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Abstract

Large language models (LLMs) excel in natu-
ral language processing (NLP) tasks. However,
they suffer from inherent limitations due to their
sequence-based nature, such as structural informa-
tion loss and factual unreliability. Graphs, with
the ability to explicitly model entities and rela-
tions, offer an effective way to address these short-
comings. To systematically synthesize the emerg-
ing research on graph-enhanced LLMs, this sur-
vey, Graph4LLM, examines how these methods
integrate graphs into various stages of the LLM
pipeline, including the input, model, and output
phases. For each phase, we provide a detailed
review of the key methods and techniques. We
also introduce a wide range of application scenarios
where Graph4LLM methods demonstrate signifi-
cant potential. Finally, we outline the challenges
and future research directions for developing more
efficient and interpretable solutions.

1 Introduction

Large language models (LLMs) are foundation models with
billions of parameters, typically built on the Transformer ar-
chitecture [Vaswani et al., 2017] and pretrained on massive
corpora. Under this paradigm, LLMs show impressive ca-
pabilities in natural language understanding, generation, and
reasoning.

In practice, LLMs operate within a pipeline that structures
information flow from input to output, as shown in Figure 1.
(1) In the input phase, task specifications and external knowl-
edge are introduced. This is done using techniques like few-
shot prompting, retrieval-augmented generation (RAG) [Peng
et al., 2025], or by feeding the model curated training data.
These methods help shape how the raw information is pre-
sented to the LLMs. (2) Next, the model focuses on pro-
cessing these inputs. The Transformer-based architectures
use attention mechanisms and feedforward layers to sequen-
tially process the information, and can be further extended by
multi-agent systems to coordinate multiple models through
structured interactions. (3) Finally, in the output phase, LLMs
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Figure 1: The overall pipeline of LLM (input phase, model phase,
and output phase). The goal of our survey is to introduce: How
can graphs participate in the organization of LLM inputs? How can
graphs adapt the LLM architecture and collaborate multiple models?
How can graphs guide the optimization of LLM outputs?

generate task-specific responses. These responses can include
question answering, executable code, or decision-support ar-
tifacts, which serve as the interface between model predic-
tions and downstream applications [Zhao et al., 2023].

Despite their impressive performance, LLMs have inherent
limitations, primarily due to their reliance on linear token se-
quences. Such sequential models struggle to capture complex
relational structures, long-range dependencies, and multi-hop
interactions, which are crucial for many knowledge-intensive
tasks [Hong et al., 2022]. Moreover, reasoning and planning
processes are often encoded implicitly in latent representa-
tions. This makes intermediate states difficult to interpret,
control, or verify systematically [Yao et al., 2023]. LLMs
are also vulnerable to factual inconsistencies and hallucina-
tions, especially when tasks require precise relational reason-
ing or reliable knowledge grounding. These challenges high-
light the inadequacy of sequence-centric models for tasks that
require explicit structure, transparency, and robustness [Guan
et al., 2024].

To fix the problems of LLM modeling, graphs (non-
Euclidean structures with nodes and edges to capture com-
plex dependencies) and graph neural networks (GNNs, which
use message-passing to learn local and global representa-
tions) [Scarselli et al., 2008] provide complementary solu-
tions. They achieve this by explicitly encoding relationships
and dependencies to enable multi-hop reasoning and capture
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Figure 2: A taxonomy of Graph4LLM with representative examples.

non-linear structures. Additionally, graphs offer transparent,
structured intermediate states that improve interpretability
and verification. By integrating external knowledge graphs
(KGs), they also enhance factual grounding, reducing hallu-
cinations and enhancing comprehensive reliability.

Building on the potential of graphs to address LLMs
limitations, graph-enhanced LLMs, which we refer to as
Graph4LLM, leverage relational structures to handle com-
plex, interconnected data more effectively. As a result,
a growing body of work has emerged exploring different
Graph4LLM methods. Despite this rapid development, re-
search on Graph4LLM remains fragmented across communi-
ties and applications. Existing surveys often focus on narrow
subtopics [Peng et al., 2025], such as graph-based RAG or
multi-agent systems, lacking a unified view of how graphs
interact with LLMs throughout the entire pipeline.

