

Graph4LLM: A Systematic Survey of Graph-Enhanced Large Language Models

Xinyan Zhu¹, Cheng Yang¹, Qiuyu Wang¹, Zeyuan Guo¹, Yiding Wang¹, Zedi Liu¹, Chunchen Wang¹ and Chuan Shi^{1*}

¹Beijing University of Posts and Telecommunications

{zhuxinyan, yangcheng, autumn, guozeyuan, wangyiding, liuzedi, wangchunchen, shichuan}@bupt.edu.cn

Abstract

Large language models (LLMs) excel in natural language processing (NLP) tasks. However, they suffer from inherent limitations due to their sequence-based nature, such as structural information loss and factual unreliability. Graphs, with the ability to explicitly model entities and relations, offer an effective way to address these shortcomings. To systematically synthesize the emerging research on graph-enhanced LLMs, this survey, **Graph4LLM**, examines how these methods integrate graphs into various stages of the LLM pipeline, including the input, model, and output phases. For each phase, we provide a detailed review of the key methods and techniques. We also introduce a wide range of application scenarios where Graph4LLM methods demonstrate significant potential. Finally, we outline the challenges and future research directions for developing more efficient and interpretable solutions.

1 Introduction

Large language models (LLMs) are foundation models with billions of parameters, typically built on the Transformer architecture [Vaswani *et al.*, 2017] and pretrained on massive corpora. Under this paradigm, LLMs show impressive capabilities in natural language understanding, generation, and reasoning.

In practice, LLMs operate within a pipeline that structures information flow from input to output, as shown in Figure 1. (1) In the input phase, task specifications and external knowledge are introduced. This is done using techniques like few-shot prompting, retrieval-augmented generation (RAG) [Peng *et al.*, 2025], or by feeding the model curated training data. These methods help shape how the raw information is presented to the LLMs. (2) Next, the model focuses on processing these inputs. The Transformer-based architectures use attention mechanisms and feedforward layers to sequentially process the information, and can be further extended by multi-agent systems to coordinate multiple models through structured interactions. (3) Finally, in the output phase, LLMs



Figure 1: The overall pipeline of LLM (input phase, model phase, and output phase). The goal of our survey is to introduce: How can graphs participate in the organization of LLM inputs? How can graphs adapt the LLM architecture and collaborate multiple models? How can graphs guide the optimization of LLM outputs?

generate task-specific responses. These responses can include question answering, executable code, or decision-support artifacts, which serve as the interface between model predictions and downstream applications [Zhao *et al.*, 2023].

Despite their impressive performance, LLMs have inherent limitations, primarily due to their reliance on linear token sequences. Such sequential models struggle to capture complex relational structures, long-range dependencies, and multi-hop interactions, which are crucial for many knowledge-intensive tasks [Hong *et al.*, 2022]. Moreover, reasoning and planning processes are often encoded implicitly in latent representations. This makes intermediate states difficult to interpret, control, or verify systematically [Yao *et al.*, 2023]. LLMs are also vulnerable to factual inconsistencies and hallucinations, especially when tasks require precise relational reasoning or reliable knowledge grounding. These challenges highlight the inadequacy of sequence-centric models for tasks that require explicit structure, transparency, and robustness [Guan *et al.*, 2024].

To fix the problems of LLM modeling, graphs (non-Euclidean structures with nodes and edges to capture complex dependencies) and graph neural networks (GNNs, which use message-passing to learn local and global representations) [Scarselli *et al.*, 2008] provide complementary solutions. They achieve this by explicitly encoding relationships and dependencies to enable multi-hop reasoning and capture

*Corresponding author.

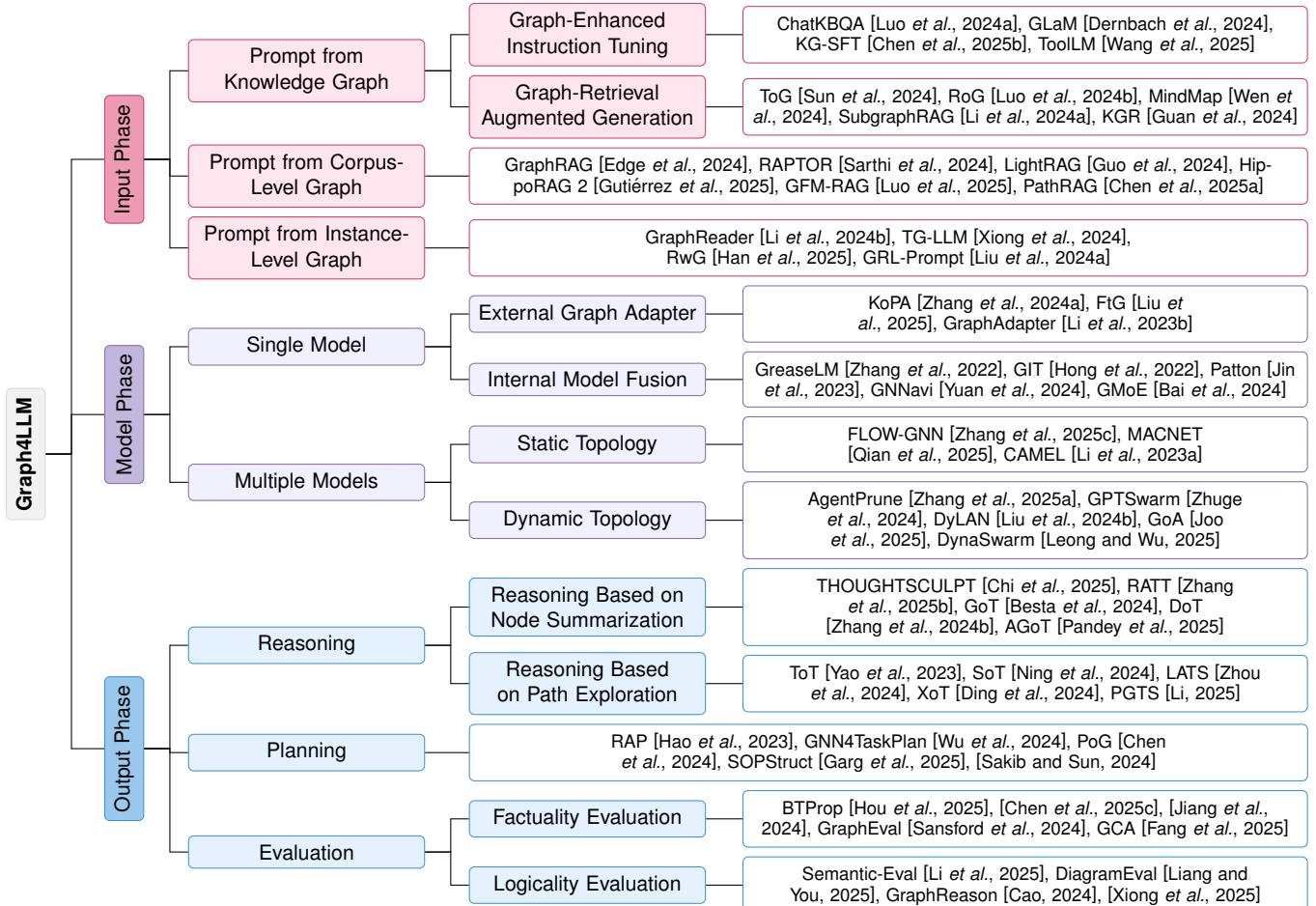


Figure 2: A taxonomy of **Graph4LLM** with representative examples.

non-linear structures. Additionally, graphs offer transparent, structured intermediate states that improve interpretability and verification. By integrating external knowledge graphs (KGs), they also enhance factual grounding, reducing hallucinations and enhancing comprehensive reliability.

