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Abstract
Large language models (LLMs) excel in natu-1

ral language processing (NLP) tasks. However,2

they suffer from inherent limitations due to their3

sequence-based nature, such as structural informa-4

tion loss and factual unreliability. Graphs, with5

the ability to explicitly model entities and rela-6

tions, offer an effective way to address these short-7

comings. To systematically synthesize the emerg-8

ing research on graph-enhanced LLMs, this sur-9

vey, Graph4LLM, examines how these methods10

integrate graphs into various stages of the LLM11

pipeline, including the input, model, and output12

phases. For each phase, we provide a detailed13

review of the key methods and techniques. We14

also introduce a wide range of application scenarios15

where Graph4LLM methods demonstrate signifi-16

cant potential. Finally, we outline the challenges17

and future research directions for developing more18

efficient and interpretable solutions.19

1 Introduction20

Large language models (LLMs) are foundation models with21

billions of parameters, typically built on the Transformer ar-22

chitecture [Vaswani et al., 2017] and pretrained on massive23

corpora. Under this paradigm, LLMs show impressive ca-24

pabilities in natural language understanding, generation, and25

reasoning.26

In practice, LLMs operate within a pipeline that structures27

information flow from input to output, as shown in Figure 1.28

(1) In the input phase, task specifications and external knowl-29

edge are introduced. This is done using techniques like few-30

shot prompting, retrieval-augmented generation (RAG) [Peng31

et al., 2025], or by feeding the model curated training data.32

These methods help shape how the raw information is pre-33

sented to the LLMs. (2) Next, the model focuses on pro-34

cessing these inputs. The Transformer-based architectures35

use attention mechanisms and feedforward layers to sequen-36

tially process the information, and can be further extended by37

multi-agent systems to coordinate multiple models through38

structured interactions. (3) Finally, in the output phase, LLMs39
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Figure 1: The overall pipeline of LLM (input phase, model phase,
and output phase). The goal of our survey is to introduce: How
can graphs participate in the organization of LLM inputs? How can
graphs adapt the LLM architecture and collaborate multiple models?
How can graphs guide the optimization of LLM outputs?

generate task-specific responses. These responses can include 40

question answering, executable code, or decision-support ar- 41

tifacts, which serve as the interface between model predic- 42

tions and downstream applications [Zhao et al., 2023]. 43

Despite their impressive performance, LLMs have inherent 44

limitations, primarily due to their reliance on linear token se- 45

quences. Such sequential models struggle to capture complex 46

relational structures, long-range dependencies, and multi-hop 47

interactions, which are crucial for many knowledge-intensive 48

tasks [Hong et al., 2022]. Moreover, reasoning and planning 49

processes are often encoded implicitly in latent representa- 50

tions. This makes intermediate states difficult to interpret, 51

control, or verify systematically [Yao et al., 2023]. LLMs 52

are also vulnerable to factual inconsistencies and hallucina- 53

tions, especially when tasks require precise relational reason- 54

ing or reliable knowledge grounding. These challenges high- 55

light the inadequacy of sequence-centric models for tasks that 56

require explicit structure, transparency, and robustness [Guan 57

et al., 2024]. 58

To fix the problems of LLM modeling, graphs (non- 59

Euclidean structures with nodes and edges to capture com- 60

plex dependencies) and graph neural networks (GNNs, which 61

use message-passing to learn local and global representa- 62

tions) [Scarselli et al., 2008] provide complementary solu- 63

tions. They achieve this by explicitly encoding relationships 64

and dependencies to enable multi-hop reasoning and capture 65
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Figure 2: A taxonomy of Graph4LLM with representative examples.

