© N o g A~ W N =

© O N O O b @ N = O ©

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Graph4LLM: A Systematic Survey of Graph-Enhanced Large Language Models

Xinyan Zhu', Cheng Yang', Qiuyu Wang'!, Zeyuan Guo', Yiding Wang', Zedi
Liu!, Chunchen Wang'! and Chuan Shi'*

'Beijing University of Posts and Telecommunications

{zhuxinyan, yangcheng, autumn, guozeyuan, wangyiding, liuzedi, wangchunchen,
shichuan} @bupt.edu.cn

Abstract

Large language models (LLMs) excel in natu-
ral language processing (NLP) tasks. However,
they suffer from inherent limitations due to their
sequence-based nature, such as structural informa-
tion loss and factual unreliability. Graphs, with
the ability to explicitly model entities and rela-
tions, offer an effective way to address these short-
comings. To systematically synthesize the emerg-
ing research on graph-enhanced LLMs, this sur-
vey, Graph4LLM, examines how these methods
integrate graphs into various stages of the LLM
pipeline, including the input, model, and output
phases. For each phase, we provide a detailed
review of the key methods and techniques. We
also introduce a wide range of application scenarios
where Graph4LLM methods demonstrate signifi-
cant potential. Finally, we outline the challenges
and future research directions for developing more
efficient and interpretable solutions.

1 Introduction

Large language models (LLMs) are foundation models with
billions of parameters, typically built on the Transformer ar-
chitecture [Vaswani et al., 2017] and pretrained on massive
corpora. Under this paradigm, LLMs show impressive ca-
pabilities in natural language understanding, generation, and
reasoning.

In practice, LLMs operate within a pipeline that structures
information flow from input to output, as shown in Figure 1.
(1) In the input phase, task specifications and external knowl-
edge are introduced. This is done using techniques like few-
shot prompting, retrieval-augmented generation (RAG) [Peng
et al., 2025], or by feeding the model curated training data.
These methods help shape how the raw information is pre-
sented to the LLMs. (2) Next, the model focuses on pro-
cessing these inputs. The Transformer-based architectures
use attention mechanisms and feedforward layers to sequen-
tially process the information, and can be further extended by
multi-agent systems to coordinate multiple models through
structured interactions. (3) Finally, in the output phase, LLMs

*Corresponding author.

stem You are a helpfl Multi-agent
}A* Bl wmae e
.

Few-shot Q: Memor, —
Examples A

Question
Engineering Answering

o € Q[
Database R I Transformer Architecture

nnnnnnnnnnnnn Code Block
RAG

Prompt

[N

—_— Feedfc d . L
’ g < = MulsHead oo ouput -
? =) Atention Network Logis

s B wom Decision
Construction Support

Input Phase Model Phase Output Phase

Figure 1: The overall pipeline of LLM (input phase, model phase,
and output phase). The goal of our survey is to introduce: How
can graphs participate in the organization of LLM inputs? How can
graphs adapt the LLM architecture and collaborate multiple models?
How can graphs guide the optimization of LLM outputs?

generate task-specific responses. These responses can include
question answering, executable code, or decision-support ar-
tifacts, which serve as the interface between model predic-
tions and downstream applications [Zhao et al., 2023].

Despite their impressive performance, LLMs have inherent
limitations, primarily due to their reliance on linear token se-
quences. Such sequential models struggle to capture complex
relational structures, long-range dependencies, and multi-hop
interactions, which are crucial for many knowledge-intensive
tasks [Hong et al., 2022]. Moreover, reasoning and planning
processes are often encoded implicitly in latent representa-
tions. This makes intermediate states difficult to interpret,
control, or verify systematically [Yao et al., 2023]. LLMs
are also vulnerable to factual inconsistencies and hallucina-
tions, especially when tasks require precise relational reason-
ing or reliable knowledge grounding. These challenges high-
light the inadequacy of sequence-centric models for tasks that
require explicit structure, transparency, and robustness [Guan
et al., 2024].

To fix the problems of LLM modeling, graphs (non-
Euclidean structures with nodes and edges to capture com-
plex dependencies) and graph neural networks (GNNs, which
use message-passing to learn local and global representa-
tions) [Scarselli et al., 2008] provide complementary solu-
tions. They achieve this by explicitly encoding relationships
and dependencies to enable multi-hop reasoning and capture

40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65

66
67
68
69
70

71
72
73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88

Prompt from

Graph-Enhanced
Instruction Tuning

ChatKBQA [Luo et al., 2024a), GLaM [Dernbach et al., 2024],
KG-SFT [Chen et al., 2025b], ToolLM [Wang et al., 2025]

H

Knowledge Graph

Graph-Retrieval

ToG [Sun et al., 2024], RoG [Luo et al., 2024b], MindMap [Wen et

Augmented Generation al., 2024], SubgraphRAG [Li et al., 2024a], KGR [Guan et al., 2024]

Prompt from Corpus-
Level Graph

Input Phase

GraphRAG [Edge et al., 2024], RAPTOR [Sarthi et al., 2024], LightRAG [Guo et al., 2024], Hip-
poRAG 2 [Gutiérrez et al., 2025], GFM-RAG [Luo et al., 2025], PathRAG [Chen et al., 2025a]

Prompt from Instance-
Level Graph

GraphReader [Li et al., 2024b], TG-LLM [Xiong et al., 2024],

RwG [Han et al., 2025], GRL-Prompt [Liu et al., 2024a]

{ External Graph Adapter J—

KoPA [Zhang et al., 2024a], FtG [Liu et
al., 2025], GraphAdapter [Li et al., 2023b]

Single Model

]_

% Internal Model Fusion } GreaselLM [Zhang et al., 2022], GIT [Hong et al., 2022], Patton [Jin

et al., 2023], GNNavi [Yuan et al., 2024], GMoE [Bai et al., 2024]

Model Phase

{ Static Topology

FLOW-GNN [Zhang et al., 2025c], MACNET
[Qian et al., 2025], CAMEL [Li et al., 2023a]

]7

Multiple Models

Graph4LLM

]_

AgentPrune [Zhang et al., 2025a], GPTSwarm [Zhuge

{ Dynamic Topology J—

et al., 2024], DyLAN [Liu et al., 2024b], GoA [Joo

et al., 2025], DynaSwarm [Leong and Wu, 2025]

Reasoning Based on
Node Summarization

THOUGHTSCULPT [Chi et al., 2025], RATT [Zhang
et al., 2025b], GoT [Besta et al., 2024], DoT
[Zhang et al., 2024b], AGoT [Pandey et al., 2025]

