taking
action 𝑎𝑡 and indicates how effective the action was. The policy
𝜋𝜃 (𝑎 | 𝑠) aims to select the optimal action 𝑎 given the state 𝑠 , with
its parameters 𝜃 being adjusted through learning to improve the
policy’s performance. The optimal policy 𝜋∗ is defined as:

𝜋∗ = argmax
𝜋

E𝜏∼𝜋 [𝑅𝑇], where 𝑅𝑇 =
𝑇∑
𝑡=1

𝛾𝑡−1𝑟𝑡 , (1)

where 𝛾 is discount factor used to control future rewards, and 𝑇
represents the length of the trajectory 𝜏 .
In practice, learning an optimal policy can be complex and com-

putationally expensive. To address this, we employ Policy Distilla-

tion [10], a technique that transfers the knowledge of a complex

policy model to another model. The primary goal is to train a student

model to mimic a complex teacher model, minimizing the difference

in their policy outputs. In our work, we leverage policy distillation

to extract offline knowledge from the pretrained policy and explore

target circuits in a more targeted manner.

2.4 BERT
BERT [11] is a pre-trained deep learning model based on the

Transformer architecture. The model is trained on large amounts

of text data and learns deep language features through two tasks:

Masked Language Model (MLM) and Next Sentence Prediction (NSP).

One of the core features of BERT is its bidirectional representation

capability, which allows it to consider both the left and right con-

text of each word simultaneously, producing richer and more accu-

rate word embeddings. This makes BERT excel in various natural

language processing tasks such as text classification, question an-

swering, and language understanding. In this work, we use BERT to

convert variable-length historical operator information into fixed-

length vectors, helping the agent to better understand and utilize

past operations, thus enhancing its decision-making capabilities.

3 Problem and Motivation
3.1 Problem
Various logic optimization algorithms, including balancing, rewrit-

ing, and refactoring, are used to optimize digital circuits. The arrange-

ment and combination of different operators significantly affect the

final optimization outcome, necessitating exploration within a vast

design space. Defining 𝐴 = {𝑛1, 𝑛2, . . . , 𝑛𝑚} as the set of available
optimizations in a logic synthesis tool and letting 𝑘 be the length of

optimized synthesis flows, there exist𝑚𝑘 possible flows, creating

an exponentially large search space. This makes finding the optimal

flow for complex circuit designs particularly challenging.

3.2 Motivation
Although optimal synthesis flows for different circuits may vary,

useful knowledge can still be extracted from existing flows to aid

new designs. For circuit designs that have certain similarities, their

optimal flows are often also similar. We verified this experimen-

tally, as shown in Table 1. We use a heuristic algorithm to find

well-performing synthesis flows for similar circuits. The "Best" in

Table 1 lists the top ten flows with the fewest LUTs per circuit. We

then swapped these "Best" flows between similar circuits, shown

as "Change" in Table 1, and compared them to the fixed "resyn2*2"

flow. Results indicate that swapping flows between circuits leads to

better optimization than using "resyn2*2". This suggests that lever-

aging historical synthesis data from numerous existing designs can

enhance the optimization of new circuit designs.

66

PIRLLS: Pretraining with Imitation and RL Finetuning for Logic Synthesis ASPDAC 2025, January 20–23, 2025, Tokyo, Japan

Table 1: Synthesis of Structurally Similar Circuits

Circuit Best Change resyn2*2

s838 59.9 63.5 65

s838.1 61.6 67 70

C7552 337.2 355.9 382

c7552 348.5 365.3 380

C3540 209 218.2 228

c3540 212.8 215 230

C2670 111.9 118 130

c2670 190 192 211.125

Average 191.36 199.4 211.1

Based on this analysis, we propose a two-phase method combin-

ing offline policy pretraining with online finetuning to optimize the

synthesis flow of target circuits. In the offline phase, we use imitation

learning to pretrain a policy that mimics expert trajectories, opti-

mizing circuits that may have similar structures. While the offline

policy generalizes well to unseen circuits, we further finetune it for

the target design to achieve better optimization results.