In contrast, this paper provides the first systematic,
pipeline-oriented survey of Graph4LLM. Specifically, we
categorize existing works according to the three phases of
the LLM pipeline (Figure 2): (1) In the input phase, graphs
transform complex and scattered information into structured
prompts, so that key entities and relations are clearly pre-
sented to the LLMs. (2) In the model phase, graphs shape

the internal processing of model within a single model or
organize interactions across multiple models, enabling con-
trolled information flow and task coordination. (3) In the out-
put phase, graphs reorganize LLM responses into structured
representations, making intermediate steps and dependencies
easy to inspect and verify. Based on this taxonomy, we fur-
ther categorize each phase and present the specific methods,
along with key design choices and trade-offs.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews multi-granularity prompt construction and
knowledge incorporation techniques in the input phase. Sec-
tion 3 examines single- and multi-model graph-enhanced
systems in the model phase. Section 4 focuses on graph-
structured reasoning, planning, and evaluation techniques
in the output phase. Section 5 surveys representative
Graph4LLM applications, and Section 6 discusses open chal-
lenges and future research directions. Overall, this organiza-
tion follows the LLM pipeline and enables a systematic re-
view of Graph4LLM methods.

2 Input Phase

The input phase of LLMs involves processing raw text, which
is typically fed in a sequential manner. Graph4LLM input-
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Figure 3: Different frameworks of Graph4LLM in the input phase.

phase methods extract knowledge from graphs or use them
to index and organize text content. In this section, we cat-
egorize these methods based on the source of the graph
structure (as shown in Figure 3): Prompt from Knowl-
edge Graph, which utilizes pre-existing KGs; Prompt from
Corpus-Level Graph, which constructs a global graph in-
dex from the text corpus; and Prompt from Instance-Level
Graph, which induces ad-hoc structures based on specific in-
put instances to guide the process.

2.1 Prompt from Knowledge Graph

Prompt from Knowledge Graph methods integrate existing
KGs into LLM prompting pipelines to provide structured
and reliable knowledge support. These methods rely on
task-agnostic KGs and typically fall into two categories:
Graph-Enhanced Instruction Tuning, which collects training
data from KG facts and relations, and Graph-Retrieval Aug-
mented Generation (Graph-RAG), which treats KGs as exter-
nal knowledge databases for structured retrieval.

Graph-Enhanced Instruction Tuning modifies LLM pa-
rameters to align their representations with KG structures. It
achieves this by constructing structure-aware instruction tun-
ing data. This data injects explicit relational and logical in-
formation into the supervision signal, thereby enhancing the
model’s understanding of graphs. Existing methods mainly
differ in how training data are derived from KGs. ChatK-
BQA [Luo et al., 2024a] fine-tunes LLMs by translating
SPARQL queries associated with natural language questions
into logical forms. GLaM [Dernbach et al., 2024] generates
graph-grounded QA data by encoding node-centered k-hop
neighborhoods from domain-specific KGs. KG-SFT [Chen
et al., 2025b] extracts reasoning subgraphs to produce ques-
tion—answer explanations while addressing knowledge con-
flicts. ToolLM [Wang et al., 2025] extends this paradigm by
incorporating tool-use instruction tuning. It converts KG re-
lations into executable APIs and generates natural language
queries with corresponding solution paths.