Building on the potential of graphs to address LLMs limitations, graph-enhanced LLMs, which we refer to as **Graph4LLM**, leverage relational structures to handle complex, interconnected data more effectively. As a result, a growing body of work has emerged exploring different Graph4LLM methods. Despite this rapid development, research on Graph4LLM remains fragmented across communities and applications. Existing surveys often focus on narrow subtopics [Peng et al., 2025], such as graph-based RAG or multi-agent systems, lacking a unified view of how graphs interact with LLMs throughout the entire pipeline.

In contrast, this paper provides the first systematic, pipeline-oriented survey of **Graph4LLM**. Specifically, we categorize existing works according to the three phases of the LLM pipeline (Figure 2): (1) In the *input phase*, graphs transform complex and scattered information into structured prompts, so that key entities and relations are clearly presented to the LLMs. (2) In the *model phase*, graphs shape

the internal processing of model within a single model or organize interactions across multiple models, enabling controlled information flow and task coordination. (3) In the *output phase*, graphs reorganize LLM responses into structured representations, making intermediate steps and dependencies easy to inspect and verify. Based on this taxonomy, we further categorize each phase and present the specific methods, along with key design choices and trade-offs.

The remainder of this paper is organized as follows. Section 2 reviews multi-granularity prompt construction and knowledge incorporation techniques in the input phase. Section 3 examines single- and multi-model graph-enhanced systems in the model phase. Section 4 focuses on graph-structured reasoning, planning, and evaluation techniques in the output phase. Section 5 surveys representative Graph4LLM applications, and Section 6 discusses open challenges and future research directions. Overall, this organization follows the LLM pipeline and enables a systematic review of Graph4LLM methods.

2 Input Phase

The input phase of LLMs involves processing raw text, which is typically fed in a sequential manner. Graph4LLM input-

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

108
109
110

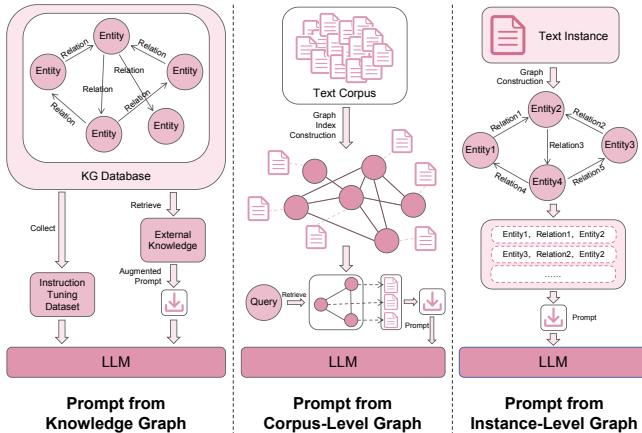


Figure 3: Different frameworks of Graph4LLM in the input phase.

phase methods extract knowledge from graphs or use them to index and organize text content. In this section, we categorize these methods based on the source of the graph structure (as shown in Figure 3): **Prompt from Knowledge Graph**, which utilizes pre-existing KGs; **Prompt from Corpus-Level Graph**, which constructs a global graph index from the text corpus; and **Prompt from Instance-Level Graph**, which induces ad-hoc structures based on specific input instances to guide the process.

2.1 Prompt from Knowledge Graph

Prompt from Knowledge Graph methods integrate existing KGs into LLM prompting pipelines to provide structured and reliable knowledge support. These methods rely on task-agnostic KGs and typically fall into two categories: Graph-Enhanced Instruction Tuning, which collects training data from KG facts and relations, and Graph-Retrieval Augmented Generation (Graph-RAG), which treats KGs as external knowledge databases for structured retrieval.

Graph-Enhanced Instruction Tuning modifies LLM parameters to align their representations with KG structures. It achieves this by constructing structure-aware instruction tuning data. This data injects explicit relational and logical information into the supervision signal, thereby enhancing the model’s understanding of graphs. Existing methods mainly differ in how training data are derived from KGs. ChatKBQA [Luo *et al.*, 2024a] fine-tunes LLMs by translating SPARQL queries associated with natural language questions into logical forms. GLaM [Dernbach *et al.*, 2024] generates graph-grounded QA data by encoding node-centered k-hop neighborhoods from domain-specific KGs. KG-SFT [Chen *et al.*, 2025b] extracts reasoning subgraphs to produce question–answer explanations while addressing knowledge conflicts. ToolLM [Wang *et al.*, 2025] extends this paradigm by incorporating tool-use instruction tuning. It converts KG relations into executable APIs and generates natural language queries with corresponding solution paths.

Building on the same goal of leveraging KG structure, **Graph-Retrieval Augmented Generation (Graph-RAG)** differs by keeping LLM parameters unchanged. It retrieves task-relevant subgraphs, explicitly exploiting graph topology

to provide knowledge support and enable evidence-based reasoning in real time. Existing methods mainly vary in their retrieval and reasoning strategies. ToG [Sun *et al.*, 2024] tightly couples LLMs with KGs by allowing the model to iteratively explore top-ranked reasoning paths through beam search over KG triples. RoG [Luo *et al.*, 2024b] frames reasoning as KG-grounded relation path planning, retrieving valid paths to support faithful and interpretable inference while distilling KG knowledge through targeted optimization objectives. MindMap [Wen *et al.*, 2024] adopts a prompting-based pipeline that extracts entities from inputs and constructs reasoning graphs by aggregating path-based and neighborhood evidence from KGs. To address retrieval efficiency and noise, SubgraphRAG [Li *et al.*, 2024a] introduces structure-aware subgraph retrieval with lightweight encoders and fixed in-context prompts, balancing computational cost and reasoning depth. Beyond retrieval, KGR [Guan *et al.*, 2024] incorporates iterative feedback mechanisms to verify and revise LLM-generated responses, mitigating hallucinations through KG-based self-correction.