4 PIRLLS Framework

4.1 Overview
As inferred in Section 3.2, the target circuit can benefit from simi-

lar existing circuits and synthesis flows. Based on this insight, we

introduce PIRLLS, as illustrated in Figure 1. This method uses a ge-

netic algorithm to explore circuits in the training set, generating

optimal synthesis flows as expert trajectories. Importantly, it extracts

effective circuit features and forms numerous (𝑠𝑡 , 𝑎𝑡) pairs, represent-
ing the "expert’s" choice of optimization operator 𝑎𝑡 at circuit state
𝑠𝑡 . Imitation learning then pretrains the policy network on these
pairs to learn offline knowledge with generalization. Due to circuit

differences, the pretrained policies may not perform optimally, so we

finetune them using reinforcement learning and policy distillation,

where PPO’s actor is initialized with pretrained weights.

4.2 Expert Trajectory Generation
To learn useful prior knowledge from existing designs, we need

high-quality synthesis flows for each design. Therefore, to obtain the

dataset for pretraining, instead of using existing synthesis flows, we

design a fast genetic algorithm (GA) to generate a large number of

high-quality expert trajectories. To achieve better logic optimization

effects and greater optimization possibilities, we have selected 10

operators, including "rewrite", "rewrite -z", "balance", "refactor -z",

"refactor", "resub", "resub -z", "dc2", "if -g", and "ifraig". The above op-

erators are widely used in logic synthesis tasks to ensure generality.

The detailed algorithm is shown in Algorithm 1. The genetic al-

gorithm abstracts candidate solutions as genes, defined by various

operators, and measures fitness by the number of LUTs. The algo-

rithm starts by generating an initial population and calculating each

individual’s fitness. Tournament selection follows, where a subset

of individuals is selected randomly, and the one with the highest

fitness becomes a parent for the next generation. This repeats until

sufficient parents are chosen. Uniform crossover then allows par-

ents to exchange genes at each position with a certain probability,

creating new offspring and restoring the population to its original

size. Mutation is applied to introduce diversity. Through iterations,

less fit individuals are eliminated, enhancing the results significantly.

Algorithm 1 Expert Trajectory Generation

Input: 𝐺 : Number of generations, 𝑃 : Population size,𝐶𝑝 : Crossover
probability,𝑀𝑝 : Mutation probability, 𝐶 : Stopping condition for
unchanged fitness

Output: Optimal synthesis flow

1: Initialize population with random gene values

2: for 𝑔 = 1 to 𝐺 do

3: Evaluate the fitness of each individual

4: if fitness unchanged for 𝐶 consecutive generations then
5: Break

6: end if

7: Select parents via tournament selection

8: for 𝑖 = 1 to 𝑃 do
9: Crossover selected parents with probability 𝐶𝑝
10: Add offspring to new population

11: end for

12: for 𝑖 = 1 to 𝑃 do
13: Mutate genes based on𝑀𝑝

14: end for

15: end for

Table 2: Scalar Features of AIG Circuits

ID Feature ID Feature

1 Input 2 Output

3 Number of gates 4 Level

5 Width 6 Number of LUTs

7 Number of LUTs level 8 Avg of input node fan-out

9 Std of input node fan-out 10 Avg of and node fan-out

11 Std of and node fan-out 12 And_nodes percent

13 Not_nodes percent 14 And_node_reduction_percent

Multiprocessing improves the efficiency of fitness calculations. The

optimal synthesis flow obtained for each design is determined as the

“expert trajectory” and constitutes the pretraining dataset.

4.3 Pretraining with Imitation Learning
In Section 4.2, we introduced the method for generating expert tra-

jectories. What is more important is how to learn offline knowledge

from existing expert trajectories and obtain the high-quality pre-

trained policy network, which is achieved through imitation learning

in this work. Unlike reinforcement learning, imitation learning trains

the network to gradually maximize the probability of expert actions

in the state-action probability distribution. This process involves

two parts: feature extraction and behavior cloning.

4.3.1 Feature Extraction

As outlined in Section 2.3 on RL, characterizing the state of the

AIG circuit for optimization is crucial. A feature extraction algorithm

for AIGs was developed to better represent the circuit state for opti-

mization, inspired by the feature importance analysis in RL4LS [6].

We identified 14 key scalar features, listed in Table 2, including in-

put/output count, gate count, levels, width (maximum nodes per

layer), mapped LUTs count and levels, average and standard devi-

ation of fan-out for input nodes and all AND gates, ratio of AND

to NOT gates, and AND gate reduction ratio. These features are

normalized to improve training and inference efficacy.