Building on the same goal of leveraging KG structure,
Graph-Retrieval Augmented Generation (Graph-RAG)
differs by keeping LLM parameters unchanged. It retrieves
task-relevant subgraphs, explicitly exploiting graph topology

to provide knowledge support and enable evidence-based rea-
soning in real time. Existing methods mainly vary in their
retrieval and reasoning strategies. ToG [Sun ef al., 2024]
tightly couples LLMs with KGs by allowing the model to it-
eratively explore top-ranked reasoning paths through beam
search over KG triples. RoG [Luo er al., 2024b] frames
reasoning as KG-grounded relation path planning, retriev-
ing valid paths to support faithful and interpretable inference
while distilling KG knowledge through targeted optimization
objectives. MindMap [Wen et al., 2024] adopts a prompting-
based pipeline that extracts entities from inputs and constructs
reasoning graphs by aggregating path-based and neighbor-
hood evidence from KGs. To address retrieval efficiency and
noise, SubgraphRAG [Li et al., 2024a] introduces structure-
aware subgraph retrieval with lightweight encoders and fixed
in-context prompts, balancing computational cost and reason-
ing depth. Beyond retrieval, KGR [Guan et al., 2024] incor-
porates iterative feedback mechanisms to verify and revise
LLM-generated responses, mitigating hallucinations through
KG-based self-correction.

2.2 Prompt from Corpus-Level Graph

In contrast to Prompt from Knowledge Graph, Prompt from
Corpus-Level Graph constructs corpus-specific graph indices
over unstructured text collections rather than relying on ex-
isting KGs. In this setting, nodes correspond to documents,
entities, or concepts extracted from the corpus, and edges en-
code semantic or structural relations. Such graph indices en-
able LLMs to efficiently locate the associated textual content.

To address the lack of macro-level understanding in tradi-
tional RAG, a line of work explores global information aggre-
gation through hierarchical structures. GraphRAG [Edge et
al., 2024] targets query-specific summarization over private
corpora by constructing document graphs from text chunks.
These graphs are organized into communities, and hierar-
chical summaries are generated using a Map-Reduce strat-
egy. As a result, LLMs can integrate global context, lead-
ing to more comprehensive and diverse responses. RAP-
TOR [Sarthi et al., 2024], on the other hand, introduces a
recursive tree-based retrieval framework. By iteratively clus-
tering text chunks, it builds a hierarchical summary tree and
generates abstract summaries. This enables LLMs to retrieve
high-level themes first and then access finer-grained details.
Despite these advances, hierarchical aggregation can still lead
to retrieval redundancy, longer reasoning chains, and limited
control.

Recent work has shifted the focus from organizing infor-
mation to optimizing the process of retrieval. They seek
to progressively exploit and reuse these structures, improve
generation efficiency and reducing retrieval noise. Ligh-
tRAG [Guo et al., 2024] uses graph-enhanced text indexing
and dual-level retrieval to optimize reasoning over knowledge
structures. It captures entity dependencies through structured
graphs, while supporting incremental updates to avoid full-
graph reconstruction costs. HippoRAG 2 [Gutiérrez et al.,
2025], inspired by the hippocampal memory system, com-
bines LLM-based filtering with Personalized PageRank over
open KGs. This graph unifies passages and phrases, en-
abling continual learning and associative retrieval at scale. To
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address the generalization limitations of graph-enhanced re-
trieval, GFM-RAG [Luo er al., 2025] trains a general graph
foundation model (GFM) [Liu et al., 2023] retriever through a
two-stage process, which allows zero-shot multi-hop reason-
ing on unseen datasets. PathRAG [Chen er al., 2025a] targets
token inefficiency by pruning redundant information. It uses
a flow-based algorithm to extract critical relational paths and
provide ordered prompts, which improves logical coherence
and reduces computational overhead.

2.3 Prompt from Instance-Level Graph

Unlike the previous two methods, Prompt from Instance-
Level Graph does not use existing KGs or corpus-based in-
dex graphs. Instead, it emphasizes task-driven, on-the-fly
graph construction and on-demand generation, converting a
single, logically complex input instance into a graph repre-
sentation. The resulting graph is then linearized into semi-
structured text, which preserves the original structure and is
directly fed to the LLMs.