%

{ Reasoning

Reasoning Based
on Path Exploration

ToT [Yao et al., 2023], SoT [Ning et al., 2024], LATS [Zhou
et al., 2024], XoT [Ding et al., 2024], PGTS [Li, 2025]

F

{ Planning]—

RAP [Hao et al., 2023], GNN4TaskPlan [Wu et al., 2024], PoG [Chen
et al., 2024], SOPStruct [Garg et al., 2025], [Sakib and Sun, 2024]

Output Phase

Factuality Evaluation H

BTProp [Hou et al., 2025], [Chen et al., 2025c], [Jiang et al.,
2024], GraphEval [Sansford et al., 2024], GCA [Fang et al., 2025]

{ Evaluation

Logicality Evaluation H

Semantic-Eval [Li et al., 2025], DiagramEval [Liang and
You, 2025], GraphReason [Cao, 2024], [Xiong et al., 2025]

Figure 2: A taxonomy of Graph4LLM with representative examples.

non-linear structures. Additionally, graphs offer transparent,
structured intermediate states that improve interpretability
and verification. By integrating external knowledge graphs
(KGs), they also enhance factual grounding, reducing hallu-
cinations and enhancing comprehensive reliability.

Building on the potential of graphs to address LLMs
limitations, graph-enhanced LLMs, which we refer to as
Graph4LLM, leverage relational structures to handle com-
plex, interconnected data more effectively. As a result,
a growing body of work has emerged exploring different
Graph4LLM methods. Despite this rapid development, re-
search on Graph4LLM remains fragmented across communi-
ties and applications. Existing surveys often focus on narrow
subtopics [Peng et al., 2025], such as graph-based RAG or
multi-agent systems, lacking a unified view of how graphs
interact with LLMs throughout the entire pipeline.

In contrast, this paper provides the first systematic,
pipeline-oriented survey of Graph4LLM. Specifically, we
categorize existing works according to the three phases of
the LLM pipeline (Figure 2): (1) In the input phase, graphs
transform complex and scattered information into structured
prompts, so that key entities and relations are clearly pre-
sented to the LLMs. (2) In the model phase, graphs shape

the internal processing of model within a single model or
organize interactions across multiple models, enabling con-
trolled information flow and task coordination. (3) In the out-
put phase, graphs reorganize LLM responses into structured
representations, making intermediate steps and dependencies
easy to inspect and verify. Based on this taxonomy, we fur-
ther categorize each phase and present the specific methods,
along with key design choices and trade-offs.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews multi-granularity prompt construction and
knowledge incorporation techniques in the input phase. Sec-
tion 3 examines single- and multi-model graph-enhanced
systems in the model phase. Section 4 focuses on graph-
structured reasoning, planning, and evaluation techniques
in the output phase. Section 5 surveys representative
Graph4LLM applications, and Section 6 discusses open chal-
lenges and future research directions. Overall, this organiza-
tion follows the LLM pipeline and enables a systematic re-
view of Graph4LLM methods.

2 Input Phase

The input phase of LLMs involves processing raw text, which
is typically fed in a sequential manner. Graph4LLM input-

9
91
92
93
94
95
9%
97
98
99

100

101

102

104

105

106
107

108

110

111
112
113
114
115
116
117
118
119

120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

Text Instance

Text Corpus J

Entity1, Relation1, Entity2

Retiove @
External
Knowledge
~ Augmented @
Instruction Prompt
Tuning
Dataset

(LLM)

Entity3, Relation2, Entity2

Prompt from
Knowledge Graph

Prompt from
Corpus-Level Graph

Prompt from
i Instance-Level Graph

Figure 3: Different frameworks of Graph4LLM in the input phase.

phase methods extract knowledge from graphs or use them
to index and organize text content. In this section, we cat-
egorize these methods based on the source of the graph
structure (as shown in Figure 3): Prompt from Knowl-
edge Graph, which utilizes pre-existing KGs; Prompt from
Corpus-Level Graph, which constructs a global graph in-
dex from the text corpus; and Prompt from Instance-Level
Graph, which induces ad-hoc structures based on specific in-
put instances to guide the process.

2.1 Prompt from Knowledge Graph

Prompt from Knowledge Graph methods integrate existing
KGs into LLM prompting pipelines to provide structured
and reliable knowledge support. These methods rely on
task-agnostic KGs and typically fall into two categories:
Graph-Enhanced Instruction Tuning, which collects training
data from KG facts and relations, and Graph-Retrieval Aug-
mented Generation (Graph-RAG), which treats KGs as exter-
nal knowledge databases for structured retrieval.

Graph-Enhanced Instruction Tuning modifies LLM pa-
rameters to align their representations with KG structures. It
achieves this by constructing structure-aware instruction tun-
ing data. This data injects explicit relational and logical in-
formation into the supervision signal, thereby enhancing the
model’s understanding of graphs. Existing methods mainly
differ in how training data are derived from KGs. ChatK-
BQA [Luo et al., 2024a] fine-tunes LLMs by translating
SPARQL queries associated with natural language questions
into logical forms. GLaM [Dernbach et al., 2024] generates
graph-grounded QA data by encoding node-centered k-hop
neighborhoods from domain-specific KGs. KG-SFT [Chen
et al., 2025b] extracts reasoning subgraphs to produce ques-
tion—answer explanations while addressing knowledge con-
flicts. ToolLM [Wang et al., 2025] extends this paradigm by
incorporating tool-use instruction tuning. It converts KG re-
lations into executable APIs and generates natural language
queries with corresponding solution paths.

Building on the same goal of leveraging KG structure,
Graph-Retrieval Augmented Generation (Graph-RAG)
differs by keeping LLM parameters unchanged. It retrieves
task-relevant subgraphs, explicitly exploiting graph topology

to provide knowledge support and enable evidence-based rea-
soning in real time. Existing methods mainly vary in their
retrieval and reasoning strategies. ToG [Sun ef al., 2024]
tightly couples LLMs with KGs by allowing the model to it-
eratively explore top-ranked reasoning paths through beam
search over KG triples. RoG [Luo er al., 2024b] frames
reasoning as KG-grounded relation path planning, retriev-
ing valid paths to support faithful and interpretable inference
while distilling KG knowledge through targeted optimization
objectives. MindMap [Wen et al., 2024] adopts a prompting-
based pipeline that extracts entities from inputs and constructs
reasoning graphs by aggregating path-based and neighbor-
hood evidence from KGs. To address retrieval efficiency and
noise, SubgraphRAG [Li et al., 2024a] introduces structure-
aware subgraph retrieval with lightweight encoders and fixed
in-context prompts, balancing computational cost and reason-
ing depth. Beyond retrieval, KGR [Guan et al., 2024] incor-
porates iterative feedback mechanisms to verify and revise
LLM-generated responses, mitigating hallucinations through
KG-based self-correction.