In addition, historical operations optimized for AIG can also pro-

vide some state features. To better utilize this historical operation

information, we use a pre-trained single-attention-layer BERTmodel

67

ASPDAC 2025, January 20–23, 2025, Tokyo, Japan Dong et al.

Sequence Embedding(1x768)

Concat

Historical Sequence(0-10)

Expert Trajectories

Normalized Scalar
Feature (1x14)

Pretrained BERT

FC(782x256)+RELU

FC(256x256)+RELU

FC(256x10)

Softmax

State Embedding (1x782) Policy Network

π�(�,·)

Figure 2: Feature extraction and poilcy network architecture

to capture these features. This choice is due to the variable length of

historical operations, allowing BERT to convert this variable length

into a fixed-length vector, thus capturing the contextual relation-

ships within the optimization flow more effectively. Ablation studies

have demonstrated the advantage of this approach. Then, these are

concatenated with the normalized scalar features, as shown in the

left part of Figure 2, ultimately forming our final features.

4.3.2 Behavior Cloning

We use Behavior Cloning (BC) to pretrain our policy based on

expert trajectories. The policy network is pretrained to predict ex-

pert actions 𝑎𝑡 from the state 𝑠𝑡 obtained via the feature extraction
network. The final state feature obtained from the scalar features and

the BERT model is a 782-dimensional vector, which is then processed

by three fully connected layers: the first maps it to 256 dimensions,

the second is another 256-dimensional layer, and the third maps it

to a 10-dimensional output. This output is then converted into an

action probability distribution for actions using a softmax function.

Let 𝜋BC
𝜃
(𝑎𝑡 |𝑠𝑡) denote a policy parametrized by 𝜃 that maps states

𝑠𝑡 to a distribution over actions 𝑎𝑡 . Let 𝜏 represent a trajectory con-
sisting of state and action tuples, i.e., 𝜏 = (𝑠0, 𝑎0, . . . , 𝑠𝑇 , 𝑎𝑇), and
𝑇 = {𝜏 (𝑖)}𝑁𝑖=1} denotes a dataset of expert trajectories.
The first loss function,𝐿𝑁𝐿𝑃 , is defined as the negative log-likelihood

of the expert actions under the policy:

𝐿𝑁𝐿𝑃 = −
𝑁∑
𝑖=1

∑
(𝑠𝑡 ,𝑎𝑡) ∈𝜏 (𝑖)

log𝜋𝐵𝐶𝜃 (𝑎𝑡 |𝑠𝑡) . (2)

Minimizing 𝐿𝑁𝐿𝑃 effectively maximizes the likelihood of the ex-

pert actions, aligning the policy outputs closely with the expert’s

decisions. Then, we introduce an entropy loss 𝐿𝐸𝑛𝑡𝑟𝑜𝑝𝑦 :

𝐿𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −
𝑁∑
𝑖=1

∑
𝑠𝑡 ∈𝜏 (𝑖)

∑
𝑎∈𝐴

𝜋 (𝑎 |𝑠𝑡) · log𝜋 (𝑎 |𝑠𝑡), (3)

where 𝑎 ∈ 𝐴 represents all possible actions. Minimizing 𝐿𝐸𝑛𝑡𝑟𝑜𝑝𝑦
penalizes the certainty of the policy output distribution, making the

probability distribution more uniform to ensure the generalization

of the model. The total loss is defined as:

𝐿𝐵𝐶 = 𝐿𝑁𝐿𝑃 + 𝛾𝐿𝐸𝑛𝑡𝑟𝑜𝑝𝑦, (4)

where 𝛾 is a weighting factor. Through behavior cloning training,
we obtain a pretrained policy that imitates the expert’s behavior.