In practical applications, researchers develop diverse graph
construction and utilization strategies to address specific rea-
soning bottlenecks. To mitigate the “’lost-in-the-middle” is-
sue and high computational cost in long-context reasoning,
GraphReader [Li et al., 2024b] introduces a query-guided
graph-based agent that organizes long documents into atomic
fact graphs, enabling efficient multi-hop exploration under
limited context windows. Focusing on temporal reasoning,
TG-LLM [Xiong er al., 2024] converts text into temporal
graphs for graph-based inference. This process is enhanced
by chain-of-thought bootstrapping and graph data augmen-
tation, helping capture event order, duration, and inter-event
relations more effectively. To address missing implicit condi-
tions in logical reasoning, RwG [Han er al., 2025] iteratively
constructs and verifies explicit reasoning graphs from context
and leverages them to improve multi-hop question answer-
ing. From a prompting perspective, GRL-Prompt [Liu ez al.,
2024a] models queries and candidate demonstrations as het-
erogeneous graphs. It then applies reinforcement learning to
explore high-order correlations, allowing for the automatic
selection and arrangement of in-context examples.

3 Model Phase

The model phase of LLMs concerns both the internal ar-
chitecture of the model and the way multiple agents collab-
orate. Graph4LLM model-phase methods introduce graph
structures as explicit relational priors that complement the
sequence-centric inductive bias of LLMs. Existing methods
can be broadly categorized into two paradigms (as shown in
Figure 4): Single Model, where graph modules are integrated
into one LLM backbone with varying depth of fusion, and
Multiple Models, where graphs specify or learn the com-
munication topology and task dependencies among multiple
models/agents.

3.1 Single Model

In the field of graph-enhanced single model, the core goal is
to integrate structured graph signals within the LLM frame-
work. This aims to improve the ability of model to process
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Figure 4: Different frameworks of Graph4LLM in the model phase.

relational and structural information within a unified back-
bone. Broadly, strategies diverge into two paradigms: Ex-
ternal Graph Adapter, which adds graph adapters before the
LLMs to fuse graph features, and Internal Model Fusion,
which embeds structural interactions deeply into the model’s
layers for bidirectional influence.

External Graph Adapter keeps the LLM backbone
largely intact while integrating graph signals through aux-
iliary modules. Graph structures are encoded by dedicated
graph encoders, often a GNN, and mapped into the LLM rep-
resentation space using lightweight adaptation mechanisms.
This allows for structure-aware reasoning without altering
core model parameters. Representative methods differ in
how graph information is encoded and fused. KoPA [Zhang
et al., 2024a] incorporates pre-trained structural embed-
dings of KGs via a prefix-style adapter, projecting them
into the model’s latent space to enhance structural reasoning.
FtG [Liu er al., 2025] follows a filter-then-generate frame-
work, leveraging serialized ego-graphs and a structure-text
adapter to integrate graph topology while narrowing candi-
date entities. GraphAdapter [Li et al., 2023b] extends this
idea by constructing dual KGs with textual and visual sub-
structures. Graph convolution is then applied to fuse struc-
tural knowledge into the adaptation module.

Unlike External Graph Adapter, Internal Model Fusion
directly integrates graph layers into the internal computa-
tion of LLMs. This enables structural information to influ-
ence hidden-state updates, achieving deeper alignment be-
tween graphs and model representations. Existing methods
are primarily distinguished by the integration locus of graph
structure within the LLMs. A common design interleaves
Transformer layers with GNN-style message passing or in-
troduces cross-stream modules for bidirectional exchange be-
tween token and graph layers. A representative example is
GreaseLM [Zhang et al., 2022]. It jointly processes text and
KGs using an LM and a GNN, and realizes structured in-
teraction via dedicated interaction tokens, interaction nodes,
and modality-specific interaction modules. Another integra-
tion pattern embeds graph structure directly into attention by
encoding adjacency as masks, constraining information flow
along graph edges or learned neighborhoods. GIT [Hong et
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al., 2022] exemplifies this integration, with similar graph-
aware Transformers proving effective when graph topology
is reliable and sparsity is desirable. Beyond layer interleav-
ing and attention control, structural priors can also be incor-
porated through pretraining objectives and internal routing.
Patton [Jin et al., 2023] introduces structure-aware pretrain-
ing on text-rich networks by combining masked language
modeling with network-context objectives. GNNavi [Yuan
et al., 2024] inserts a GNN layer into a frozen LLM de-
coder, using prompt-induced graphs to guide message pass-
ing for parameter-efficient few-shot learning. GMoE [Bai et
al., 2024] extends this idea with a graph-routed Mixture-of-
Experts architecture. It coordinates expert collaboration via
GNN-based routing and mitigates load imbalance using dis-
tribution strategies.