2.2 Prompt from Corpus-Level Graph

In contrast to Prompt from Knowledge Graph, Prompt from
Corpus-Level Graph constructs corpus-specific graph indices
over unstructured text collections rather than relying on ex-
isting KGs. In this setting, nodes correspond to documents,
entities, or concepts extracted from the corpus, and edges en-
code semantic or structural relations. Such graph indices en-
able LLMs to efficiently locate the associated textual content.

To address the lack of macro-level understanding in tradi-
tional RAG, a line of work explores global information aggre-
gation through hierarchical structures. GraphRAG [Edge et
al., 2024] targets query-specific summarization over private
corpora by constructing document graphs from text chunks.
These graphs are organized into communities, and hierar-
chical summaries are generated using a Map-Reduce strat-
egy. As a result, LLMs can integrate global context, lead-
ing to more comprehensive and diverse responses. RAP-
TOR [Sarthi et al., 2024], on the other hand, introduces a
recursive tree-based retrieval framework. By iteratively clus-
tering text chunks, it builds a hierarchical summary tree and
generates abstract summaries. This enables LLMs to retrieve
high-level themes first and then access finer-grained details.
Despite these advances, hierarchical aggregation can still lead
to retrieval redundancy, longer reasoning chains, and limited
control.

Recent work has shifted the focus from organizing infor-
mation to optimizing the process of retrieval. They seek
to progressively exploit and reuse these structures, improve
generation efficiency and reducing retrieval noise. Ligh-
tRAG [Guo et al., 2024] uses graph-enhanced text indexing
and dual-level retrieval to optimize reasoning over knowledge
structures. It captures entity dependencies through structured
graphs, while supporting incremental updates to avoid full-
graph reconstruction costs. HippoRAG 2 [Gutiérrez et al.,
2025], inspired by the hippocampal memory system, com-
bines LLM-based filtering with Personalized PageRank over
open KGs. This graph unifies passages and phrases, en-
abling continual learning and associative retrieval at scale. To

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

170

171

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

191
192
193
194
195
196
197

199
200
201
202
203
204
205
206
207
208

209
210
211
212
213
214
215
216
217

218

219
220
221
222
223
224
225
226
227
228
229

231
232
233
234

236
237
238

240
241
242
243
244
245
246
247

248

249
250
251
252
253
254
255
256
257
258
259

260

261
262
263

address the generalization limitations of graph-enhanced re-
trieval, GFM-RAG [Luo er al., 2025] trains a general graph
foundation model (GFM) [Liu et al., 2023] retriever through a
two-stage process, which allows zero-shot multi-hop reason-
ing on unseen datasets. PathRAG [Chen er al., 2025a] targets
token inefficiency by pruning redundant information. It uses
a flow-based algorithm to extract critical relational paths and
provide ordered prompts, which improves logical coherence
and reduces computational overhead.

2.3 Prompt from Instance-Level Graph

Unlike the previous two methods, Prompt from Instance-
Level Graph does not use existing KGs or corpus-based in-
dex graphs. Instead, it emphasizes task-driven, on-the-fly
graph construction and on-demand generation, converting a
single, logically complex input instance into a graph repre-
sentation. The resulting graph is then linearized into semi-
structured text, which preserves the original structure and is
directly fed to the LLMs.

In practical applications, researchers develop diverse graph
construction and utilization strategies to address specific rea-
soning bottlenecks. To mitigate the “’lost-in-the-middle” is-
sue and high computational cost in long-context reasoning,
GraphReader [Li et al., 2024b] introduces a query-guided
graph-based agent that organizes long documents into atomic
fact graphs, enabling efficient multi-hop exploration under
limited context windows. Focusing on temporal reasoning,
TG-LLM [Xiong er al., 2024] converts text into temporal
graphs for graph-based inference. This process is enhanced
by chain-of-thought bootstrapping and graph data augmen-
tation, helping capture event order, duration, and inter-event
relations more effectively. To address missing implicit condi-
tions in logical reasoning, RwG [Han er al., 2025] iteratively
constructs and verifies explicit reasoning graphs from context
and leverages them to improve multi-hop question answer-
ing. From a prompting perspective, GRL-Prompt [Liu ez al.,
2024a] models queries and candidate demonstrations as het-
erogeneous graphs. It then applies reinforcement learning to
explore high-order correlations, allowing for the automatic
selection and arrangement of in-context examples.

3 Model Phase

The model phase of LLMs concerns both the internal ar-
chitecture of the model and the way multiple agents collab-
orate. Graph4LLM model-phase methods introduce graph
structures as explicit relational priors that complement the
sequence-centric inductive bias of LLMs. Existing methods
can be broadly categorized into two paradigms (as shown in
Figure 4): Single Model, where graph modules are integrated
into one LLM backbone with varying depth of fusion, and
Multiple Models, where graphs specify or learn the com-
munication topology and task dependencies among multiple
models/agents.

3.1 Single Model

In the field of graph-enhanced single model, the core goal is
to integrate structured graph signals within the LLM frame-
work. This aims to improve the ability of model to process

External Graph Adapter Static Topology

GraphEncoder % 4 2
l\l =

Integrate | % %

LLM :
i E Fixed Collaboration Graph Message Passing

Internal Model Fusion

LLM

Graph Layer

E'\ Texl

Dynamic Topology

Transformer Layer N

o -
5 5
g g
b &
g g
5 5
E E
5

2 2
2 2
& §
£ £

Structural Connection

|
E Variable Collaboration Graph

Single Model Multiple Models

Figure 4: Different frameworks of Graph4LLM in the model phase.

relational and structural information within a unified back-
bone. Broadly, strategies diverge into two paradigms: Ex-
ternal Graph Adapter, which adds graph adapters before the
LLMs to fuse graph features, and Internal Model Fusion,
which embeds structural interactions deeply into the model’s
layers for bidirectional influence.