non-linear structures. Additionally, graphs offer transparent,66

structured intermediate states that improve interpretability67

and verification. By integrating external knowledge graphs68

(KGs), they also enhance factual grounding, reducing hallu-69

cinations and enhancing comprehensive reliability.70

Building on the potential of graphs to address LLMs71

limitations, graph-enhanced LLMs, which we refer to as72

Graph4LLM, leverage relational structures to handle com-73

plex, interconnected data more effectively. As a result,74

a growing body of work has emerged exploring different75

Graph4LLM methods. Despite this rapid development, re-76

search on Graph4LLM remains fragmented across communi-77

ties and applications. Existing surveys often focus on narrow78

subtopics [Peng et al., 2025], such as graph-based RAG or79

multi-agent systems, lacking a unified view of how graphs80

interact with LLMs throughout the entire pipeline.81

In contrast, this paper provides the first systematic,82

pipeline-oriented survey of Graph4LLM. Specifically, we83

categorize existing works according to the three phases of84

the LLM pipeline (Figure 2): (1) In the input phase, graphs85

transform complex and scattered information into structured86

prompts, so that key entities and relations are clearly pre-87

sented to the LLMs. (2) In the model phase, graphs shape88

the internal processing of model within a single model or 89

organize interactions across multiple models, enabling con- 90

trolled information flow and task coordination. (3) In the out- 91

put phase, graphs reorganize LLM responses into structured 92

representations, making intermediate steps and dependencies 93

easy to inspect and verify. Based on this taxonomy, we fur- 94

ther categorize each phase and present the specific methods, 95

along with key design choices and trade-offs. 96

The remainder of this paper is organized as follows. Sec- 97

tion 2 reviews multi-granularity prompt construction and 98

knowledge incorporation techniques in the input phase. Sec- 99

tion 3 examines single- and multi-model graph-enhanced 100

systems in the model phase. Section 4 focuses on graph- 101

structured reasoning, planning, and evaluation techniques 102

in the output phase. Section 5 surveys representative 103

Graph4LLM applications, and Section 6 discusses open chal- 104

lenges and future research directions. Overall, this organiza- 105

tion follows the LLM pipeline and enables a systematic re- 106

view of Graph4LLM methods. 107

2 Input Phase 108

The input phase of LLMs involves processing raw text, which 109

is typically fed in a sequential manner. Graph4LLM input- 110
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Figure 3: Different frameworks of Graph4LLM in the input phase.