3.2 Multiple Models

Unlike single-model methods, graph-enhanced multiple mod-
els leverage graphs to coordinate interactions, communica-
tion flows, and task dependencies across multiple models or
agents. These methods are categorized into Static and Dy-
namic Topology. Static Topology relies on predefined fixed
graph structures to ensure controllable orchestration and re-
duce redundant messaging. Dynamic Topology, by contrast,
adapts the graph at runtime through learning, pruning, or gen-
eration mechanisms, providing greater flexibility and respon-
siveness in multi-agent collaboration.

Static Topology uses a fixed collaboration graph to de-
fine communication links and artifact flows in multi-agent
systems. The graph is predefined based on human priors or
task logic (e.g., directed acyclic pipelines, hierarchical struc-
tures, or fixed role graphs), focusing on optimizing message
passing and role execution. Within this paradigm, existing
methods mainly differ in the source of the predefined col-
laboration graph. FLOW-GNN [Zhang et al., 2025¢] mod-
els agentic workflows as directed acyclic graphs (DAGs),
where nodes represent system instructions and edges encode
task dependencies. This allows efficient performance predic-
tion through message passing without repeated LLM invoca-
tions. Along similar lines, MACNET [Qian et al., 2025] or-
ganizes large-scale multi-agent systems into DAG-structured
workflows with a consistent topological order. It supports
structured reasoning and scalable collaboration among over
a thousand agents. Fixed topologies may also stem from
system-level role designs rather than explicit task decompo-
sition. CAMEL [Li et al., 2023a] adopts a fixed role-based
interaction pattern, where predefined Al assistant and Al user
roles coordinate autonomous cooperation through inception
prompting.

Dynamic Topology uses a variable collaboration graph
that can be learned or generated at runtime. Unlike static
graphs, it allows agents to dynamically adjust connections
based on current inputs, states, or feedback, offering greater
flexibility in multi-agent coordination. Existing methods
mainly differ in how and when the collaboration structure is
adjusted or constructed. AgentPrune [Zhang et al., 2025al
focuses on topology sparsification by learning to remove
redundant connections from dense interaction graphs. It
demonstrates that sparse communication structures can out-
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Figure 5: Different frameworks of Graph4LLM in the output phase.

perform dense ones at a lower cost. GPTSwarm [Zhuge et
al., 2024] treats agents and their connections as jointly op-
timizable components by formulating multi-agent coordina-
tion as graph optimization over node operations and edge
dataflow, while DyLAN [Liu ef al., 2024b] dynamically se-
lects contributing agents and evolves communication graphs
for task-oriented collaboration. Inference-time structure gen-
eration further enables query-specific collaboration graphs,
where GoA [Joo et al., 2025] expands agent-level inter-
action graphs for nonlinear context extension. And Dy-
naSwarm [Leong and Wu, 2025] learns to select suitable
communication graphs per query via reinforcement learning.

4 Output Phase

The output phase of LLMs generates text sequences based
on the internal representation and the received context.
Graph4LLM output-phase methods represent LLM responses
as graphs to clarify the thinking process, enabling more struc-
tured and verifiable outputs. We categorize existing methods
into three directions based on the function of the graphs (as
shown in Figure 5): Reasoning, which represents and tra-
verses intermediate inference states; Planning, which orga-
nizes multi-step decision making and action sequences; and
Evaluation, where graphs serve as structured references for
verifying and scoring generated content.