External Graph Adapter keeps the LLM backbone
largely intact while integrating graph signals through aux-
iliary modules. Graph structures are encoded by dedicated
graph encoders, often a GNN, and mapped into the LLM rep-
resentation space using lightweight adaptation mechanisms.
This allows for structure-aware reasoning without altering
core model parameters. Representative methods differ in
how graph information is encoded and fused. KoPA [Zhang
et al., 2024a] incorporates pre-trained structural embed-
dings of KGs via a prefix-style adapter, projecting them
into the model’s latent space to enhance structural reasoning.
FtG [Liu er al., 2025] follows a filter-then-generate frame-
work, leveraging serialized ego-graphs and a structure-text
adapter to integrate graph topology while narrowing candi-
date entities. GraphAdapter [Li et al., 2023b] extends this
idea by constructing dual KGs with textual and visual sub-
structures. Graph convolution is then applied to fuse struc-
tural knowledge into the adaptation module.

Unlike External Graph Adapter, Internal Model Fusion
directly integrates graph layers into the internal computa-
tion of LLMs. This enables structural information to influ-
ence hidden-state updates, achieving deeper alignment be-
tween graphs and model representations. Existing methods
are primarily distinguished by the integration locus of graph
structure within the LLMs. A common design interleaves
Transformer layers with GNN-style message passing or in-
troduces cross-stream modules for bidirectional exchange be-
tween token and graph layers. A representative example is
GreaseLM [Zhang et al., 2022]. It jointly processes text and
KGs using an LM and a GNN, and realizes structured in-
teraction via dedicated interaction tokens, interaction nodes,
and modality-specific interaction modules. Another integra-
tion pattern embeds graph structure directly into attention by
encoding adjacency as masks, constraining information flow
along graph edges or learned neighborhoods. GIT [Hong et

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

320

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

349
350
351
352
353
354
355
356
357
358
359
360
361
362

al., 2022] exemplifies this integration, with similar graph-
aware Transformers proving effective when graph topology
is reliable and sparsity is desirable. Beyond layer interleav-
ing and attention control, structural priors can also be incor-
porated through pretraining objectives and internal routing.
Patton [Jin et al., 2023] introduces structure-aware pretrain-
ing on text-rich networks by combining masked language
modeling with network-context objectives. GNNavi [Yuan
et al., 2024] inserts a GNN layer into a frozen LLM de-
coder, using prompt-induced graphs to guide message pass-
ing for parameter-efficient few-shot learning. GMoE [Bai et
al., 2024] extends this idea with a graph-routed Mixture-of-
Experts architecture. It coordinates expert collaboration via
GNN-based routing and mitigates load imbalance using dis-
tribution strategies.

3.2 Multiple Models

Unlike single-model methods, graph-enhanced multiple mod-
els leverage graphs to coordinate interactions, communica-
tion flows, and task dependencies across multiple models or
agents. These methods are categorized into Static and Dy-
namic Topology. Static Topology relies on predefined fixed
graph structures to ensure controllable orchestration and re-
duce redundant messaging. Dynamic Topology, by contrast,
adapts the graph at runtime through learning, pruning, or gen-
eration mechanisms, providing greater flexibility and respon-
siveness in multi-agent collaboration.

Static Topology uses a fixed collaboration graph to de-
fine communication links and artifact flows in multi-agent
systems. The graph is predefined based on human priors or
task logic (e.g., directed acyclic pipelines, hierarchical struc-
tures, or fixed role graphs), focusing on optimizing message
passing and role execution. Within this paradigm, existing
methods mainly differ in the source of the predefined col-
laboration graph. FLOW-GNN [Zhang et al., 2025¢] mod-
els agentic workflows as directed acyclic graphs (DAGs),
where nodes represent system instructions and edges encode
task dependencies. This allows efficient performance predic-
tion through message passing without repeated LLM invoca-
tions. Along similar lines, MACNET [Qian et al., 2025] or-
ganizes large-scale multi-agent systems into DAG-structured
workflows with a consistent topological order. It supports
structured reasoning and scalable collaboration among over
a thousand agents. Fixed topologies may also stem from
system-level role designs rather than explicit task decompo-
sition. CAMEL [Li et al., 2023a] adopts a fixed role-based
interaction pattern, where predefined Al assistant and Al user
roles coordinate autonomous cooperation through inception
prompting.

Dynamic Topology uses a variable collaboration graph
that can be learned or generated at runtime. Unlike static
graphs, it allows agents to dynamically adjust connections
based on current inputs, states, or feedback, offering greater
flexibility in multi-agent coordination. Existing methods
mainly differ in how and when the collaboration structure is
adjusted or constructed. AgentPrune [Zhang et al., 2025al
focuses on topology sparsification by learning to remove
redundant connections from dense interaction graphs. It
demonstrates that sparse communication structures can out-

~ \,
S

) SCeB

Output Text

e

LLM 5 / — F\
‘ ©0o
&—e | —
Execution Plan Factualty Logiealty
Reasoning Planning Evaluation

Figure 5: Different frameworks of Graph4LLM in the output phase.

perform dense ones at a lower cost. GPTSwarm [Zhuge et
al., 2024] treats agents and their connections as jointly op-
timizable components by formulating multi-agent coordina-
tion as graph optimization over node operations and edge
dataflow, while DyLAN [Liu ef al., 2024b] dynamically se-
lects contributing agents and evolves communication graphs
for task-oriented collaboration. Inference-time structure gen-
eration further enables query-specific collaboration graphs,
where GoA [Joo et al., 2025] expands agent-level inter-
action graphs for nonlinear context extension. And Dy-
naSwarm [Leong and Wu, 2025] learns to select suitable
communication graphs per query via reinforcement learning.

4 Output Phase

The output phase of LLMs generates text sequences based
on the internal representation and the received context.
Graph4LLM output-phase methods represent LLM responses
as graphs to clarify the thinking process, enabling more struc-
tured and verifiable outputs. We categorize existing methods
into three directions based on the function of the graphs (as
shown in Figure 5): Reasoning, which represents and tra-
verses intermediate inference states; Planning, which orga-
nizes multi-step decision making and action sequences; and
Evaluation, where graphs serve as structured references for
verifying and scoring generated content.

4.1 Reasoning

Graph-based Reasoning uses graph structures to organize rea-
soning thoughts as relationships and dependencies between
entities, improving clarity and interpretability of model out-
puts. Methods in this category fall into two main types: Rea-
soning Based on Node Summarization, which consolidates
information around key nodes to guide reasoning, and Rea-
soning Based on Path Exploration, which conducts reasoning
along sequential or branching paths.