phase methods extract knowledge from graphs or use them111

to index and organize text content. In this section, we cat-112

egorize these methods based on the source of the graph113

structure (as shown in Figure 3): Prompt from Knowl-114

edge Graph, which utilizes pre-existing KGs; Prompt from115

Corpus-Level Graph, which constructs a global graph in-116

dex from the text corpus; and Prompt from Instance-Level117

Graph, which induces ad-hoc structures based on specific in-118

put instances to guide the process.119

2.1 Prompt from Knowledge Graph120

Prompt from Knowledge Graph methods integrate existing121

KGs into LLM prompting pipelines to provide structured122

and reliable knowledge support. These methods rely on123

task-agnostic KGs and typically fall into two categories:124

Graph-Enhanced Instruction Tuning, which collects training125

data from KG facts and relations, and Graph-Retrieval Aug-126

mented Generation (Graph-RAG), which treats KGs as exter-127

nal knowledge databases for structured retrieval.128

Graph-Enhanced Instruction Tuning modifies LLM pa-129

rameters to align their representations with KG structures. It130

achieves this by constructing structure-aware instruction tun-131

ing data. This data injects explicit relational and logical in-132

formation into the supervision signal, thereby enhancing the133

model’s understanding of graphs. Existing methods mainly134

differ in how training data are derived from KGs. ChatK-135

BQA [Luo et al., 2024a] fine-tunes LLMs by translating136

SPARQL queries associated with natural language questions137

into logical forms. GLaM [Dernbach et al., 2024] generates138

graph-grounded QA data by encoding node-centered k-hop139

neighborhoods from domain-specific KGs. KG-SFT [Chen140

et al., 2025b] extracts reasoning subgraphs to produce ques-141

tion–answer explanations while addressing knowledge con-142

flicts. ToolLM [Wang et al., 2025] extends this paradigm by143

incorporating tool-use instruction tuning. It converts KG re-144

lations into executable APIs and generates natural language145

queries with corresponding solution paths.146

Building on the same goal of leveraging KG structure,147

Graph-Retrieval Augmented Generation (Graph-RAG)148

differs by keeping LLM parameters unchanged. It retrieves149

task-relevant subgraphs, explicitly exploiting graph topology150

to provide knowledge support and enable evidence-based rea- 151

soning in real time. Existing methods mainly vary in their 152

retrieval and reasoning strategies. ToG [Sun et al., 2024] 153

tightly couples LLMs with KGs by allowing the model to it- 154

eratively explore top-ranked reasoning paths through beam 155

search over KG triples. RoG [Luo et al., 2024b] frames 156

reasoning as KG-grounded relation path planning, retriev- 157

ing valid paths to support faithful and interpretable inference 158

while distilling KG knowledge through targeted optimization 159

objectives. MindMap [Wen et al., 2024] adopts a prompting- 160

based pipeline that extracts entities from inputs and constructs 161

reasoning graphs by aggregating path-based and neighbor- 162

hood evidence from KGs. To address retrieval efficiency and 163

noise, SubgraphRAG [Li et al., 2024a] introduces structure- 164

aware subgraph retrieval with lightweight encoders and fixed 165

in-context prompts, balancing computational cost and reason- 166

ing depth. Beyond retrieval, KGR [Guan et al., 2024] incor- 167

porates iterative feedback mechanisms to verify and revise 168

LLM-generated responses, mitigating hallucinations through 169

KG-based self-correction. 170

2.2 Prompt from Corpus-Level Graph 171

In contrast to Prompt from Knowledge Graph, Prompt from 172

Corpus-Level Graph constructs corpus-specific graph indices 173

over unstructured text collections rather than relying on ex- 174

isting KGs. In this setting, nodes correspond to documents, 175

entities, or concepts extracted from the corpus, and edges en- 176

code semantic or structural relations. Such graph indices en- 177

able LLMs to efficiently locate the associated textual content. 178

To address the lack of macro-level understanding in tradi- 179

tional RAG, a line of work explores global information aggre- 180

gation through hierarchical structures. GraphRAG [Edge et 181

al., 2024] targets query-specific summarization over private 182

corpora by constructing document graphs from text chunks. 183

These graphs are organized into communities, and hierar- 184

chical summaries are generated using a Map-Reduce strat- 185

egy. As a result, LLMs can integrate global context, lead- 186

ing to more comprehensive and diverse responses. RAP- 187