4.1 Reasoning

Graph-based Reasoning uses graph structures to organize rea-
soning thoughts as relationships and dependencies between
entities, improving clarity and interpretability of model out-
puts. Methods in this category fall into two main types: Rea-
soning Based on Node Summarization, which consolidates
information around key nodes to guide reasoning, and Rea-
soning Based on Path Exploration, which conducts reasoning
along sequential or branching paths.

Reasoning Based on Node Summarization organizes
reasoning around central nodes that aggregate information
from multiple steps. Each node acts as an information hub,
condensing partial conclusions. The reasoning process con-
verges to a final node where relevant information is sum-
marized and synthesized into the output. Existing meth-
ods differ mainly in how reasoning nodes are structured and
updated. THOUGHTSCULPT [Chi et al., 2025] adopts a
search-driven formulation within a Monte Carlo Tree Search
(MCTS) framework. It integrates a thought generator, evalu-
ator, and a decision simulator, while iteratively revising node-
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level summaries. RATT [Zhang et al., 2025b] similarly lever-
ages tree-structured reasoning, but emphasizes path evalua-
tion and branch selection, using node representations to iden-
tify promising reasoning trajectories. Beyond tree structures,
node summarization can be extended to more general graph
organizations. GoT [Besta et al., 2024] frames it as a way
for modeling dependencies among thoughts. It organizes rea-
soning steps into a graph, where edges encode inter-thought
relations to support complex reasoning. DoT [Zhang et al.,
2024b] further operationalizes this idea with a DAG-based
structure that enables node-level critique and revision of log-
ical dependencies. AGoT [Pandey er al., 2025] takes a task-
decomposition perspective, breaking problems into structured
sub-tasks represented as nodes. Node information then coor-
dinates intermediate results across the decomposition hierar-
chy.

By comparison, Reasoning Based on Path Exploration
frames reasoning as a traversal over multiple candidate paths.
Information is not centralized at a single node but distributed
along a path. Each node on the path corresponds to an in-
dependent action or intermediate decision. The final output
is constructed by the accumulation of information along the
selected path. Existing methods mainly differ in how paths
are generated and selected during exploration. ToT [Yao et
al., 2023] represents reasoning as a tree and performs se-
quential branch exploration, explicitly comparing alternative
paths to identify the most promising trajectory. Building on
this formulation, SoT [Ning et al., 2024] adopts a skeleton-
first strategy, generating concise outlines that are later ex-
panded in parallel to improve exploration efficiency. To fur-
ther enhance path selection under long-horizon decision mak-
ing, LATS [Zhou et al., 2024] incorporates MCTS, tightly
coupling reasoning, acting, and planning during exploration.
Along a similar line, XoT [Ding et al., 2024] augments
MCTS with pretraining signals and external domain knowl-
edge, enabling more flexible and informed traversal of rea-
soning paths. And PGTS [Li, 2025] moves toward learning-
based control, integrating reinforcement learning with struc-
tured tree search to dynamically navigate reasoning paths
without relying on hand-crafted heuristics.

4.2 Planning

Building on reasoning capabilities, Graph-based Planning fo-
cuses on task organization rather than inference. It leverages
graphs to organize and manage interdependent goals, tasks
and actions, enabling LLMs to handle complex multi-step
tasks through plan execution.

Existing methods mainly differ in how they use graphs
for task decomposition and execution. Typically, RAP [Hao
et al.,, 2023] treats graphs as task decomposition tools,
breaking user requests into solvable sub-tasks represented
as nodes with dependency edges. GNNs are then used to
support sub-task retrieval and execution. Along the same
line, GNN4TaskPlan [Wu et al., 2024] examines how learned
graph representations impact planning quality. It uses em-
pirical analysis to explore the role of graph-based learning
in optimizing decision-making for LLM-based agents. Mov-
ing beyond static task representations, PoG [Chen et al.,
2024] uses graphs as feedback structures during planning.