2.2 Prompt from Corpus-Level Graph

In contrast to Prompt from Knowledge Graph, Prompt from Corpus-Level Graph constructs corpus-specific graph indices over unstructured text collections rather than relying on existing KGs. In this setting, nodes correspond to documents, entities, or concepts extracted from the corpus, and edges encode semantic or structural relations. Such graph indices enable LLMs to efficiently locate the associated textual content.

To address the lack of macro-level understanding in traditional RAG, a line of work explores global information aggregation through hierarchical structures. GraphRAG [Edge *et al.*, 2024] targets query-specific summarization over private corpora by constructing document graphs from text chunks. These graphs are organized into communities, and hierarchical summaries are generated using a Map-Reduce strategy. As a result, LLMs can integrate global context, leading to more comprehensive and diverse responses. RAPTOR [Sarthi *et al.*, 2024], on the other hand, introduces a recursive tree-based retrieval framework. By iteratively clustering text chunks, it builds a hierarchical summary tree and generates abstract summaries. This enables LLMs to retrieve high-level themes first and then access finer-grained details. Despite these advances, hierarchical aggregation can still lead to retrieval redundancy, longer reasoning chains, and limited control.

Recent work has shifted the focus from organizing information to optimizing the process of retrieval. They seek to progressively exploit and reuse these structures, improve generation efficiency and reducing retrieval noise. LightRAG [Guo *et al.*, 2024] uses graph-enhanced text indexing and dual-level retrieval to optimize reasoning over knowledge structures. It captures entity dependencies through structured graphs, while supporting incremental updates to avoid full-graph reconstruction costs. HippoRAG 2 [Gutiérrez *et al.*, 2025], inspired by the hippocampal memory system, combines LLM-based filtering with Personalized PageRank over open KGs. This graph unifies passages and phrases, enabling continual learning and associative retrieval at scale. To

address the generalization limitations of graph-enhanced retrieval, GFM-RAG [Luo *et al.*, 2025] trains a general graph foundation model (GFM) [Liu *et al.*, 2023] retriever through a two-stage process, which allows zero-shot multi-hop reasoning on unseen datasets. PathRAG [Chen *et al.*, 2025a] targets token inefficiency by pruning redundant information. It uses a flow-based algorithm to extract critical relational paths and provide ordered prompts, which improves logical coherence and reduces computational overhead.

2.3 Prompt from Instance-Level Graph

Unlike the previous two methods, Prompt from Instance-Level Graph does not use existing KGs or corpus-based index graphs. Instead, it emphasizes task-driven, on-the-fly graph construction and on-demand generation, converting a single, logically complex input instance into a graph representation. The resulting graph is then linearized into semi-structured text, which preserves the original structure and is directly fed to the LLMs.

In practical applications, researchers develop diverse graph construction and utilization strategies to address specific reasoning bottlenecks. To mitigate the "lost-in-the-middle" issue and high computational cost in long-context reasoning, GraphReader [Li *et al.*, 2024b] introduces a query-guided graph-based agent that organizes long documents into atomic fact graphs, enabling efficient multi-hop exploration under limited context windows. Focusing on temporal reasoning, TG-LLM [Xiong *et al.*, 2024] converts text into temporal graphs for graph-based inference. This process is enhanced by chain-of-thought bootstrapping and graph data augmentation, helping capture event order, duration, and inter-event relations more effectively. To address missing implicit conditions in logical reasoning, RwG [Han *et al.*, 2025] iteratively constructs and verifies explicit reasoning graphs from context and leverages them to improve multi-hop question answering. From a prompting perspective, GRL-Prompt [Liu *et al.*, 2024a] models queries and candidate demonstrations as heterogeneous graphs. It then applies reinforcement learning to explore high-order correlations, allowing for the automatic selection and arrangement of in-context examples.

3 Model Phase

The model phase of LLMs concerns both the internal architecture of the model and the way multiple agents collaborate. Graph4LLM model-phase methods introduce graph structures as explicit relational priors that complement the sequence-centric inductive bias of LLMs. Existing methods can be broadly categorized into two paradigms (as shown in Figure 4): **Single Model**, where graph modules are integrated into one LLM backbone with varying depth of fusion, and **Multiple Models**, where graphs specify or learn the communication topology and task dependencies among multiple models/agents.

3.1 Single Model

In the field of graph-enhanced single model, the core goal is to integrate structured graph signals within the LLM framework. This aims to improve the ability of model to process

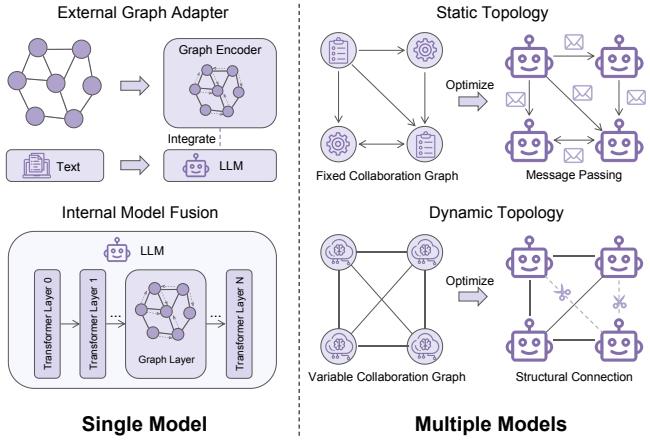


Figure 4: Different frameworks of Graph4LLM in the model phase.

relational and structural information within a unified backbone. Broadly, strategies diverge into two paradigms: External Graph Adapter, which adds graph adapters before the LLMs to fuse graph features, and Internal Model Fusion, which embeds structural interactions deeply into the model’s layers for bidirectional influence.

External Graph Adapter keeps the LLM backbone largely intact while integrating graph signals through auxiliary modules. Graph structures are encoded by dedicated graph encoders, often a GNN, and mapped into the LLM representation space using lightweight adaptation mechanisms. This allows for structure-aware reasoning without altering core model parameters. Representative methods differ in how graph information is encoded and fused. KoPA [Zhang *et al.*, 2024a] incorporates pre-trained structural embeddings of KGs via a prefix-style adapter, projecting them into the model’s latent space to enhance structural reasoning. FtG [Liu *et al.*, 2025] follows a filter-then-generate framework, leveraging serialized ego-graphs and a structure-text adapter to integrate graph topology while narrowing candidate entities. GraphAdapter [Li *et al.*, 2023b] extends this idea by constructing dual KGs with textual and visual substructures. Graph convolution is then applied to fuse structural knowledge into the adaptation module.