Pretrained
Policy

Teacher Policy Student Policy��,�� ······ ��	�, ��

Initialize Weights

Policy Distillation

RL Finetuning

Update

on GPU

Polic
y

Student Policy

LS ENV

Teacher Policy

LS ENV

Worker 1 Worker N

Update

on GPU

��
������

Random
Initialization

��′,��′ ······ ��	�′, ��′

Policy

��
������

��
�, ��

�, π�(��
�|��

�), ��
�

��
�, ��

�, π�(��
�|��

�), ��
�

��
�, ��

� , π�(��
�|��

�), ��
�

��
�������: ��

····

��
�, ��

�, π�(��
�|��

�), ��
�

��
�, ��

�, π�(��
�|��

�), ��
�

��
�, ��

�, π�(��
�|��

�), ��
�

····

Policy
��
�������: ��′

��
�, ��

�, π�(��
�|��

�), ��
�

��
�, ��

�, π�(��
�|��

�), ��
�

��
�, ��

� , π�(��
�|��

�), ��
�

····

Student Policy

��
�, ��

�, π�(��
�|��

�), ��
�

��
�, ��

�, π�(��
�|��

�), ��
�

��
�, ��

�, π�(��
�|��

�), ��
�

····

Teacher Policy

��′��

Worker
�

2

Worker
�

2
+ 1

··· ···

Parallel on CPU

Figure 3: Distributed training for RL finetuning methodology

By incorporating mechanisms such as entropy regularization, the

policy’s generalization ability across different circuits is enhanced,

ensuring robust decision-making in novel scenarios.

4.4 RL Finetuning
After imitation learning, we obtain a pretrained policy that can

imitate the expert behavior to quickly and effectively optimize new

circuits. However, since different circuits have variations, targeted

adjustments need to be made according to the target circuit. Next,

we use RL and policy distillation to finetune the pretrained policy.

4.4.1 Reinforcement Learning

To solve the maximization problem in Equation (1), we use an

actor-critic RL approach, which consists of a learned policy (i.e.,

actor) and a state-value function 𝑉 (𝑠) (i.e., critic). The critic 𝑉 (𝑠𝑡)
represents the expected value of returns 𝑅𝑡 when starting from state
𝑠𝑡 and acting under the policy 𝜋 , where 𝑅𝑡 defined as follows:

𝑅𝑡 =
𝑇∑
𝑖=𝑡

𝛾𝑖−𝑡𝑟𝑖 . (5)

In this work, we use Proximal Policy Optimization (PPO) [12], an

on-policy actor-critic RL algorithm. PPO updates both the policy

(actor) and the value function (critic) by utilizing advantage estimates.

Specifically, the advantage estimate is calculated as:

𝐴𝑡 = 𝑅𝑡 −𝑉 (𝑠𝑡), (6)

and 𝑝𝑡 (𝜃) is the ratio of the probability of action 𝑎𝑡 under the current
policy to that under the policy used to collect rollouts, defined as:

𝑝𝑡 (𝜃) =
𝜋𝜃 (𝑎𝑡 |𝑜𝑡)

𝜋𝜃old (𝑎𝑡 |𝑜𝑡)
. (7)

The parameters are updated by maximizing:

𝐽𝑃𝑃𝑂 (𝜃) = E𝑡
[
min(𝑝𝑡 (𝜃)𝐴𝑡 , clip(𝑝𝑡 (𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝑡)

]
, (8)

where 𝜖 is a small positive hyperparameter that restricts the policy
update step, and the clip function ensures that the probability ratio

𝑝𝑡 (𝜃) remains within the bounds [1−𝜖, 1+𝜖], thus preventing desta-
bilizing updates to the policy. More details about PPO can be found

in [12]. The actor component of PPO refines policies by leveraging

the stability provided by the clipped objective function. Additionally,

the critic’s value function reduces variance in policy updates, leading

to more stable and efficient fine-tuning of the pretrained policy.

Our RL environment iteratively applies ABC optimization com-

mands to the initial circuit netlist. The state and action spaces align

with imitation learning. After each action, the environment provides

68

PIRLLS: Pretraining with Imitation and RL Finetuning for Logic Synthesis ASPDAC 2025, January 20–23, 2025, Tokyo, Japan

Table 3: PIRLLS vs. Baselines in 6-LUTs Optimization.

Benchmark
Initial resyn2*2 DRiLLS [4] RL4LS [6] AlphaSyn [8] CBTune [7] Pretrain Only PIRLLS