These graphs incrementally construct and revise multi-level
sub-goal graphs to detect deviations and enable correction
through backtracking or path expansion. Furthermore, SOP-
Struct [Garg et al., 2025] introduces a framework where
LLMs transform unstructured natural language Standard Op-
erating Procedures (SOPs) into a structured DAG. This DAG
captures logical and temporal dependencies, utilizing deter-
ministic verification via PDDL and non-deterministic evalua-
tion by LLMs to ensure the quality of the representation. In
robotic task planning, [Sakib and Sun, 2024] utilizes graphs
as execution-oriented interfaces. Multiple GPT-4—generated
task trees are consolidated into a unified plan, which is then
converted into executable low-level actions through cost-
aware selection and symbolic planning.

4.3 Evaluation

Unlike reasoning and planning, Graph-based Evaluation fo-
cuses on assessing LLM outputs. It uses graph structures
to capture richer associations among entities, facts, and sen-
tences. Specifically, evaluation methods can be categorized
into two main types: Factuality Evaluation, which assesses
the accuracy and reliability of generated content through ex-
plicit entity and relation modeling; Logicality Evaluation,
which measures logical coherence and reasoning consistency
using graph-based relational representations.

Factuality Evaluation checks if LLM outputs meet cor-
rectness requirements by modeling content as structured
graphs to verify dependencies, propagate uncertainty, and
detect inconsistencies. Existing methods mainly differ in
the form of evidence they construct and how it is aligned
with model outputs. BTProp [Hou et al., 2025] focuses
on intra-output uncertainty propagation, introducing a belief-
tree Markov framework that models logical relations between
claims and propagates uncertainty through structured depen-
dencies.  [Chen et al., 2025c] similarly operates at the
single-output level but emphasizes cross-sentence contradic-
tions and entity-level interactions to estimate factual reliabil-
ity. [Jiang er al., 2024] further explores uncertainty estima-
tion by organizing claims and evidence into bipartite struc-
tures, showing that graph centrality provides more robust sig-
nals than frequency-based heuristics. Moving toward exter-
nal grounding, GraphEval [Sansford er al., 2024] converts
generated text into structured knowledge aligned with KG
triples. NLI-based verification is then incorporated to en-
able interpretable factual assessment. Beyond single outputs,
GCA [Fang et al., 2025] evaluates factuality across multiple
responses. It constructs triple graphs over samples and ap-
plies RGCN-based reconstruction for black-box verification.

At a higher level, Logicality Evaluation assesses the qual-
ity of reasoning in LLM outputs. It goes beyond factual
correctness to examine semantic coherence, inferential struc-
ture, and the organization of logical transitions using ex-
plicit relational representations. Existing methods mainly
differ in which stage and granularity of structure they tar-
get. Semantic-Eval [Li ef al., 2025] proposes a training-free
framework that constructs sentence-level semantic graphs.
It applies SemanticRank to weight logical contributions
and integrates pre-trained NLI models to mitigate semantic-
matching bias. DiagramEval [Liang and You, 2025] targets
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chart reasoning by abstracting diagrams into directed “el-
ement-relation” graphs and evaluating node and path-level
alignment. For reasoning-process verification, GraphReason
[Cao, 2024] merges shared intermediate steps across multiple
reasoning paths into a unified graph and applies a GIN-based
verifier. Beyond verification, graph-based analyses are also
used to study reasoning behavior: [Xiong er al., 2025] clus-
ters semantically coherent CoT steps to construct reasoning
graphs and analyze structural properties.

5 Application

Graph4LLM finds wide applications across various domains,
significantly enhancing both task-level and domain-specific
performance.

In classic natural language processing (NLP) tasks,
graph structures are used to capture dependencies at dif-
ferent levels of language. They support a range of appli-
cations, including sequence tagging, information extraction,
and text generation. By explicitly modeling syntactic, seman-
tic, and discourse-level relationships, these graphs improve
the ability to understand and generate natural language. In the
realm of code-related applications, Graph4LLLM methods op-
erate at multiple granularities. At the function level, control-
flow, data-flow, and call graphs are employed to deepen code
understanding and aid in generation. On a larger scale,
repository-level graphs are built to represent dependencies
across files and modules, enabling cross-function reasoning,
program analysis, and software maintenance tasks. For tab-
ular reasoning, graphs are used to capture relationships be-
tween rows, columns, and cells. This structure facilitates
multi-hop reasoning and complex query answering, going be-
yond the limitations of linear table formats. Graph4LLM
methods are also widely utilized in recommendation sys-
tems. User-item interaction graphs enable LLMs to incorpo-
rate relational signals, recognizing collaborative patterns that
enhance decision-making processes.