Unlike External Graph Adapter, **Internal Model Fusion** directly integrates graph layers into the internal computation of LLMs. This enables structural information to influence hidden-state updates, achieving deeper alignment between graphs and model representations. Existing methods are primarily distinguished by the integration locus of graph structure within the LLMs. A common design interleaves Transformer layers with GNN-style message passing or introduces cross-stream modules for bidirectional exchange between token and graph layers. A representative example is GreaseLM [Zhang *et al.*, 2022]. It jointly processes text and KGs using an LM and a GNN, and realizes structured interaction via dedicated interaction tokens, interaction nodes, and modality-specific interaction modules. Another integration pattern embeds graph structure directly into attention by encoding adjacency as masks, constraining information flow along graph edges or learned neighborhoods. GIT [Hong *et al.*, 2024] achieves this by fusing graph and text features into a unified attention space, allowing the model to reason over both modalities simultaneously.

al., 2022] exemplifies this integration, with similar graph-aware Transformers proving effective when graph topology is reliable and sparsity is desirable. Beyond layer interleaving and attention control, structural priors can also be incorporated through pretraining objectives and internal routing. Patton [Jin *et al.*, 2023] introduces structure-aware pretraining on text-rich networks by combining masked language modeling with network-context objectives. GNNavi [Yuan *et al.*, 2024] inserts a GNN layer into a frozen LLM decoder, using prompt-induced graphs to guide message passing for parameter-efficient few-shot learning. GMoE [Bai *et al.*, 2024] extends this idea with a graph-routed Mixture-of-Experts architecture. It coordinates expert collaboration via GNN-based routing and mitigates load imbalance using distribution strategies.

3.2 Multiple Models

Unlike single-model methods, graph-enhanced multiple models leverage graphs to coordinate interactions, communication flows, and task dependencies across multiple models or agents. These methods are categorized into Static and Dynamic Topology. Static Topology relies on predefined fixed graph structures to ensure controllable orchestration and reduce redundant messaging. Dynamic Topology, by contrast, adapts the graph at runtime through learning, pruning, or generation mechanisms, providing greater flexibility and responsiveness in multi-agent collaboration.

Static Topology uses a fixed collaboration graph to define communication links and artifact flows in multi-agent systems. The graph is predefined based on human priors or task logic (e.g., directed acyclic pipelines, hierarchical structures, or fixed role graphs), focusing on optimizing message passing and role execution. Within this paradigm, existing methods mainly differ in the source of the predefined collaboration graph. FLOW-GNN [Zhang *et al.*, 2025c] models agentic workflows as directed acyclic graphs (DAGs), where nodes represent system instructions and edges encode task dependencies. This allows efficient performance prediction through message passing without repeated LLM invocations. Along similar lines, MACNET [Qian *et al.*, 2025] organizes large-scale multi-agent systems into DAG-structured workflows with a consistent topological order. It supports structured reasoning and scalable collaboration among over a thousand agents. Fixed topologies may also stem from system-level role designs rather than explicit task decomposition. CAMEL [Li *et al.*, 2023a] adopts a fixed role-based interaction pattern, where predefined AI assistant and AI user roles coordinate autonomous cooperation through inception prompting.

Dynamic Topology uses a variable collaboration graph that can be learned or generated at runtime. Unlike static graphs, it allows agents to dynamically adjust connections based on current inputs, states, or feedback, offering greater flexibility in multi-agent coordination. Existing methods mainly differ in how and when the collaboration structure is adjusted or constructed. AgentPrune [Zhang *et al.*, 2025a] focuses on topology sparsification by learning to remove redundant connections from dense interaction graphs. It demonstrates that sparse communication structures can out-

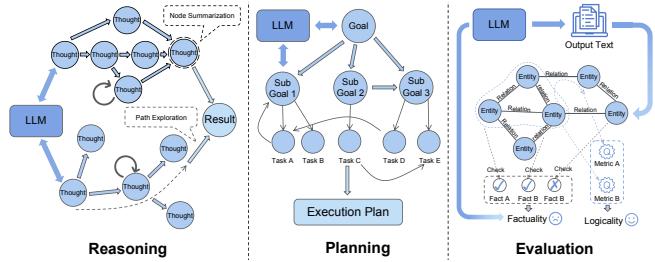


Figure 5: Different frameworks of Graph4LLM in the output phase.

perform dense ones at a lower cost. GPTSwarm [Zhuge *et al.*, 2024] treats agents and their connections as jointly optimizable components by formulating multi-agent coordination as graph optimization over node operations and edge dataflow, while DyLAN [Liu *et al.*, 2024b] dynamically selects contributing agents and evolves communication graphs for task-oriented collaboration. Inference-time structure generation further enables query-specific collaboration graphs, where GoA [Joo *et al.*, 2025] expands agent-level interaction graphs for nonlinear context extension. And DynaSwarm [Leong and Wu, 2025] learns to select suitable communication graphs per query via reinforcement learning.

4 Output Phase

The output phase of LLMs generates text sequences based on the internal representation and the received context. Graph4LLM output-phase methods represent LLM responses as graphs to clarify the thinking process, enabling more structured and verifiable outputs. We categorize existing methods into three directions based on the function of the graphs (as shown in Figure 5): **Reasoning**, which represents and traverses intermediate inference states; **Planning**, which organizes multi-step decision making and action sequences; and **Evaluation**, where graphs serve as structured references for verifying and scoring generated content.

4.1 Reasoning

Graph-based Reasoning uses graph structures to organize reasoning thoughts as relationships and dependencies between entities, improving clarity and interpretability of model outputs. Methods in this category fall into two main types: Reasoning Based on Node Summarization, which consolidates information around key nodes to guide reasoning, and Reasoning Based on Path Exploration, which conducts reasoning along sequential or branching paths.

Reasoning Based on Node Summarization organizes reasoning around central nodes that aggregate information from multiple steps. Each node acts as an information hub, condensing partial conclusions. The reasoning process converges to a final node where relevant information is summarized and synthesized into the output. Existing methods differ mainly in how reasoning nodes are structured and updated. THOUGHTSCULPT [Chi *et al.*, 2025] adopts a search-driven formulation within a Monte Carlo Tree Search (MCTS) framework. It integrates a thought generator, evaluator, and a decision simulator, while iteratively revising node-

407 level summaries. RATT [Zhang *et al.*, 2025b] similarly lever- 465
408 ages tree-structured reasoning, but emphasizes path evalua- 466
409 tion and branch selection, using node representations to iden- 467
410 tify promising reasoning trajectories. Beyond tree structures, 468
411 node summarization can be extended to more general graph 469
412 organizations. GoT [Besta *et al.*, 2024] frames it as a way 470
413 for modeling dependencies among thoughts. It organizes rea- 471
414 soning steps into a graph, where edges encode inter-thought 472
415 relations to support complex reasoning. DoT [Zhang *et al.*, 473
416 2024b] further operationalizes this idea with a DAG-based 474
417 structure that enables node-level critique and revision of log- 475
418 ical dependencies. AGoT [Pandey *et al.*, 2025] takes a task- 476
419 decomposition perspective, breaking problems into structured 477
420 sub-tasks represented as nodes. Node information then coor- 478
421 dinates intermediate results across the decomposition hier- 479
422 archy.