Reasoning Based on Node Summarization organizes
reasoning around central nodes that aggregate information
from multiple steps. Each node acts as an information hub,
condensing partial conclusions. The reasoning process con-
verges to a final node where relevant information is sum-
marized and synthesized into the output. Existing meth-
ods differ mainly in how reasoning nodes are structured and
updated. THOUGHTSCULPT [Chi et al., 2025] adopts a
search-driven formulation within a Monte Carlo Tree Search
(MCTS) framework. It integrates a thought generator, evalu-
ator, and a decision simulator, while iteratively revising node-

363

365
366
367
368
369
370
371
372
373
374

375

376
377
378
379
380
381
382
383
384
385
386

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

406

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

447

448
449

451
452
453
454
455
456
457

459
460
461
462

464

level summaries. RATT [Zhang et al., 2025b] similarly lever-
ages tree-structured reasoning, but emphasizes path evalua-
tion and branch selection, using node representations to iden-
tify promising reasoning trajectories. Beyond tree structures,
node summarization can be extended to more general graph
organizations. GoT [Besta et al., 2024] frames it as a way
for modeling dependencies among thoughts. It organizes rea-
soning steps into a graph, where edges encode inter-thought
relations to support complex reasoning. DoT [Zhang et al.,
2024b] further operationalizes this idea with a DAG-based
structure that enables node-level critique and revision of log-
ical dependencies. AGoT [Pandey er al., 2025] takes a task-
decomposition perspective, breaking problems into structured
sub-tasks represented as nodes. Node information then coor-
dinates intermediate results across the decomposition hierar-
chy.

By comparison, Reasoning Based on Path Exploration
frames reasoning as a traversal over multiple candidate paths.
Information is not centralized at a single node but distributed
along a path. Each node on the path corresponds to an in-
dependent action or intermediate decision. The final output
is constructed by the accumulation of information along the
selected path. Existing methods mainly differ in how paths
are generated and selected during exploration. ToT [Yao et
al., 2023] represents reasoning as a tree and performs se-
quential branch exploration, explicitly comparing alternative
paths to identify the most promising trajectory. Building on
this formulation, SoT [Ning et al., 2024] adopts a skeleton-
first strategy, generating concise outlines that are later ex-
panded in parallel to improve exploration efficiency. To fur-
ther enhance path selection under long-horizon decision mak-
ing, LATS [Zhou et al., 2024] incorporates MCTS, tightly
coupling reasoning, acting, and planning during exploration.
Along a similar line, XoT [Ding et al., 2024] augments
MCTS with pretraining signals and external domain knowl-
edge, enabling more flexible and informed traversal of rea-
soning paths. And PGTS [Li, 2025] moves toward learning-
based control, integrating reinforcement learning with struc-
tured tree search to dynamically navigate reasoning paths
without relying on hand-crafted heuristics.

4.2 Planning

Building on reasoning capabilities, Graph-based Planning fo-
cuses on task organization rather than inference. It leverages
graphs to organize and manage interdependent goals, tasks
and actions, enabling LLMs to handle complex multi-step
tasks through plan execution.

Existing methods mainly differ in how they use graphs
for task decomposition and execution. Typically, RAP [Hao
et al.,, 2023] treats graphs as task decomposition tools,
breaking user requests into solvable sub-tasks represented
as nodes with dependency edges. GNNs are then used to
support sub-task retrieval and execution. Along the same
line, GNN4TaskPlan [Wu et al., 2024] examines how learned
graph representations impact planning quality. It uses em-
pirical analysis to explore the role of graph-based learning
in optimizing decision-making for LLM-based agents. Mov-
ing beyond static task representations, PoG [Chen et al.,
2024] uses graphs as feedback structures during planning.

These graphs incrementally construct and revise multi-level
sub-goal graphs to detect deviations and enable correction
through backtracking or path expansion. Furthermore, SOP-
Struct [Garg et al., 2025] introduces a framework where
LLMs transform unstructured natural language Standard Op-
erating Procedures (SOPs) into a structured DAG. This DAG
captures logical and temporal dependencies, utilizing deter-
ministic verification via PDDL and non-deterministic evalua-
tion by LLMs to ensure the quality of the representation. In
robotic task planning, [Sakib and Sun, 2024] utilizes graphs
as execution-oriented interfaces. Multiple GPT-4—generated
task trees are consolidated into a unified plan, which is then
converted into executable low-level actions through cost-
aware selection and symbolic planning.

4.3 Evaluation

Unlike reasoning and planning, Graph-based Evaluation fo-
cuses on assessing LLM outputs. It uses graph structures
to capture richer associations among entities, facts, and sen-
tences. Specifically, evaluation methods can be categorized
into two main types: Factuality Evaluation, which assesses
the accuracy and reliability of generated content through ex-
plicit entity and relation modeling; Logicality Evaluation,
which measures logical coherence and reasoning consistency
using graph-based relational representations.

Factuality Evaluation checks if LLM outputs meet cor-
rectness requirements by modeling content as structured
graphs to verify dependencies, propagate uncertainty, and
detect inconsistencies. Existing methods mainly differ in
the form of evidence they construct and how it is aligned
with model outputs. BTProp [Hou et al., 2025] focuses
on intra-output uncertainty propagation, introducing a belief-
tree Markov framework that models logical relations between
claims and propagates uncertainty through structured depen-
dencies. [Chen et al., 2025c] similarly operates at the
single-output level but emphasizes cross-sentence contradic-
tions and entity-level interactions to estimate factual reliabil-
ity. [Jiang er al., 2024] further explores uncertainty estima-
tion by organizing claims and evidence into bipartite struc-
tures, showing that graph centrality provides more robust sig-
nals than frequency-based heuristics. Moving toward exter-
nal grounding, GraphEval [Sansford er al., 2024] converts
generated text into structured knowledge aligned with KG
triples. NLI-based verification is then incorporated to en-
able interpretable factual assessment. Beyond single outputs,
GCA [Fang et al., 2025] evaluates factuality across multiple
responses. It constructs triple graphs over samples and ap-
plies RGCN-based reconstruction for black-box verification.

At a higher level, Logicality Evaluation assesses the qual-
ity of reasoning in LLM outputs. It goes beyond factual
correctness to examine semantic coherence, inferential struc-
ture, and the organization of logical transitions using ex-
plicit relational representations. Existing methods mainly
differ in which stage and granularity of structure they tar-
get. Semantic-Eval [Li ef al., 2025] proposes a training-free
framework that constructs sentence-level semantic graphs.
It applies SemanticRank to weight logical contributions
and integrates pre-trained NLI models to mitigate semantic-
matching bias. DiagramEval [Liang and You, 2025] targets

465
466
467
468
469
470
471
472
473
474
475
476
477
478

479

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

523
524
525
526
527
528
529
530
531

532

533

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

572

573
574
575
576
577
578

chart reasoning by abstracting diagrams into directed “el-
ement-relation” graphs and evaluating node and path-level
alignment. For reasoning-process verification, GraphReason
[Cao, 2024] merges shared intermediate steps across multiple
reasoning paths into a unified graph and applies a GIN-based
verifier. Beyond verification, graph-based analyses are also
used to study reasoning behavior: [Xiong er al., 2025] clus-
ters semantically coherent CoT steps to construct reasoning
graphs and analyze structural properties.