TOR [Sarthi et al., 2024], on the other hand, introduces a 188

recursive tree-based retrieval framework. By iteratively clus- 189

tering text chunks, it builds a hierarchical summary tree and 190

generates abstract summaries. This enables LLMs to retrieve 191

high-level themes first and then access finer-grained details. 192

Despite these advances, hierarchical aggregation can still lead 193

to retrieval redundancy, longer reasoning chains, and limited 194

control. 195

Recent work has shifted the focus from organizing infor- 196

mation to optimizing the process of retrieval. They seek 197

to progressively exploit and reuse these structures, improve 198

generation efficiency and reducing retrieval noise. Ligh- 199

tRAG [Guo et al., 2024] uses graph-enhanced text indexing 200

and dual-level retrieval to optimize reasoning over knowledge 201

structures. It captures entity dependencies through structured 202

graphs, while supporting incremental updates to avoid full- 203

graph reconstruction costs. HippoRAG 2 [Gutiérrez et al., 204

2025], inspired by the hippocampal memory system, com- 205

bines LLM-based filtering with Personalized PageRank over 206

open KGs. This graph unifies passages and phrases, en- 207

abling continual learning and associative retrieval at scale. To 208



address the generalization limitations of graph-enhanced re-209

trieval, GFM-RAG [Luo et al., 2025] trains a general graph210

foundation model (GFM) [Liu et al., 2023] retriever through a211

two-stage process, which allows zero-shot multi-hop reason-212

ing on unseen datasets. PathRAG [Chen et al., 2025a] targets213

token inefficiency by pruning redundant information. It uses214

a flow-based algorithm to extract critical relational paths and215

provide ordered prompts, which improves logical coherence216

and reduces computational overhead.217

2.3 Prompt from Instance-Level Graph218

Unlike the previous two methods, Prompt from Instance-219

Level Graph does not use existing KGs or corpus-based in-220

dex graphs. Instead, it emphasizes task-driven, on-the-fly221

graph construction and on-demand generation, converting a222

single, logically complex input instance into a graph repre-223

sentation. The resulting graph is then linearized into semi-224

structured text, which preserves the original structure and is225

directly fed to the LLMs.226

In practical applications, researchers develop diverse graph227

construction and utilization strategies to address specific rea-228

soning bottlenecks. To mitigate the ”lost-in-the-middle” is-229

sue and high computational cost in long-context reasoning,230

GraphReader [Li et al., 2024b] introduces a query-guided231

graph-based agent that organizes long documents into atomic232

fact graphs, enabling efficient multi-hop exploration under233

limited context windows. Focusing on temporal reasoning,234

TG-LLM [Xiong et al., 2024] converts text into temporal235

graphs for graph-based inference. This process is enhanced236

by chain-of-thought bootstrapping and graph data augmen-237

tation, helping capture event order, duration, and inter-event238

relations more effectively. To address missing implicit condi-239

tions in logical reasoning, RwG [Han et al., 2025] iteratively240

constructs and verifies explicit reasoning graphs from context241

and leverages them to improve multi-hop question answer-242

ing. From a prompting perspective, GRL-Prompt [Liu et al.,243

2024a] models queries and candidate demonstrations as het-244

erogeneous graphs. It then applies reinforcement learning to245

explore high-order correlations, allowing for the automatic246

selection and arrangement of in-context examples.247

3 Model Phase248

The model phase of LLMs concerns both the internal ar-249

chitecture of the model and the way multiple agents collab-250

orate. Graph4LLM model-phase methods introduce graph251

structures as explicit relational priors that complement the252

sequence-centric inductive bias of LLMs. Existing methods253

can be broadly categorized into two paradigms (as shown in254

Figure 4): Single Model, where graph modules are integrated255

into one LLM backbone with varying depth of fusion, and256

Multiple Models, where graphs specify or learn the com-257

munication topology and task dependencies among multiple258

models/agents.259

3.1 Single Model260

In the field of graph-enhanced single model, the core goal is261

to integrate structured graph signals within the LLM frame-262

work. This aims to improve the ability of model to process263
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Figure 4: Different frameworks of Graph4LLM in the model phase.