423 By comparison, **Reasoning Based on Path Exploration** 480
424 frames reasoning as a traversal over multiple candidate paths. 481
425 Information is not centralized at a single node but distributed 482
426 along a path. Each node on the path corresponds to an in- 483
427 dependent action or intermediate decision. The final output 484
428 is constructed by the accumulation of information along the 485
429 selected path. Existing methods mainly differ in how paths 486
430 are generated and selected during exploration. ToT [Yao *et* 487
431 *al.*, 2023] represents reasoning as a tree and performs se- 488
432 quential branch exploration, explicitly comparing alternative 489
433 paths to identify the most promising trajectory. Building on 490
434 this formulation, SoT [Ning *et al.*, 2024] adopts a skeleton- 491
435 first strategy, generating concise outlines that are later ex- 492
436 panded in parallel to improve exploration efficiency. To fur- 493
437 ther enhance path selection under long-horizon decision mak- 494
438 ing, LATS [Zhou *et al.*, 2024] incorporates MCTS, tightly 495
439 coupling reasoning, acting, and planning during exploration. 496
440 Along a similar line, XoT [Ding *et al.*, 2024] augments 497
441 MCTS with pretraining signals and external domain knowl- 498
442 edge, enabling more flexible and informed traversal of rea- 499
443 soning paths. And PGTS [Li, 2025] moves toward learning- 500
444 based control, integrating reinforcement learning with struc- 501
445 tured tree search to dynamically navigate reasoning paths 502
446 without relying on hand-crafted heuristics. 503

4.2 Planning

504 Building on reasoning capabilities, Graph-based Planning fo- 505
505 cuses on task organization rather than inference. It leverages 506
506 graphs to organize and manage interdependent goals, tasks 507
507 and actions, enabling LLMs to handle complex multi-step 508
508 tasks through plan execution.

509 Existing methods mainly differ in how they use graphs 510
510 for task decomposition and execution. Typically, RAP [Hao 511
511 *et al.*, 2023] treats graphs as task decomposition tools, 512
512 breaking user requests into solvable sub-tasks represented 513
513 as nodes with dependency edges. GNNs are then used to 514
514 support sub-task retrieval and execution. Along the same 515
515 line, GNN4TaskPlan [Wu *et al.*, 2024] examines how learned 516
516 graph representations impact planning quality. It uses em- 517
517 pirical analysis to explore the role of graph-based learning 518
518 in optimizing decision-making for LLM-based agents. Mov- 519
519 ing beyond static task representations, PoG [Chen *et al.*, 520
520 2024] uses graphs as feedback structures during planning.

521 These graphs incrementally construct and revise multi-level 522
522 sub-goal graphs to detect deviations and enable correction 523
523 through backtracking or path expansion. Furthermore, SOP- 524
524 Struct [Garg *et al.*, 2025] introduces a framework where 525
525 LLMs transform unstructured natural language Standard Op- 526
526 erating Procedures (SOPs) into a structured DAG. This DAG 527
527 captures logical and temporal dependencies, utilizing deter- 528
528 ministic verification via PDDL and non-deterministic evalua- 529
529 tion by LLMs to ensure the quality of the representation. In 530
530 robotic task planning, [Sakib and Sun, 2024] utilizes graphs 531
531 as execution-oriented interfaces. Multiple GPT-4-generated 532
532 task trees are consolidated into a unified plan, which is then 533
533 converted into executable low-level actions through cost- 534
534 aware selection and symbolic planning.

4.3 Evaluation

535 Unlike reasoning and planning, Graph-based Evaluation fo- 536
536 cuses on assessing LLM outputs. It uses graph structures 537
537 to capture richer associations among entities, facts, and sen- 538
538 tences. Specifically, evaluation methods can be categorized 539
539 into two main types: Factuality Evaluation, which assesses 540
540 the accuracy and reliability of generated content through ex- 541
541 plicit entity and relation modeling; Logicality Evaluation, 542
542 which measures logical coherence and reasoning consistency 543
543 using graph-based relational representations.

544 **Factuality Evaluation** checks if LLM outputs meet cor- 545
545 rectness requirements by modeling content as structured 546
546 graphs to verify dependencies, propagate uncertainty, and 547
547 detect inconsistencies. Existing methods mainly differ in 548
548 the form of evidence they construct and how it is aligned 549
549 with model outputs. BTProp [Hou *et al.*, 2025] focuses 550
550 on intra-output uncertainty propagation, introducing a belief- 551
551 tree Markov framework that models logical relations between 552
552 claims and propagates uncertainty through structured depen- 553
553 dencies. [Chen *et al.*, 2025c] similarly operates at the 554
554 single-output level but emphasizes cross-sentence contradic- 555
555 tions and entity-level interactions to estimate factual reliabil- 556
556 ity. [Jiang *et al.*, 2024] further explores uncertainty estima- 557
557 tion by organizing claims and evidence into bipartite struc- 558
558 tures, showing that graph centrality provides more robust sig- 559
559 nals than frequency-based heuristics. Moving toward exter- 560
560 nal grounding, GraphEval [Sansford *et al.*, 2024] converts 561
561 generated text into structured knowledge aligned with KG 562
562 triples. NLI-based verification is then incorporated to en- 563
563 able interpretable factual assessment. Beyond single outputs, 564
564 GCA [Fang *et al.*, 2025] evaluates factuality across multiple 565
565 responses. It constructs triple graphs over samples and ap- 566
566 plies RGCN-based reconstruction for black-box verification.

567 At a higher level, **Logicality Evaluation** assesses the qual- 568
568 ity of reasoning in LLM outputs. It goes beyond factual 569
569 correctness to examine semantic coherence, inferential struc- 570
570 ture, and the organization of logical transitions using ex- 571
571 plicit relational representations. Existing methods mainly 572
572 differ in which stage and granularity of structure they tar- 573
573 get. Semantic-Eval [Li *et al.*, 2025] proposes a training-free 574
574 framework that constructs sentence-level semantic graphs. 575
575 It applies SemanticRank to weight logical contributions 576
576 and integrates pre-trained NLI models to mitigate semantic- 577
577 matching bias. DiagramEval [Liang and You, 2025] targets 578
578

523 chart reasoning by abstracting diagrams into directed “el-
524 ement–relation” graphs and evaluating node and path-level
525 alignment. For reasoning-process verification, GraphReason
526 [Cao, 2024] merges shared intermediate steps across multiple
527 reasoning paths into a unified graph and applies a GIN-based
528 verifier. Beyond verification, graph-based analyses are also
529 used to study reasoning behavior: [Xiong *et al.*, 2025] clusters
530 semantically coherent CoT steps to construct reasoning
531 graphs and analyze structural properties.

532 5 Application

533 Graph4LLM finds wide applications across various domains,
534 significantly enhancing both task-level and domain-specific
535 performance.