#LUTs LUTs #LUTs RT(m) #LUTs RT(m) #LUTs RT(m) #LUTs RT(m) #LUTs RT(m) #LUTs RT(m)

max 721 719 694 32.58 687.8 54.34 680 5.7 684.25 6.01 688 0.183 675.6 2.49

adder 249 249 244 24.05 244 10.05 244 6.14 244 5.97 211 0.184 196.7 1.62

cavlc 116 118 112.2 26.02 111.3 3.22 106 5.35 111 2.37 115 0.155 107.6 1.64

ctrl 29 29 28 24.25 28 2.85 28 5.68 28 0.59 29 0.156 27 1.66

int2float 47 46 42.6 21.7 42.3 2.81 39 5.54 40 2.76 42 0.165 39 1.54

router 73 76 70.1 22.01 69.5 3.07 65 5.34 68.11 2.32 72 0.16 61.3 1.64

priority 264 220 133.4 23.32 142.9 5.9 135 5.83 138.86 3.41 163 0.193 126.3 1.58

i2c 353 320 292.1 25.17 289.32 7.55 280 6.22 283.11 3.61 299 0.165 271.3 1.85

sin 1444 1466 1441.5 51.15 1438 20.1 1438 6.77 1441.67 9.71 1450 0.235 1434.75 3.57

square 3994 3915 3889.4 130 3889 72.88 3877 8.72 3882.11 25.99 3889 0.39 3849.5 7.92

sqrt 8084 5127 4708 147.64 4685.3 196.15 4415 9.83 4607 36.51 4038 0.47 3837 17.81

log2 7584 7703 7583.6 198.6 7580.1 125.28 7580 11.78 7580 41.27 7584 0.61 7469.6 12.8

multiplier 5678 5713 5678 180.84 5672 187.81 5672 10.34 5679.75 29.08 5675 0.45 5663.6 10.57

voter 2744 1828 1834.7 84.43 1678.1 330.48 1537.4 7.84 1682.25 11.46 1688 0.28 1579 3.7

div 23864 8197 7944.7 259.75 7807.1 482 6650.1 11.88 4180.91 25.58 4124 0.48 3963.3 17.52

mem_ctrl 11631 11459 10527.6 229.33 10309.7 1985.84 9513.2 10.99 10242.57 45.81 9838 0.64 9547.5 17.39

Average 4179.67 2949.06 2826.40 92.55 2792.20 218.14 2641.23 7.75 2555.84 15.78 2494.06 0.31 2428.06 6.58

Ratio 1.72 1.21 1.16 14.07 1.15 33.15 1.09 1.18 1.05 2.40 1.03 0.05 1.00 1.00

the next state and reward. Our goal is to find the optimal sequence

to minimize the number of LUT-6. The reward function is:

𝑟𝑡 =

{
𝐿𝑚 − 𝐿 (𝑠𝑡+1), if 𝐿 (𝑠𝑡+1) < 𝐿𝑚

−𝑏, otherwise
, 𝐿𝑚𝑖𝑛 = min(𝐿𝑚, 𝐿 (𝑠𝑡+1)),

(9)

where 𝐿𝑚 records the best-found LUT-6 count up to time 𝑡 and
𝐿𝑚 = 𝐿(𝑠0) initially. For each time step 𝑡 , if 𝐿(𝑠𝑡+1) is better than 𝐿𝑚 ,
we give a positive reward corresponding to the improvement; other-

wise, a small penalty −𝑏 is applied. This reward function effectively
encourages continuous improvement.

4.4.2 Finetuning Methodology

We initialize the actor’s parameters with the pretrained policy

weights𝜋𝜃
BC
. Finetuning is challengingwhen the policy over-converges,

skewing the actor’s output towards a single action. To address this,

we propose dual-policy exploration: the pretrained policy guides

initial high-quality trajectories, while a randomly initialized actor

enables broader exploration, balancing imitation and flexibility.

Due to the lengthy sample collection time, interaction with the en-

vironment becomes a training bottleneck. Therefore, we designed a

distributed training mechanism using multiple processes to improve

sample collection efficiency, as shown in Figure 3. Initially, we evenly

distribute 𝐾 environments between the pretrained "teacher policy"
and the randomly initialized "student policy," gradually reducing the

teacher’s allocation over time. 𝜋𝑠 (𝑎 | 𝑠) denotes the student policy’s
action probability given state 𝑠 , and 𝜋𝑡 (𝑎 | 𝑠) denotes the teacher’s.
During network updates, both policies utilize all collected trajecto-

ries (including those generated by the opposing policy), with each

policy’s network estimating the action probabilities for the states in

the trajectories generated by the other. Additionally, both policies

share a single critic to estimate the value function, thereby enhancing

the consistency and efficiency of learning and policy performance.