relational and structural information within a unified back- 264

bone. Broadly, strategies diverge into two paradigms: Ex- 265

ternal Graph Adapter, which adds graph adapters before the 266

LLMs to fuse graph features, and Internal Model Fusion, 267

which embeds structural interactions deeply into the model’s 268

layers for bidirectional influence. 269

External Graph Adapter keeps the LLM backbone 270

largely intact while integrating graph signals through aux- 271

iliary modules. Graph structures are encoded by dedicated 272

graph encoders, often a GNN, and mapped into the LLM rep- 273

resentation space using lightweight adaptation mechanisms. 274

This allows for structure-aware reasoning without altering 275

core model parameters. Representative methods differ in 276

how graph information is encoded and fused. KoPA [Zhang 277

et al., 2024a] incorporates pre-trained structural embed- 278

dings of KGs via a prefix-style adapter, projecting them 279

into the model’s latent space to enhance structural reasoning. 280

FtG [Liu et al., 2025] follows a filter-then-generate frame- 281

work, leveraging serialized ego-graphs and a structure-text 282

adapter to integrate graph topology while narrowing candi- 283

date entities. GraphAdapter [Li et al., 2023b] extends this 284

idea by constructing dual KGs with textual and visual sub- 285

structures. Graph convolution is then applied to fuse struc- 286

tural knowledge into the adaptation module. 287

Unlike External Graph Adapter, Internal Model Fusion 288

directly integrates graph layers into the internal computa- 289

tion of LLMs. This enables structural information to influ- 290

ence hidden-state updates, achieving deeper alignment be- 291

tween graphs and model representations. Existing methods 292

are primarily distinguished by the integration locus of graph 293

structure within the LLMs. A common design interleaves 294

Transformer layers with GNN-style message passing or in- 295

troduces cross-stream modules for bidirectional exchange be- 296

tween token and graph layers. A representative example is 297

GreaseLM [Zhang et al., 2022]. It jointly processes text and 298

KGs using an LM and a GNN, and realizes structured in- 299

teraction via dedicated interaction tokens, interaction nodes, 300

and modality-specific interaction modules. Another integra- 301

tion pattern embeds graph structure directly into attention by 302

encoding adjacency as masks, constraining information flow 303

along graph edges or learned neighborhoods. GIT [Hong et 304



al., 2022] exemplifies this integration, with similar graph-305

aware Transformers proving effective when graph topology306

is reliable and sparsity is desirable. Beyond layer interleav-307

ing and attention control, structural priors can also be incor-308

porated through pretraining objectives and internal routing.309

Patton [Jin et al., 2023] introduces structure-aware pretrain-310

ing on text-rich networks by combining masked language311

modeling with network-context objectives. GNNavi [Yuan312

et al., 2024] inserts a GNN layer into a frozen LLM de-313

coder, using prompt-induced graphs to guide message pass-314

ing for parameter-efficient few-shot learning. GMoE [Bai et315

al., 2024] extends this idea with a graph-routed Mixture-of-316

Experts architecture. It coordinates expert collaboration via317

GNN-based routing and mitigates load imbalance using dis-318

tribution strategies.319

3.2 Multiple Models320

Unlike single-model methods, graph-enhanced multiple mod-321

els leverage graphs to coordinate interactions, communica-322

tion flows, and task dependencies across multiple models or323

agents. These methods are categorized into Static and Dy-324

namic Topology. Static Topology relies on predefined fixed325

graph structures to ensure controllable orchestration and re-326

duce redundant messaging. Dynamic Topology, by contrast,327

adapts the graph at runtime through learning, pruning, or gen-328

eration mechanisms, providing greater flexibility and respon-329

siveness in multi-agent collaboration.330

Static Topology uses a fixed collaboration graph to de-331

fine communication links and artifact flows in multi-agent332

systems. The graph is predefined based on human priors or333

task logic (e.g., directed acyclic pipelines, hierarchical struc-334

tures, or fixed role graphs), focusing on optimizing message335

passing and role execution. Within this paradigm, existing336

methods mainly differ in the source of the predefined col-337

laboration graph. FLOW-GNN [Zhang et al., 2025c] mod-338

els agentic workflows as directed acyclic graphs (DAGs),339

where nodes represent system instructions and edges encode340

task dependencies. This allows efficient performance predic-341

tion through message passing without repeated LLM invoca-342

tions. Along similar lines, MACNET [Qian et al., 2025] or-343

ganizes large-scale multi-agent systems into DAG-structured344

workflows with a consistent topological order. It supports345

structured reasoning and scalable collaboration among over346

a thousand agents. Fixed topologies may also stem from347

system-level role designs rather than explicit task decompo-348

sition. CAMEL [Li et al., 2023a] adopts a fixed role-based349

interaction pattern, where predefined AI assistant and AI user350

roles coordinate autonomous cooperation through inception351

prompting.352

Dynamic Topology uses a variable collaboration graph353

that can be learned or generated at runtime. Unlike static354

graphs, it allows agents to dynamically adjust connections355

based on current inputs, states, or feedback, offering greater356

flexibility in multi-agent coordination. Existing methods357

mainly differ in how and when the collaboration structure is358

adjusted or constructed. AgentPrune [Zhang et al., 2025a]359

focuses on topology sparsification by learning to remove360

redundant connections from dense interaction graphs. It361

demonstrates that sparse communication structures can out-362
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perform dense ones at a lower cost. GPTSwarm [Zhuge et 363