5 Application

Graph4LLM finds wide applications across various domains,
significantly enhancing both task-level and domain-specific
performance.

In classic natural language processing (NLP) tasks,
graph structures are used to capture dependencies at dif-
ferent levels of language. They support a range of appli-
cations, including sequence tagging, information extraction,
and text generation. By explicitly modeling syntactic, seman-
tic, and discourse-level relationships, these graphs improve
the ability to understand and generate natural language. In the
realm of code-related applications, Graph4LLLM methods op-
erate at multiple granularities. At the function level, control-
flow, data-flow, and call graphs are employed to deepen code
understanding and aid in generation. On a larger scale,
repository-level graphs are built to represent dependencies
across files and modules, enabling cross-function reasoning,
program analysis, and software maintenance tasks. For tab-
ular reasoning, graphs are used to capture relationships be-
tween rows, columns, and cells. This structure facilitates
multi-hop reasoning and complex query answering, going be-
yond the limitations of linear table formats. Graph4LLM
methods are also widely utilized in recommendation sys-
tems. User-item interaction graphs enable LLMs to incorpo-
rate relational signals, recognizing collaborative patterns that
enhance decision-making processes.

Beyond task types, Graph4LLM shows significant effec-
tiveness in domain-specific applications. In medicine, graphs
represent clinical knowledge and biomedical entities, help-
ing with diagnosis and decision support. In education, con-
cept graphs and prerequisite structures are used for curricu-
lum planning and personalized tutoring. Financial applica-
tions benefit from relational graphs between entities, transac-
tions, and events, which help in risk analysis and decision-
making under uncertainty. In the legal field, citation and
statute graphs provide a structured framework for legal rea-
soning and case analysis. Lastly, in electronic design au-
tomation (EDA), graphs of hardware description languages
and module dependencies support LLM-based reasoning over
hardware logic.

6 Challenges and Future Directions

Graph construction quality and robustness. The effec-
tiveness of Graph4LLM methods critically depends on the
quality and robustness of the constructed graphs. In prac-
tice, graphs are often derived from noisy corpora or imperfect
knowledge bases, making them prone to incompleteness, spu-
rious relations, and structural bias. These imperfections can

propagate through downstream components, leading to mis-
leading retrieval results and distorted reasoning trajectories.
Future work should therefore prioritize robust and adaptive
graph construction, capable of handling varying data qual-
ity and uncertainties. This can be achieved, for instance, by
incorporating uncertainty quantification methods applied to
graph nodes and edges, enabling LLMs to reason over proba-
bilistic or graded relations. Additionally, iterative refinement
mechanisms that leverage feedback from LLM outputs to re-
vise or prune unreliable structures represent a promising di-
rection.

Complexity challenges from explicit structural expan-
sion. While richer graphs can represent more entities and
relations, increasing graph size, density, or heterogeneity
also introduces significant computational and cognitive chal-
lenges. In reasoning tasks, large or highly connected graphs
can lead to a combinatorial explosion of paths, making search
methods inefficient or unstable. Future research should focus
on complexity-aware graph designs, such as structure prun-
ing and hierarchical representations. These methods should
align graph granularity with task needs, enabling the model
to focus on the most relevant structures at each stage. De-
veloping criteria to determine when and how much structure
to expose to the LLMs will be key for scalable and reliable
reasoning. This will help transition Graph4LLM from being
’structure-rich” to structure-effective”.

Towards self-improving Graph4LLM: distillation,
feedback, and co-evolution. Despite their effectiveness,
most existing Graph4LLM methods use a unidirectional
process, where graphs assist LLMs at specific stages but
remain external to the model. The information in these
graphs is consumed only during generation and not retained
afterward, causing valuable structural signals to be repeat-
edly reconstructed, which limits efficiency and long-term
knowledge transfer. To address these limitations, future
work should focus on self-improving Graph4LLM systems.
One promising method is graph-to-model distillation, where
useful relational patterns from the Graph4LLM process are
distilled into the model’s internal representations through
fine-tuning or knowledge distillation. This would allow the
model to internalize structural priors and reduce reliance on
explicit graphs during inference. Model-to-graph feedback
can also refine graph construction, enabling representations
to evolve based on utility and support more robust, reusable
structures.

7 Conclusion

This paper presents a systematic survey of Graph4LLM, cate-
gorizing existing graph-enhanced LLM methods in the input,
model, and output phases. It covers representative methods
across different paradigms and their diverse application sce-
narios. Additionally, the paper summarizes key challenges
facing current Graph4LLM research and outlines future re-
search directions. By providing a coherent structural perspec-
tive on the integration of graphs and LLMs, this survey offers
a concise overview of the field, facilitating a clear understand-
ing of how graphs enhance the capabilities of LLMs.

579
580
581
582
583
584
585
586
587
588
589

590
591
592
593
594
595
596

598
599
600
601
602
603
604

605
606

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

624

625
626
627
628
629
630
631
632
633
634

635

636
637
638

639
640
641

642
643
644
645
646

647
648
649
650

651
652
653

654
655
656

657
658
659

660
661
662

663
664
665
666
667

668
669
670
671

672
673
674

675
676
677
678

679

681

682
683
684
685

686
687
688

References

[Bai et al., 2024] Ting Bai, Yue Yu, Le Huang, et al. Gmoe:
Empowering llms fine-tuning via moe graph collaboration.
arXiv:2412.16216, 2024.

[Besta et al., 2024] Maciej Besta, Nils Blach, Ales Kubicek,
et al. Graph of thoughts: Solving elaborate problems with
large language models. In AAAI, 2024.

[Cao, 2024] Lang Cao. Graphreason: Enhancing reasoning
capabilities of large language models through a graph-
based verification approach. In Proceedings of the 2nd
Workshop on Natural Language Reasoning and Structured
Explanations (@ ACL 2024), 2024.

[Chen et al., 2024] Liyi Chen, Panrong Tong, Zhongming
Jin, et al. Plan-on-graph: Self-correcting adaptive plan-
ning of large language model on knowledge graphs.
NeurlPS, 2024.

[Chen et al., 2025a] Boyu Chen, Zirui Guo, Zidan Yang, et
al. Pathrag: Pruning graph-based retrieval augmented gen-
eration with relational paths. arXiv:2502.14902, 2025.