536 In **classic natural language processing (NLP)** tasks,
537 graph structures are used to capture dependencies at dif-
538 ferent levels of language. They support a range of applica-
539 tions, including sequence tagging, information extraction,
540 and text generation. By explicitly modeling syntactic, seman-
541 tic, and discourse-level relationships, these graphs improve
542 the ability to understand and generate natural language. In the
543 realm of **code**-related applications, Graph4LLM methods op-
544 erate at multiple granularities. At the function level, control-
545 flow, data-flow, and call graphs are employed to deepen code
546 understanding and aid in generation. On a larger scale,
547 repository-level graphs are built to represent dependencies
548 across files and modules, enabling cross-function reasoning,
549 program analysis, and software maintenance tasks. For **tab-**
550 **ular** reasoning, graphs are used to capture relationships be-
551 tween rows, columns, and cells. This structure facilitates
552 multi-hop reasoning and complex query answering, going be-
553 yond the limitations of linear table formats. Graph4LLM
554 methods are also widely utilized in **recommendation** sys-
555 tems. User-item interaction graphs enable LLMs to incorpo-
556 rate relational signals, recognizing collaborative patterns that
557 enhance decision-making processes.

558 Beyond task types, Graph4LLM shows significant effec-
559 tiveness in **domain**-specific applications. In medicine, graphs
560 represent clinical knowledge and biomedical entities, helping
561 with diagnosis and decision support. In education, con-
562 cept graphs and prerequisite structures are used for curricu-
563 lum planning and personalized tutoring. Financial applica-
564 tions benefit from relational graphs between entities, transac-
565 tions, and events, which help in risk analysis and decision-
566 making under uncertainty. In the legal field, citation and
567 statute graphs provide a structured framework for legal rea-
568 soning and case analysis. Lastly, in electronic design au-
569 tomation (EDA), graphs of hardware description languages
570 and module dependencies support LLM-based reasoning over
571 hardware logic.

572 6 Challenges and Future Directions

573 **Graph construction quality and robustness.** The effec-
574 tiveness of Graph4LLM methods critically depends on the
575 quality and robustness of the constructed graphs. In prac-
576 tice, graphs are often derived from noisy corpora or imperfect
577 knowledge bases, making them prone to incompleteness, spu-
578 rious relations, and structural bias. These imperfections can

579 propagate through downstream components, leading to mis-
580 leading retrieval results and distorted reasoning trajectories.
581 Future work should therefore prioritize robust and adaptive
582 graph construction, capable of handling varying data qual-
583 ity and uncertainties. This can be achieved, for instance, by
584 incorporating uncertainty quantification methods applied to
585 graph nodes and edges, enabling LLMs to reason over proba-
586 bilistic or graded relations. Additionally, iterative refinement
587 mechanisms that leverage feedback from LLM outputs to re-
588 vise or prune unreliable structures represent a promising di-
589 rection.

590 **Complexity challenges from explicit structural expan-
591 sion.** While richer graphs can represent more entities and
592 relations, increasing graph size, density, or heterogeneity
593 also introduces significant computational and cognitive chal-
594 lenges. In reasoning tasks, large or highly connected graphs
595 can lead to a combinatorial explosion of paths, making search
596 methods inefficient or unstable. Future research should focus
597 on complexity-aware graph designs, such as structure prun-
598 ing and hierarchical representations. These methods should
599 align graph granularity with task needs, enabling the model
600 to focus on the most relevant structures at each stage. De-
601 veloping criteria to determine when and how much structure
602 to expose to the LLMs will be key for scalable and reliable
603 reasoning. This will help transition Graph4LLM from being
604 “structure-rich” to “structure-effective”.

605 **Towards self-improving Graph4LLM: distillation,
606 feedback, and co-evolution.** Despite their effectiveness,
607 most existing Graph4LLM methods use a unidirectional
608 process, where graphs assist LLMs at specific stages but
609 remain external to the model. The information in these
610 graphs is consumed only during generation and not retained
611 afterward, causing valuable structural signals to be repeat-
612 edly reconstructed, which limits efficiency and long-term
613 knowledge transfer. To address these limitations, future
614 work should focus on self-improving Graph4LLM systems.
615 One promising method is graph-to-model distillation, where
616 useful relational patterns from the Graph4LLM process are
617 distilled into the model’s internal representations through
618 fine-tuning or knowledge distillation. This would allow the
619 model to internalize structural priors and reduce reliance on
620 explicit graphs during inference. Model-to-graph feedback
621 can also refine graph construction, enabling representations
622 to evolve based on utility and support more robust, reusable
623 structures.

624 7 Conclusion

625 This paper presents a systematic survey of Graph4LLM, cate-
626 gorizing existing graph-enhanced LLM methods in the input,
627 model, and output phases. It covers representative methods
628 across different paradigms and their diverse application sce-
629 narios. Additionally, the paper summarizes key challenges
630 facing current Graph4LLM research and outlines future re-
631 search directions. By providing a coherent structural perspec-
632 tive on the integration of graphs and LLMs, this survey offers
633 a concise overview of the field, facilitating a clear understand-
634 ing of how graphs enhance the capabilities of LLMs.

635 References

636 [Bai *et al.*, 2024] Ting Bai, Yue Yu, Le Huang, et al. Gmoe: 637 Empowering llms fine-tuning via moe graph collaboration. 638 *arXiv:2412.16216*, 2024.

639 [Besta *et al.*, 2024] Maciej Besta, Nils Blach, Ales Kubicek, 640 et al. Graph of thoughts: Solving elaborate problems with 641 large language models. In *AAAI*, 2024.

642 [Cao, 2024] Lang Cao. Graphreason: Enhancing reasoning 643 capabilities of large language models through a graph- 644 based verification approach. In *Proceedings of the 2nd 645 Workshop on Natural Language Reasoning and Structured 646 Explanations (@ ACL 2024)*, 2024.

647 [Chen *et al.*, 2024] Liyi Chen, Panrong Tong, Zhongming 648 Jin, et al. Plan-on-graph: Self-correcting adaptive plan- 649 ning of large language model on knowledge graphs. 650 *NeurIPS*, 2024.

651 [Chen *et al.*, 2025a] Boyu Chen, Zirui Guo, Zidan Yang, et 652 al. Pathrag: Pruning graph-based retrieval augmented gen- 653 eration with relational paths. *arXiv:2502.14902*, 2025.

654 [Chen *et al.*, 2025b] Hanzhu Chen, Xu Shen, Jie Wang, et al. 655 Knowledge graph finetuning enhances knowledge manip- 656 ulation in large language models. In *ICLR*, 2025.

657 [Chen *et al.*, 2025c] Kedi Chen, Qin Chen, Jie Zhou, et al. 658 Enhancing uncertainty modeling with semantic graph for 659 hallucination detection. In *AAAI*, 2025.