al., 2024] treats agents and their connections as jointly op- 364

timizable components by formulating multi-agent coordina- 365

tion as graph optimization over node operations and edge 366

dataflow, while DyLAN [Liu et al., 2024b] dynamically se- 367

lects contributing agents and evolves communication graphs 368

for task-oriented collaboration. Inference-time structure gen- 369

eration further enables query-specific collaboration graphs, 370

where GoA [Joo et al., 2025] expands agent-level inter- 371

action graphs for nonlinear context extension. And Dy- 372

naSwarm [Leong and Wu, 2025] learns to select suitable 373

communication graphs per query via reinforcement learning. 374

4 Output Phase 375

The output phase of LLMs generates text sequences based 376

on the internal representation and the received context. 377

Graph4LLM output-phase methods represent LLM responses 378

as graphs to clarify the thinking process, enabling more struc- 379

tured and verifiable outputs. We categorize existing methods 380

into three directions based on the function of the graphs (as 381

shown in Figure 5): Reasoning, which represents and tra- 382

verses intermediate inference states; Planning, which orga- 383

nizes multi-step decision making and action sequences; and 384

Evaluation, where graphs serve as structured references for 385

verifying and scoring generated content. 386

4.1 Reasoning 387

Graph-based Reasoning uses graph structures to organize rea- 388

soning thoughts as relationships and dependencies between 389

entities, improving clarity and interpretability of model out- 390

puts. Methods in this category fall into two main types: Rea- 391

soning Based on Node Summarization, which consolidates 392

information around key nodes to guide reasoning, and Rea- 393

soning Based on Path Exploration, which conducts reasoning 394

along sequential or branching paths. 395

Reasoning Based on Node Summarization organizes 396

reasoning around central nodes that aggregate information 397

from multiple steps. Each node acts as an information hub, 398

condensing partial conclusions. The reasoning process con- 399

verges to a final node where relevant information is sum- 400

marized and synthesized into the output. Existing meth- 401

ods differ mainly in how reasoning nodes are structured and 402

updated. THOUGHTSCULPT [Chi et al., 2025] adopts a 403

search-driven formulation within a Monte Carlo Tree Search 404

(MCTS) framework. It integrates a thought generator, evalu- 405

ator, and a decision simulator, while iteratively revising node- 406



level summaries. RATT [Zhang et al., 2025b] similarly lever-407

ages tree-structured reasoning, but emphasizes path evalua-408

tion and branch selection, using node representations to iden-409

tify promising reasoning trajectories. Beyond tree structures,410

node summarization can be extended to more general graph411

organizations. GoT [Besta et al., 2024] frames it as a way412

for modeling dependencies among thoughts. It organizes rea-413

soning steps into a graph, where edges encode inter-thought414

relations to support complex reasoning. DoT [Zhang et al.,415

2024b] further operationalizes this idea with a DAG-based416

structure that enables node-level critique and revision of log-417

ical dependencies. AGoT [Pandey et al., 2025] takes a task-418

decomposition perspective, breaking problems into structured419

sub-tasks represented as nodes. Node information then coor-420

dinates intermediate results across the decomposition hierar-421

chy.422

By comparison, Reasoning Based on Path Exploration423

frames reasoning as a traversal over multiple candidate paths.424

Information is not centralized at a single node but distributed425

along a path. Each node on the path corresponds to an in-426

dependent action or intermediate decision. The final output427

is constructed by the accumulation of information along the428

selected path. Existing methods mainly differ in how paths429

are generated and selected during exploration. ToT [Yao et430

al., 2023] represents reasoning as a tree and performs se-431

quential branch exploration, explicitly comparing alternative432

paths to identify the most promising trajectory. Building on433

this formulation, SoT [Ning et al., 2024] adopts a skeleton-434

first strategy, generating concise outlines that are later ex-435

panded in parallel to improve exploration efficiency. To fur-436

ther enhance path selection under long-horizon decision mak-437

ing, LATS [Zhou et al., 2024] incorporates MCTS, tightly438

coupling reasoning, acting, and planning during exploration.439

Along a similar line, XoT [Ding et al., 2024] augments440

MCTS with pretraining signals and external domain knowl-441

edge, enabling more flexible and informed traversal of rea-442

soning paths. And PGTS [Li, 2025] moves toward learning-443

based control, integrating reinforcement learning with struc-444

tured tree search to dynamically navigate reasoning paths445

without relying on hand-crafted heuristics.446

4.2 Planning447

Building on reasoning capabilities, Graph-based Planning fo-448

cuses on task organization rather than inference. It leverages449

graphs to organize and manage interdependent goals, tasks450

and actions, enabling LLMs to handle complex multi-step451

tasks through plan execution.452

Existing methods mainly differ in how they use graphs453

for task decomposition and execution. Typically, RAP [Hao454