[Chen et al., 2025b] Hanzhu Chen, Xu Shen, Jie Wang, et al.
Knowledge graph finetuning enhances knowledge manip-
ulation in large language models. In /CLR, 2025.

[Chen et al., 2025¢] Kedi Chen, Qin Chen, Jie Zhou, et al.
Enhancing uncertainty modeling with semantic graph for
hallucination detection. In AAAI 2025.

[Chi et al., 2025] Yizhou Chi, Kevin Yang, and Dan Klein.
Thoughtsculpt: Reasoning with intermediate revision and
search. In NAACL (Findings), 2025.

[Dernbach et al., 2024] Stefan Dernbach, Khushbu Agarwal,
Alejandro Zuniga, et al. Glam: Fine-tuning large language
models for domain knowledge graph alignment via neigh-
borhood partitioning and generative subgraph encoding. In
AAAIL 2024.

[Ding et al., 2024] Ruomeng Ding, Chaoyun Zhang,
Lu Wang, et al. Everything of thoughts: Defying the
law of penrose triangle for thought generation. In ACL
(Findings), 2024.

[Edge et al., 2024] Darren Edge, Ha Trinh, Newman Cheng,
et al. From local to global: A graph rag approach to query-
focused summarization. arXiv:2404.16130, 2024.

[Fang et al., 2025] Xinyue Fang, Zhen Huang, Zhiliang
Tian, et al. Zero-resource hallucination detection for text
generation via graph-based contextual knowledge triples
modeling. In AAAI, 2025.

[Garg et al., 2025] Deepeka Garg, Sihan Zeng, Sumitra
Ganesh, et al. Generating structured plan representation
of procedures with llms. arXiv:2504.00029, 2025.

[Guan et al., 2024] Xinyan Guan, Yanjiang Liu, Hongyu
Lin, et al. Mitigating large language model hallucinations
via autonomous knowledge graph-based retrofitting. In
AAAI 2024.

[Guo et al., 2024] Zirui Guo, Lianghao Xia, Yanhua Yu, et
al. Lightrag: Simple and fast retrieval-augmented genera-
tion. arXiv:2410.05779, 2024.

[Gutiérrez et al., 2025] Bernal Jiménez Gutiérrez, Yiheng
Shu, Weijian Qi, et al. From rag to memory: Non-
parametric continual learning for large language models.
In ICML, 2025.

[Han et al., 2025] Haoyu Han, Yaochen Xie, Hui Liu, et al.
Reasoning with graphs: Structuring implicit knowledge to
enhance llms reasoning. arXiv:2501.07845, 2025.

[Hao et al., 2023] Shibo Hao, Yi Gu, Haodi Ma, et al. Rea-
soning with language model is planning with world model.
In EMNLP, 2023.

[Hong et al., 2022] Giwon Hong, Jeonghwan Kim, Junmo
Kang, et al. Graph-induced transformers for efficient
multi-hop question answering. In EMNLP, 2022.

[Hou et al., 2025] Bairu Hou, Yang Zhang, Jacob Andreas,
et al. A probabilistic framework for 1lm hallucination de-
tection via belief tree propagation. In NACCL, 2025.

[Jiang et al., 2024] Mingjian Jiang, Yangjun Ruan, Prasanna
Sattigeri, et al. Graph-based uncertainty metrics for long-
form language model generations. NeurIPS, 2024.

[Jin et al., 2023] Bowen Jin, Wentao Zhang, Yu Zhang, et al.
Patton: Language model pretraining on text-rich networks.
In ACL, 2023.

[Joo et al., 2025] Taejong Joo, Shu Ishida, Ivan Sosnovik, et
al. Graph of agents: Principled long context modeling
by emergent multi-agent collaboration. arXiv:2509.21848,
2025.

[Leong and Wu, 2025] Hui Yi Leong and Yuqing Wu. Dy-
naswarm: Dynamically graph structure selection for llm-
based multi-agent system. arXiv:2507.23261, 2025.

[Li et al., 2023a] Guohao Li, Hasan Hammoud, Hani Itani,
et al. Camel: Communicative agents for” mind” explo-
ration of large language model society. NeurlPS, 2023.

[Li et al., 2023b] Xin Li, Dongze Lian, Zhihe Lu, et al.
Graphadapter: Tuning vision-language models with dual
knowledge graph. NeurIPS, 2023.

[Li e al., 2024a] Mufei Li, Sigi Miao, and Pan Li. Simple
is effective: The roles of graphs and large language mod-
els in knowledge-graph-based retrieval-augmented gener-
ation. arXiv:2410.20724, 2024.

[Li et al., 2024b] Shilong Li, Yancheng He, Hangyu Guo,
et al. Graphreader: Building graph-based agent to en-
hance long-context abilities of large language models. In
EMNLP (Findings), 2024.

[Li et al., 2025] Shusheng Li, Jiale Li, Yifei Qu, et al.
Semantic-eval: A semantic comprehension evaluation
framework for large language models generation without
training. In ACL, 2025.

[Li, 2025] Yang Li. Policy guided tree search for enhanced
Ilm reasoning. In ICML, 2025.

[Liang and You, 2025] Chumeng Liang and Jiaxuan You.
Diagrameval: Evaluating llm-generated diagrams via
graphs. In EMNLP, 2025.

689
690
691
692

693
694
695

696
697
698

699
700
701

702
703
704

705
706
707

708
709
710

71
712
713
714

715
716
717

718
719
720

721
722
723

724
725
726
727

728
729

731

732

734
735

737

738

740

741
742
743

744
745
746
747

748
749
750

751
752
753
754

755
756
757

759
760
761

762
763
764

765
766
767

768
769
770
771

772
773
774

775
776
777

778
779
780
781

782
783
784
785

786
787
788

789
790
791

792
793
794
795

[Liu ez al., 2023] Jiawei Liu, Cheng Yang, Zhiyuan Lu, et al.
Towards graph foundation models: A survey and beyond.
arXiv:2310.11829, 2023.

[Liu et al., 2024a]l Yuze Liu, Tingjie Liu, Tichua Zhang,
et al Grl-prompt: Towards knowledge graph
based prompt optimization via reinforcement learning.
arXiv:2411.14479, 2024.

[Liu et al., 2024b] Zijun Liu, Yanzhe Zhang, Peng Li, et al.
A dynamic llm-powered agent network for task-oriented
agent collaboration. In COLM, 2024.