660 [Chi *et al.*, 2025] Yizhou Chi, Kevin Yang, and Dan Klein. 661 Thoughtsculpt: Reasoning with intermediate revision and 662 search. In *NAACL (Findings)*, 2025.

663 [Dernbach *et al.*, 2024] Stefan Dernbach, Khushbu Agarwal, 664 Alejandro Zuniga, et al. Glam: Fine-tuning large language 665 models for domain knowledge graph alignment via neigh- 666 borhood partitioning and generative subgraph encoding. In 667 *AAAI*, 2024.

668 [Ding *et al.*, 2024] Ruomeng Ding, Chaoyun Zhang, 669 Lu Wang, et al. Everything of thoughts: Defying the 670 law of penrose triangle for thought generation. In *ACL 671 (Findings)*, 2024.

672 [Edge *et al.*, 2024] Darren Edge, Ha Trinh, Newman Cheng, 673 et al. From local to global: A graph rag approach to query- 674 focused summarization. *arXiv:2404.16130*, 2024.

675 [Fang *et al.*, 2025] Xinyue Fang, Zhen Huang, Zhiliang 676 Tian, et al. Zero-resource hallucination detection for text 677 generation via graph-based contextual knowledge triples 678 modeling. In *AAAI*, 2025.

679 [Garg *et al.*, 2025] Deepeka Garg, Sihan Zeng, Sumitra 680 Ganesh, et al. Generating structured plan representation 681 of procedures with llms. *arXiv:2504.00029*, 2025.

682 [Guan *et al.*, 2024] Xinyan Guan, Yanjiang Liu, Hongyu 683 Lin, et al. Mitigating large language model hallucinations 684 via autonomous knowledge graph-based retrofitting. In 685 *AAAI*, 2024.

686 [Guo *et al.*, 2024] Zirui Guo, Lianghao Xia, Yanhua Yu, et 687 al. Lightrag: Simple and fast retrieval-augmented genera- 688 tion. *arXiv:2410.05779*, 2024.

693 [Gutiérrez *et al.*, 2025] Bernal Jiménez Gutiérrez, Yiheng 694 Shu, Weijian Qi, et al. From rag to memory: Non- 695 parametric continual learning for large language models. 696 In *ICML*, 2025.

696 [Han *et al.*, 2025] Haoyu Han, Yaochen Xie, Hui Liu, et al. 697 Reasoning with graphs: Structuring implicit knowledge to 698 enhance llms reasoning. *arXiv:2501.07845*, 2025.

696 [Hao *et al.*, 2023] Shibo Hao, Yi Gu, Haodi Ma, et al. Rea- 697 soning with language model is planning with world model. 698 In *EMNLP*, 2023.

699 [Hong *et al.*, 2022] Giwon Hong, Jeonghwan Kim, Junmo 700 Kang, et al. Graph-induced transformers for efficient 701 multi-hop question answering. In *EMNLP*, 2022.

702 [Hou *et al.*, 2025] Bairu Hou, Yang Zhang, Jacob Andreas, 703 et al. A probabilistic framework for llm hallucination de- 704 tection via belief tree propagation. In *NACCL*, 2025.

705 [Jiang *et al.*, 2024] Mingjian Jiang, Yangjun Ruan, Prasanna 706 Sattigeri, et al. Graph-based uncertainty metrics for long- 707 form language model generations. *NeurIPS*, 2024.

708 [Jin *et al.*, 2023] Bowen Jin, Wentao Zhang, Yu Zhang, et al. 709 Patton: Language model pretraining on text-rich networks. 710 In *ACL*, 2023.

711 [Joo *et al.*, 2025] Taejong Joo, Shu Ishida, Ivan Sosnovik, et 712 al. Graph of agents: Principled long context modeling 713 by emergent multi-agent collaboration. *arXiv:2509.21848*, 714 2025.

715 [Leong and Wu, 2025] Hui Yi Leong and Yuqing Wu. Dy- 716 naswarm: Dynamically graph structure selection for llm- 717 based multi-agent system. *arXiv:2507.23261*, 2025.

718 [Li *et al.*, 2023a] Guohao Li, Hasan Hammoud, Hani Itani, 719 et al. Camel: Communicative agents for “mind” explo- 720 ration of large language model society. *NeurIPS*, 2023.

721 [Li *et al.*, 2023b] Xin Li, Dongze Lian, Zhihe Lu, et al. 722 Graphadapter: Tuning vision-language models with dual 723 knowledge graph. *NeurIPS*, 2023.

724 [Li *et al.*, 2024a] Mufei Li, Siqi Miao, and Pan Li. Simple 725 is effective: The roles of graphs and large language mod- 726 els in knowledge-graph-based retrieval-augmented genera- 727 tion. *arXiv:2410.20724*, 2024.

728 [Li *et al.*, 2024b] Shilong Li, Yancheng He, Hangyu Guo, 729 et al. Graphreader: Building graph-based agent to en- 730 hance long-context abilities of large language models. In 731 *EMNLP (Findings)*, 2024.

732 [Li *et al.*, 2025] Shusheng Li, Jiale Li, Yifei Qu, et al. 733 Semantic-eval: A semantic comprehension evaluation 734 framework for large language models generation without 735 training. In *ACL*, 2025.

736 [Li, 2025] Yang Li. Policy guided tree search for enhanced 737 llm reasoning. In *ICML*, 2025.

738 [Liang and You, 2025] Chumeng Liang and Jiaxuan You. 739 Diagrameval: Evaluating llm-generated diagrams via 740 graphs. In *EMNLP*, 2025.

741 [Liu *et al.*, 2023] Jiawei Liu, Cheng Yang, Zhiyuan Lu, et al. 796
 742 Towards graph foundation models: A survey and beyond. 797
 743 *arXiv:2310.11829*, 2023.

744 [Liu *et al.*, 2024a] Yuze Liu, Tingjie Liu, Tiehua Zhang, 798
 745 et al. Grl-prompt: Towards knowledge graph 799
 746 based prompt optimization via reinforcement learning. 800
 747 *arXiv:2411.14479*, 2024.

748 [Liu *et al.*, 2024b] Zijun Liu, Yanzhe Zhang, Peng Li, et al. 801
 749 A dynamic llm-powered agent network for task-oriented 802
 750 agent collaboration. In *COLM*, 2024.

751 [Liu *et al.*, 2025] Ben Liu, Jihai Zhang, Fangquan Lin, et 803
 752 al. Filter-then-generate: Large language models with 804
 753 structure-text adapter for knowledge graph completion. In 805
 754 *COLING*, 2025.

755 [Luo *et al.*, 2024a] Haoran Luo, E Haihong, Zichen Tang, 806
 756 et al. Chatkbqa: A generate-then-retrieve framework for 807
 757 knowledge base question answering with fine-tuned large 808
 758 language models. In *ACL (Findings)*, 2024.