et al., 2023] treats graphs as task decomposition tools,455

breaking user requests into solvable sub-tasks represented456

as nodes with dependency edges. GNNs are then used to457

support sub-task retrieval and execution. Along the same458

line, GNN4TaskPlan [Wu et al., 2024] examines how learned459

graph representations impact planning quality. It uses em-460

pirical analysis to explore the role of graph-based learning461

in optimizing decision-making for LLM-based agents. Mov-462

ing beyond static task representations, PoG [Chen et al.,463

2024] uses graphs as feedback structures during planning.464

These graphs incrementally construct and revise multi-level 465

sub-goal graphs to detect deviations and enable correction 466

through backtracking or path expansion. Furthermore, SOP- 467

Struct [Garg et al., 2025] introduces a framework where 468

LLMs transform unstructured natural language Standard Op- 469

erating Procedures (SOPs) into a structured DAG. This DAG 470

captures logical and temporal dependencies, utilizing deter- 471

ministic verification via PDDL and non-deterministic evalua- 472

tion by LLMs to ensure the quality of the representation. In 473

robotic task planning, [Sakib and Sun, 2024] utilizes graphs 474

as execution-oriented interfaces. Multiple GPT-4–generated 475

task trees are consolidated into a unified plan, which is then 476

converted into executable low-level actions through cost- 477

aware selection and symbolic planning. 478

4.3 Evaluation 479

Unlike reasoning and planning, Graph-based Evaluation fo- 480

cuses on assessing LLM outputs. It uses graph structures 481

to capture richer associations among entities, facts, and sen- 482

tences. Specifically, evaluation methods can be categorized 483

into two main types: Factuality Evaluation, which assesses 484

the accuracy and reliability of generated content through ex- 485

plicit entity and relation modeling; Logicality Evaluation, 486

which measures logical coherence and reasoning consistency 487

using graph-based relational representations. 488

Factuality Evaluation checks if LLM outputs meet cor- 489

rectness requirements by modeling content as structured 490

graphs to verify dependencies, propagate uncertainty, and 491

detect inconsistencies. Existing methods mainly differ in 492

the form of evidence they construct and how it is aligned 493

with model outputs. BTProp [Hou et al., 2025] focuses 494

on intra-output uncertainty propagation, introducing a belief- 495

tree Markov framework that models logical relations between 496

claims and propagates uncertainty through structured depen- 497

dencies. [Chen et al., 2025c] similarly operates at the 498

single-output level but emphasizes cross-sentence contradic- 499

tions and entity-level interactions to estimate factual reliabil- 500

ity. [Jiang et al., 2024] further explores uncertainty estima- 501

tion by organizing claims and evidence into bipartite struc- 502

tures, showing that graph centrality provides more robust sig- 503

nals than frequency-based heuristics. Moving toward exter- 504

nal grounding, GraphEval [Sansford et al., 2024] converts 505

generated text into structured knowledge aligned with KG 506

triples. NLI-based verification is then incorporated to en- 507

able interpretable factual assessment. Beyond single outputs, 508

GCA [Fang et al., 2025] evaluates factuality across multiple 509

responses. It constructs triple graphs over samples and ap- 510

plies RGCN-based reconstruction for black-box verification. 511

At a higher level, Logicality Evaluation assesses the qual- 512

ity of reasoning in LLM outputs. It goes beyond factual 513

correctness to examine semantic coherence, inferential struc- 514

ture, and the organization of logical transitions using ex- 515

plicit relational representations. Existing methods mainly 516

differ in which stage and granularity of structure they tar- 517

get. Semantic-Eval [Li et al., 2025] proposes a training-free 518

framework that constructs sentence-level semantic graphs. 519

It applies SemanticRank to weight logical contributions 520

and integrates pre-trained NLI models to mitigate semantic- 521

matching bias. DiagramEval [Liang and You, 2025] targets 522



chart reasoning by abstracting diagrams into directed “el-523

ement–relation” graphs and evaluating node and path-level524

alignment. For reasoning-process verification, GraphReason525

[Cao, 2024] merges shared intermediate steps across multiple526

reasoning paths into a unified graph and applies a GIN-based527

verifier. Beyond verification, graph-based analyses are also528

used to study reasoning behavior: [Xiong et al., 2025] clus-529

ters semantically coherent CoT steps to construct reasoning530

graphs and analyze structural properties.531

5 Application532

Graph4LLM finds wide applications across various domains,533

significantly enhancing both task-level and domain-specific534

performance.535

In classic natural language processing (NLP) tasks,536

graph structures are used to capture dependencies at dif-537

ferent levels of language. They support a range of appli-538

cations, including sequence tagging, information extraction,539

and text generation. By explicitly modeling syntactic, seman-540

tic, and discourse-level relationships, these graphs improve541

the ability to understand and generate natural language. In the542

realm of code-related applications, Graph4LLM methods op-543

erate at multiple granularities. At the function level, control-544