[Liu e al., 2025] Ben Liu, Jihai Zhang, Fangquan Lin, et
al. Filter-then-generate: Large language models with
structure-text adapter for knowledge graph completion. In
COLING, 2025.

[Luo ef al., 2024a] Haoran Luo, E Haihong, Zichen Tang,
et al. Chatkbqa: A generate-then-retrieve framework for
knowledge base question answering with fine-tuned large
language models. In ACL (Findings), 2024.

[Luo et al., 2024b] Linhao Luo, Yuan-Fang Li, Gholamreza
Haffari, et al. Reasoning on graphs: Faithful and inter-
pretable large language model reasoning. In ICLR, 2024.

[Luo et al., 2025] Linhao Luo, Zicheng Zhao, Gholamreza
Haffari, et al. Gfm-rag: graph foundation model for re-
trieval augmented generation. arXiv:2502.01113, 2025.

[Ning er al., 2024] Xuefei Ning, Zinan Lin, Zixuan Zhou, et
al. Skeleton-of-thought: Prompting 1lms for efficient par-
allel generation. In /ICLR, 2024.

[Pandey et al., 2025] Tushar Pandey, Ara Ghukasyan, Oktay
Goktas, et al. Adaptive graph of thoughts: Test-time adap-
tive reasoning unifying chain, tree, and graph structures.
arXiv:2502.05078, 2025.

[Peng et al., 2025] Boci Peng, Yun Zhu, Yongchao Liu, et
al. Graph retrieval-augmented generation: A survey. ACM
Transactions on Information Systems, 2025.

[Qian e al., 2025] Chen Qian, Zihao Xie, YiFei Wang, et al.
Scaling large language model-based multi-agent collabo-
ration. In ICLR, 2025.

[Sakib and Sun, 2024] Md Sadman Sakib and Yu Sun. Con-
solidating trees of robotic plans generated using large lan-
guage models to improve reliability. arXiv:2401.07868,
2024.

[Sansford et al., 2024] Hannah Sansford, Nicholas Richard-
son, Hermina Petric Maretic, et al. Grapheval:
A knowledge-graph based llm hallucination evaluation
framework. arXiv:2407.10793, 2024.

[Sarthi ef al., 2024] Parth Sarthi, Salman Abdullah, Aditi
Tuli, et al. Raptor: Recursive abstractive processing for
tree-organized retrieval. In /CLR, 2024.

[Scarselli ef al., 2008] Franco Scarselli, Marco Gori,
Ah Chung Tsoi, et al. The graph neural network model.
IEEE transactions on neural networks, 2008.

[Sun et al., 2024] Jiashuo Sun, Chengjin Xu, Lumingyuan
Tang, et al. Think-on-graph: Deep and responsible rea-
soning of large language model on knowledge graph. In
ICLR, 2024.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, et al. Attention is all you need. NeurIPS, 2017.

[Wang et al., 2025] Jingwei Wang, Zai Zhang, Hao Qian, et
al. Enhancing llm tool use with high-quality instruction
data from knowledge graph. arXiv:2506.21071, 2025.

[Wen et al., 2024] Yilin Wen, Zifeng Wang, and Jimeng Sun.
Mindmap: Knowledge graph prompting sparks graph of
thoughts in large language models. In ACL, 2024.

[Wu et al., 2024] Xixi Wu, Yifei Shen, Caihua Shan, et al.

Can graph learning improve planning in llm-based agents?
NeurlPS, 2024.

[Xiong et al., 2024] Siheng Xiong, Ali Payani, Ramana
Kompella, et al. Large language models can learn tem-
poral reasoning. In ACL, 2024.

[Xiong et al., 2025] Zhen Xiong, Yujun Cai, Zhecheng Li, et
al. Mapping the minds of 1lms: A graph-based analysis of
reasoning llm. arXiv:2505.13890, 2025.

[Yao et al., 2023] Shunyu Yao, Dian Yu, Jeffrey Zhao, et al.
Tree of thoughts: Deliberate problem solving with large
language models. NeurlIPS, 2023.

[Yuan et al., 2024] Shuzhou Yuan, Ercong Nie, Michael
Fiérber, et al. Gnnavi: Navigating the information flow in
large language models by graph neural network. In ACL
(Findings), 2024.

[Zhang er al., 2022] Xikun Zhang, Antoine Bosselut, Michi-
hiro Yasunaga, et al. Greaselm: Graph reasoning enhanced
language models for question answering. In /CLR, 2022.

[Zhang ef al., 2024a] Yichi Zhang, Zhuo Chen, Lingbing
Guo, et al. Making large language models perform bet-
ter in knowledge graph completion. In ACM Multimedia,
2024.

[Zhang ef al., 2024b] Yifan Zhang, Yang Yuan, and An-
drew Chi-Chih Yao. On the diagram of thought.
arXiv:2409.10038, 2024.

[Zhang ef al., 2025a] Guibin Zhang, Yanwei Yue, Zhixun
Li, et al. Cut the crap: An economical communica-
tion pipeline for llm-based multi-agent systems. In /CLR,
2025.

[Zhang et al., 2025b] Jinghan Zhang, Xiting Wang, Weijiey-
ing Ren, et al. Ratt: A thought structure for coherent and
correct llm reasoning. In AAAI, 2025.

[Zhang er al., 2025¢] Yuanshuo Zhang, Yuchen Hou, Bohan
Tang, et al. Gnns as predictors of agentic workflow perfor-
mances. arXiv:2503.11301, 2025.

[Zhao et al., 2023] Wayne Xin Zhao, Kun Zhou, Junyi Li, et
al. A survey of large language models. arXiv:2303.18223,
2023.

[Zhou et al., 2024] Andy Zhou, Kai Yan, Michal
Shlapentokh-Rothman, et al. Language agent tree
search unifies reasoning, acting, and planning in language
models. In ICML, 2024.

[Zhuge et al., 2024] Mingchen Zhuge, Wenyi Wang, Louis

Kirsch, et al. Gptswarm: Language agents as optimizable
graphs. In ICML, 2024.

796
797

799
800

801
802
803

804
805
806

807
808
809

810
811
812

813
814
815

816
817
818
819

820
821
822

823
824
825
826

827
828
829

830
831
832
833

834
835
836

837
838
839

840
841
842

843
844
845
846

847
848
849

	Introduction
	Input Phase
	Prompt from Knowledge Graph
	Prompt from Corpus-Level Graph
	Prompt from Instance-Level Graph

	Model Phase
	Single Model
	Multiple Models

	Output Phase
	Reasoning
	Planning
	Evaluation

	Application
	Challenges and Future Directions
	Conclusion