759 [Luo *et al.*, 2024b] Linhao Luo, Yuan-Fang Li, Gholamreza 809
 760 Haffari, et al. Reasoning on graphs: Faithful and 810
 761 interpretable large language model reasoning. In *ICLR*, 2024.

762 [Luo *et al.*, 2025] Linhao Luo, Zicheng Zhao, Gholamreza 811
 763 Haffari, et al. Gfm-rag: graph foundation model for 812
 764 retrieval augmented generation. *arXiv:2502.01113*, 2025.

765 [Ning *et al.*, 2024] Xuefei Ning, Zinan Lin, Zixuan Zhou, et 813
 766 al. Skeleton-of-thought: Prompting llms for efficient 814
 767 parallel generation. In *ICLR*, 2024.

768 [Pandey *et al.*, 2025] Tushar Pandey, Ara Ghukasyan, Oktay 815
 769 Goktas, et al. Adaptive graph of thoughts: Test-time adaptive 816
 770 reasoning unifying chain, tree, and graph structures. 817
 771 *arXiv:2502.05078*, 2025.

772 [Peng *et al.*, 2025] Boci Peng, Yun Zhu, Yongchao Liu, et 818
 773 al. Graph retrieval-augmented generation: A survey. *ACM 819*
 774 *Transactions on Information Systems*, 2025.

775 [Qian *et al.*, 2025] Chen Qian, Zihao Xie, YiFei Wang, et al. 820
 776 Scaling large language model-based multi-agent collabora- 821
 777 tion. In *ICLR*, 2025.

778 [Sakib and Sun, 2024] Md Sadman Sakib and Yu Sun. 822
 779 Consolidating trees of robotic plans generated using large 823
 780 language models to improve reliability. *arXiv:2401.07868*, 2024.

781 [Sansford *et al.*, 2024] Hannah Sansford, Nicholas Richardson, 824
 783 Hermina Petric Maretic, et al. Grapheval: 825
 784 A knowledge-graph based llm hallucination evaluation 826
 785 framework. *arXiv:2407.10793*, 2024.

786 [Sarthi *et al.*, 2024] Parth Sarthi, Salman Abdullah, Aditi 827
 787 Tuli, et al. Raptor: Recursive abstractive processing for 828
 788 tree-organized retrieval. In *ICLR*, 2024.

789 [Scarselli *et al.*, 2008] Franco Scarselli, Marco Gori, 829
 790 Ah Chung Tsoi, et al. The graph neural network model. 830
 791 *IEEE transactions on neural networks*, 2008.

792 [Sun *et al.*, 2024] Jiashuo Sun, Chengjin Xu, Lumingyuan 831
 793 Tang, et al. Think-on-graph: Deep and responsible 832
 794 reasoning of large language model on knowledge graph. In 833
 795 *ICLR*, 2024.

51 [Vaswani *et al.*, 2017] Ashish Vaswani, Noam Shazeer, Niki 796
 52 Parmar, et al. Attention is all you need. *NeurIPS*, 2017.

53 [Wang *et al.*, 2025] Jingwei Wang, Zai Zhang, Hao Qian, et 797
 54 al. Enhancing llm tool use with high-quality instruction 798
 55 data from knowledge graph. *arXiv:2506.21071*, 2025.

56 [Wen *et al.*, 2024] Yilin Wen, Zifeng Wang, and Jimeng Sun. 800
 57 Mindmap: Knowledge graph prompting sparks graph of 801
 58 thoughts in large language models. In *ACL*, 2024.

59 [Wu *et al.*, 2024] Xixi Wu, Yifei Shen, Caihua Shan, et al. 802
 60 Can graph learning improve planning in llm-based agents? 803
 61 *NeurIPS*, 2024.

62 [Xiong *et al.*, 2024] Siheng Xiong, Ali Payani, Ramana 804
 63 Kompella, et al. Large language models can learn tem- 805
 64 poral reasoning. In *ACL*, 2024.

65 [Xiong *et al.*, 2025] Zhen Xiong, Yujun Cai, Zhecheng Li, et 806
 66 al. Mapping the minds of llms: A graph-based analysis of 807
 67 reasoning llm. *arXiv:2505.13890*, 2025.

68 [Yao *et al.*, 2023] Shunyu Yao, Dian Yu, Jeffrey Zhao, et al. 808
 69 Tree of thoughts: Deliberate problem solving with large 809
 70 language models. *NeurIPS*, 2023.

71 [Yuan *et al.*, 2024] Shuzhou Yuan, Ercong Nie, Michael 810
 72 Färber, et al. Gnnavi: Navigating the information flow in 811
 73 large language models by graph neural network. In *ACL 812*
 74 (*Findings*), 2024.

75 [Zhang *et al.*, 2022] Xikun Zhang, Antoine Bosselut, Michi- 813
 76 hiro Yasunaga, et al. Greaselm: Graph reasoning enhanced 814
 77 language models for question answering. In *ICLR*, 2022.

78 [Zhang *et al.*, 2024a] Yichi Zhang, Zhuo Chen, Lingbing 815
 79 Guo, et al. Making large language models perform bet- 816
 80 ter in knowledge graph completion. In *ACM Multimedia*, 2024.

81 [Zhang *et al.*, 2024b] Yifan Zhang, Yang Yuan, and Andrew 817
 82 Chi-Chih Yao. On the diagram of thought. 818
 83 *arXiv:2409.10038*, 2024.

84 [Zhang *et al.*, 2025a] Guibin Zhang, Yanwei Yue, Zhixun 819
 85 Li, et al. Cut the crap: An economical communica- 820
 86 tion pipeline for llm-based multi-agent systems. In *ICLR*, 2025.

87 [Zhang *et al.*, 2025b] Jinghan Zhang, Xiting Wang, Weijiey- 821
 88 ing Ren, et al. Ratt: A thought structure for coherent and 822
 89 correct llm reasoning. In *AAAI*, 2025.

90 [Zhang *et al.*, 2025c] Yuanshuo Zhang, Yuchen Hou, Bohan 823
 91 Tang, et al. Gnnas as predictors of agentic workflow per- 824
 92 formances. *arXiv:2503.11301*, 2025.

93 [Zhao *et al.*, 2023] Wayne Xin Zhao, Kun Zhou, Junyi Li, et 825
 94 al. A survey of large language models. *arXiv:2303.18223*, 2023.

95 [Zhou *et al.*, 2024] Andy Zhou, Kai Yan, Michal 826
 96 Shlapentokh-Rothman, et al. Language agent tree 827
 97 search unifies reasoning, acting, and planning in language 828
 98 models. In *ICML*, 2024.

99 [Zhuge *et al.*, 2024] Mingchen Zhuge, Wenyi Wang, Louis 829
 100 Kirsch, et al. Gptswarm: Language agents as optimizable 830
 101 graphs. In *ICML*, 2024.