flow, data-flow, and call graphs are employed to deepen code545

understanding and aid in generation. On a larger scale,546

repository-level graphs are built to represent dependencies547

across files and modules, enabling cross-function reasoning,548

program analysis, and software maintenance tasks. For tab-549

ular reasoning, graphs are used to capture relationships be-550

tween rows, columns, and cells. This structure facilitates551

multi-hop reasoning and complex query answering, going be-552

yond the limitations of linear table formats. Graph4LLM553

methods are also widely utilized in recommendation sys-554

tems. User-item interaction graphs enable LLMs to incorpo-555

rate relational signals, recognizing collaborative patterns that556

enhance decision-making processes.557

Beyond task types, Graph4LLM shows significant effec-558

tiveness in domain-specific applications. In medicine, graphs559

represent clinical knowledge and biomedical entities, help-560

ing with diagnosis and decision support. In education, con-561

cept graphs and prerequisite structures are used for curricu-562

lum planning and personalized tutoring. Financial applica-563

tions benefit from relational graphs between entities, transac-564

tions, and events, which help in risk analysis and decision-565

making under uncertainty. In the legal field, citation and566

statute graphs provide a structured framework for legal rea-567

soning and case analysis. Lastly, in electronic design au-568

tomation (EDA), graphs of hardware description languages569

and module dependencies support LLM-based reasoning over570

hardware logic.571

6 Challenges and Future Directions572

Graph construction quality and robustness. The effec-573

tiveness of Graph4LLM methods critically depends on the574

quality and robustness of the constructed graphs. In prac-575

tice, graphs are often derived from noisy corpora or imperfect576

knowledge bases, making them prone to incompleteness, spu-577

rious relations, and structural bias. These imperfections can578

propagate through downstream components, leading to mis- 579

leading retrieval results and distorted reasoning trajectories. 580

Future work should therefore prioritize robust and adaptive 581

graph construction, capable of handling varying data qual- 582

ity and uncertainties. This can be achieved, for instance, by 583

incorporating uncertainty quantification methods applied to 584

graph nodes and edges, enabling LLMs to reason over proba- 585

bilistic or graded relations. Additionally, iterative refinement 586

mechanisms that leverage feedback from LLM outputs to re- 587

vise or prune unreliable structures represent a promising di- 588

rection. 589

Complexity challenges from explicit structural expan- 590

sion. While richer graphs can represent more entities and 591

relations, increasing graph size, density, or heterogeneity 592

also introduces significant computational and cognitive chal- 593

lenges. In reasoning tasks, large or highly connected graphs 594

can lead to a combinatorial explosion of paths, making search 595

methods inefficient or unstable. Future research should focus 596

on complexity-aware graph designs, such as structure prun- 597

ing and hierarchical representations. These methods should 598

align graph granularity with task needs, enabling the model 599

to focus on the most relevant structures at each stage. De- 600

veloping criteria to determine when and how much structure 601

to expose to the LLMs will be key for scalable and reliable 602

reasoning. This will help transition Graph4LLM from being 603

”structure-rich” to ”structure-effective”. 604

Towards self-improving Graph4LLM: distillation, 605

feedback, and co-evolution. Despite their effectiveness, 606

most existing Graph4LLM methods use a unidirectional 607

process, where graphs assist LLMs at specific stages but 608

remain external to the model. The information in these 609

graphs is consumed only during generation and not retained 610

afterward, causing valuable structural signals to be repeat- 611

edly reconstructed, which limits efficiency and long-term 612

knowledge transfer. To address these limitations, future 613

work should focus on self-improving Graph4LLM systems. 614

One promising method is graph-to-model distillation, where 615

useful relational patterns from the Graph4LLM process are 616

distilled into the model’s internal representations through 617

fine-tuning or knowledge distillation. This would allow the 618

model to internalize structural priors and reduce reliance on 619

explicit graphs during inference. Model-to-graph feedback 620

can also refine graph construction, enabling representations 621

to evolve based on utility and support more robust, reusable 622

structures. 623

7 Conclusion 624

This paper presents a systematic survey of Graph4LLM, cate- 625

gorizing existing graph-enhanced LLM methods in the input, 626

model, and output phases. It covers representative methods 627

across different paradigms and their diverse application sce- 628

narios. Additionally, the paper summarizes key challenges 629

facing current Graph4LLM research and outlines future re- 630

search directions. By providing a coherent structural perspec- 631

tive on the integration of graphs and LLMs, this survey offers 632

a concise overview of the field, facilitating a clear understand- 633

ing of how graphs enhance the capabilities of LLMs. 634
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