To expedite the student policy’s alignment with the teacher pol-

icy’s performance, we utilize the principle of policy distillation and

add the additional KL divergence loss 𝐿KL to the standard PPO loss,

i.e. 𝐿policy and 𝐿value. 𝐿KL is defined as:

𝐿KL =
∑
𝑎∈𝐴

𝜋𝑠 (𝑎 |𝑠) log

(
𝜋𝑠 (𝑎 |𝑠)

𝜋𝑡 (𝑎 |𝑠)

)
. (10)

This additional loss is intended to enable the student policy to

rapidly achieve the performance levels of the teacher policy. There-

fore, the student’s loss is defined as:

𝐿student = 𝐿policy + 𝐿value + 𝛼𝐿KL, (11)

where 𝛼 is a weighting factor. 𝐿policy is mainly responsible for ad-
justing the policy to enhance the agent’s performance in a specific

environment by optimizing its behavior to maximize expected re-

wards. 𝐿value aims to optimize the value function to more accurately
predict future rewards, thereby helping to make better decisions

under uncertainty.

To encourage exploration, we incorporate 𝐿Entropy into 𝐿teacher.
𝐿Entropy is defined as in Equation (3), and the teacher’s loss is as
follows:

𝐿teacher = 𝐿policy + 𝐿value + 𝛽𝐿Entropy, (12)

where 𝛽 is a weighting factor. By employing this approach, the
pretrained policy can be finetuned using RL and policy distillation.

This allows for better utilization of offline knowledge to optimize

specific circuits without compromising efficiency.

5 Evaluation
Comprehensive experiments are conducted to evaluate the pro-

posed PRILLS framework. In Section 5.1, we first introduce the ex-

perimental settings. In Section 5.2, we give the optimization results

and compare our method with previous work to prove its superiority.

In Section 5.3, we perform an ablation study on PRILLS framework.

5.1 Experimental Settings
The PIRLLS framework is implemented in Python, using PyTorch

and the RL framework OpenAI Gym [13]. In addition, the exploration

environment of PIRLLS is implemented by developing C++ interfaces

for ABC [1]. The experiments are conducted on Intel(R) Xeon(R)

8383 CPU @ 2.60GHz with an NVIDIA RTX 3090 GPU.

69

ASPDAC 2025, January 20–23, 2025, Tokyo, Japan Dong et al.

Table 4: LUT Results of Ablation Study

Benchmark
RL RL+His RL+BERT Pretrain+RL+BERT

Last Last First Last First Last

max 688 691 716 688.1 711 685.6

adder 203.1 201 216.6 200.7 211.1 198.1

cavlc 111.1 113.9 118.1 111.1 113.9 110.2

ctrl 28 28.1 28.8 28 28.2 27.9

int2float 43.9 43.4 43.9 41.4 43.4 41.7

router 66.5 65.4 70.5 64.4 66.8 64.2

priority 142.9 140.7 170.1 135.2 152.5 127.9

i2c 289 285.45 299.2 272.9 297 274.7

sin 1441.3 1439.7 1452 1440 1445.7 1438.2

square 3889 3886.7 3894.6 3862 3889 3851

sqrt 4692 4686 4249.7 3870.7 3936 3847.4

log2 7489.1 7584 7599.3 7479.1 7548.4 7471

multiplier 5687.6 5692 5687.6 5671.4 5692 5661.6

voter 1659 1672 1787 1632.4 1716.3 1611.2

div 4543 4436 4828 4386.3 4109.7 4035.9

mem_ctrl 10291.7 10267.1 10470.5 10274.6 10299.6 9618.4

Average 2579 2577 2601.9 2509.8 2516.2 2441.5

286 circuits from various well-known benchmark suites are used

for pre-training, including ISCAS’85 [14], ISCAS’89 [15], ITC’99

[16], LGSynth’89 [17], LGSynth’91 [18], IWLS’93 [19], IWLS 2005

[20], and LEKO/LEKU benchmarks [21]. These benchmarks provide

diverse circuits that guarantee the performance and generalizabil-

ity of the pretrained policy network. We ran GA in Section 4.2 on

these circuits to obtain expert trajectories. The settings of the GA

are: population size of 100, gene length of 25, tournament selection

(K=5), uniform crossover (35%), random mutation (10%), and 20 it-

erations. Although pretraining based on these expert trajectories

using imitation learning takes time, this is a one-time cost, and LS

users are more concerned about the time from design submission to

synthesized output, i.e., the exploration time for target designs.