Beyond task types, Graph4LLM shows significant effec-
tiveness in domain-specific applications. In medicine, graphs
represent clinical knowledge and biomedical entities, help-
ing with diagnosis and decision support. In education, con-
cept graphs and prerequisite structures are used for curricu-
lum planning and personalized tutoring. Financial applica-
tions benefit from relational graphs between entities, transac-
tions, and events, which help in risk analysis and decision-
making under uncertainty. In the legal field, citation and
statute graphs provide a structured framework for legal rea-
soning and case analysis. Lastly, in electronic design au-
tomation (EDA), graphs of hardware description languages
and module dependencies support LLM-based reasoning over
hardware logic.

6 Challenges and Future Directions

Graph construction quality and robustness. The effec-
tiveness of Graph4LLM methods critically depends on the
quality and robustness of the constructed graphs. In prac-
tice, graphs are often derived from noisy corpora or imperfect
knowledge bases, making them prone to incompleteness, spu-
rious relations, and structural bias. These imperfections can

propagate through downstream components, leading to mis-
leading retrieval results and distorted reasoning trajectories.
Future work should therefore prioritize robust and adaptive
graph construction, capable of handling varying data qual-
ity and uncertainties. This can be achieved, for instance, by
incorporating uncertainty quantification methods applied to
graph nodes and edges, enabling LLMs to reason over proba-
bilistic or graded relations. Additionally, iterative refinement
mechanisms that leverage feedback from LLM outputs to re-
vise or prune unreliable structures represent a promising di-
rection.

Complexity challenges from explicit structural expan-
sion. While richer graphs can represent more entities and
relations, increasing graph size, density, or heterogeneity
also introduces significant computational and cognitive chal-
lenges. In reasoning tasks, large or highly connected graphs
can lead to a combinatorial explosion of paths, making search
methods inefficient or unstable. Future research should focus
on complexity-aware graph designs, such as structure prun-
ing and hierarchical representations. These methods should
align graph granularity with task needs, enabling the model
to focus on the most relevant structures at each stage. De-
veloping criteria to determine when and how much structure
to expose to the LLMs will be key for scalable and reliable
reasoning. This will help transition Graph4LLM from being
’structure-rich” to structure-effective”.

Towards self-improving Graph4LLM: distillation,
feedback, and co-evolution. Despite their effectiveness,
most existing Graph4LLM methods use a unidirectional
process, where graphs assist LLMs at specific stages but
remain external to the model. The information in these
graphs is consumed only during generation and not retained
afterward, causing valuable structural signals to be repeat-
edly reconstructed, which limits efficiency and long-term
knowledge transfer. To address these limitations, future
work should focus on self-improving Graph4LLM systems.
One promising method is graph-to-model distillation, where
useful relational patterns from the Graph4LLM process are
distilled into the model’s internal representations through
fine-tuning or knowledge distillation. This would allow the
model to internalize structural priors and reduce reliance on
explicit graphs during inference. Model-to-graph feedback
can also refine graph construction, enabling representations
to evolve based on utility and support more robust, reusable
structures.

7 Conclusion

This paper presents a systematic survey of Graph4LLM, cate-
gorizing existing graph-enhanced LLM methods in the input,
model, and output phases. It covers representative methods
across different paradigms and their diverse application sce-
narios. Additionally, the paper summarizes key challenges
facing current Graph4LLM research and outlines future re-
search directions. By providing a coherent structural perspec-
tive on the integration of graphs and LLMs, this survey offers
a concise overview of the field, facilitating a clear understand-
ing of how graphs enhance the capabilities of LLMs.
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