The number of LUTs (#LUTs) after technology mapping and the

runtime (RT) are evaluated, comparing PIRLLS with baselines such

as resyn2, DRiLLS [4], RL4LS [6], Alphasyn [8], and CBTune [7].

For the pretrained policy, actions are selected based on the highest

probability for the test circuit state. PIRLLS is evaluated over ten

experiments with different random seeds, averaging the results. To

match the baselines, EPFL benchmarks [22] are used, sequence length

is set to 𝐿 = 25, and ‘if -a -K 6‘ is applied for 6-LUT optimization.

5.2 Main Results
First, we test the pretrained policy obtained through imitation

learning on 16 EPFL benchmarks. The policy directly selects ac-

tions to optimize the target circuit based on current state, with a

sequence length of 𝐿 = 25. As shown in Table 3, the pretrained
policy ("Pretrain Only") significantly reduces optimization time and

achieves high-quality results. Compared to DRiLLS [4], RL4LS [6],

Alphasyn [8], and CBTune [7], our policy achieves 294×, 693×, 25×,

and 51× speedup, respectively. The pretrained policy outperforms

other baselines in optimization quality, demonstrating its effective-

ness in accelerating optimization while maintaining high quality.

Although pretrained policiy obtained through imitation learning

achieve competitive results, they may not perform optimally on

new designs due to differences between circuit designs. Therefore,

the proposed RL method is used to finetune the pretrained policy,

forming the complete PRILLS framework. Experiments show that

PRILLS can explore higher-quality optimization flows at meager run-

time costs compared to other methods. As shown in Table 3, PRILLS

outperforms DRiLLS [4], RL4LS [6], Alphasyn [8], and CBTune [7]

4,000 5,000 6,000 7,000 8,000

2,055

2,060

2,065

2,070

2,075

LUTs

#
L
ev
el

Pretrain
Random

(a) div

1 1.02 1.04 1.06 1.08 1.1 1.12

·104
42

44

46

48

50

52

54

LUTs

#
L
ev
el

Pretrain
Random

(b) mem_ctrl

Figure 4: Comparison between exploration based on pre-

training and random exploration from scratch.

by 16%, 15%, 9%, and 5% in LUT count after technology mapping,

respectively. More importantly, our framework leads in optimization

time, achieving speedups of 14.07×, 33.15×, 1.18×, and 2.40×. Com-
pared to SOTA CB-Tune, our framework achieves a 5% performance

improvement in FPGA technology mapping with a 2.40× speedup.
The results show that pretraining the policy network with imita-

tion learning and fine-tuning with multi-processing RL significantly

improves optimization efficiency and quality.

5.3 Ablation Study

Ablation studies evaluate the effectiveness of our features and

pretraining methods (Table 4). Each experiment ran 10 episodes

with trajectories from 10 parallel sub-environments to update the

policy and value networks. The "Last" column shows the average

best #LUTs from the final episode, and the "First" column shows

the initial episode averages. We compared "RL" (scalar features),

"RL+His" (history operations), and "RL+BERT" (pretrained BERT).

"Pretrain+RL+BERT" integrates the pretrained policy. The "Last"

results confirm the superior performance of our full features.

To observe the impact of pretrained policies on RL, we selected

two circuits: div and mem_ctrl. We compared the first episode
optimization results of RL with and without the pretrained policy

over 70 runs (Figure 4). The pretrained policy outperformed random

exploration, offering better trajectories early in training and a su-

perior starting point. Table 4 further confirms the effectiveness of

pretraining, with a 3.3% improvement in the "First" phase and 2.7%

in the "Last" phase for "Pretrain+RL+BERT" compared to "RL+BERT",

highlighting the significant advantage of pretraining.

6 Conclusion

We propose PIRLLS, a two-stage learning framework for logic

synthesis and optimization. First, we pretrain the exploration policy

with imitation learning on expert trajectories, then finetune it on

target circuits using reinforcement learning. Experimental results

show PIRLLS surpasses SOTA methods across metrics, enhancing

optimization quality and achieving significant speedup. In summary,

PIRLLS leverages offline knowledge and customizes optimization for

target circuits, utilizing expert trajectories from existing data and

the self-improvement property of RL algorithms.

Acknowledgment

This work is supported by the National Key R&D Program of

China (2022YFB2901100), the National Natural Science Foundation

of China (No. 62404021), and the Beijing Natural Science Foundation

(No. 4244107, QY24216).

70

PIRLLS: Pretraining with Imitation and RL Finetuning for Logic Synthesis ASPDAC 2025, January 20–23, 2025, Tokyo, Japan

References
[1] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength verification

tool,” in Computer Aided Verification: 22nd International Conference, 2010, pp. 24–40.
[2] C. Yu, H. Xiao, and G. De Micheli, “Developing Synthesis Flows Without Human

Knowledge,” in Proc. DAC, 2018, pp. 1–6.
[3] A. Basak Chowdhury, B. Tan, R. Carey, T. Jain, R. Karri, and S. Garg, “Bulls-Eye:

Active Few-Shot Learning Guided Logic Synthesis,” IEEE TCAD, vol. 42, no. 8, pp.
2580–2590, 2023.

[4] A. Hosny, S. Hashemi, M. Shalan, and S. Reda, “DRiLLS: Deep reinforcement
learning for logic synthesis,” in Proc. ASPDAC, 2020, pp. 581–586.

[5] K. Zhu, M. Liu, H. Chen, Z. Zhao, and D. Z. Pan, “Exploring logic optimizations
with reinforcement learning and graph convolutional network,” in Proc. MLCAD,
2020, pp. 145–150.

[6] G. Zhou and J. H. Anderson, “Area-driven FPGA logic synthesis using reinforce-
ment learning,” in Proc. ASPDAC, 2023, pp. 159–165.

[7] F. Liu, Z. Pei, Z. Yu, H. Zheng, Z. He, T. Chen, and B. Yu, “CBTune: Contextual
Bandit Tuning for Logic Synthesis,” in Proc. DATE, 2024, pp. 1–6.

[8] Z. Pei, F. Liu, Z. He, G. Chen, H. Zheng, K. Zhu, and B. Yu, “AlphaSyn: Logic
synthesis optimization with efficient monte carlo tree search,” in Proc. ICCAD,
2023, pp. 1–9.

[9] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering
the game of Go with deep neural networks and tree search,” Nature, vol. 529, no.
7587, pp. 484–489, 2016.

[10] A. A. Rusu, S. G. Colmenarejo, Çaglar Gülçehre, G. Desjardins, J. Kirkpatrick,
R. Pascanu, V. Mnih, K. Kavukcuoglu, and R. Hadsell, “Policy Distillation,” CoRR,

vol. abs/1511.06295, 2015.
[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep

bidirectional transformers for language understanding,” in Proc. NAACL, 2018, pp.
4171–4186.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy
Optimization Algorithms,” ArXiv, vol. abs/1707.06347, 2017.

[13] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “OpenAI Gym,” arXiv: Learning, Jun 2016.

[14] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortran,” in Proc. ISCAS, 1985, pp. 677–692.

[15] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of sequential bench-
mark circuits,” in Proc. ISCAS, May 1989, pp. 1929–1934 vol.3.

[16] F. Corno, M. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks and first ATPG
results,” Design Test of Computers, IEEE, vol. 17, no. 3, pp. 44–53, Jul 2000.

[17] S. Yang, “Logic Synthesis andOptimization Benchmarks,” 1989MCNC International
Workshop on Logic Synthesis, Tech. Rep., Dec. 1988.

[18] ——, “Logic Synthesis and Optimization Benchmarks User Guide: Version 3.0,”
Microelectronics Center of North Carolina (MCNC), Tech. Rep., Jan. 1991.

[19] K. McElvain, “IWLS’93 Benchmark Set: Version 4.0,” a part of IWLS’93 benchmark
set, Tech. Rep., May 1993.

[20] C. Albrecht, “IWLS 2005 Benchmarks,” IWLS, Tech. Rep., Jun. 2005.
[21] J. Cong and K. Minkovich, “Optimality Study of Logic Synthesis for LUT-Based FP-

GAs,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, vol. 26, no. 2, pp. 230–239, Feb 2007.
[22] L. Amaru, P.-E. Gaillardon, and G. Micheli, “The EPFL Combinational Benchmark

Suite,” Jan 2015.

71

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1000
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 4.83300
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1000
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 4.83300
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

