BurstEngine: an Efficient Distributed Framework for Training
Transformers on Extremely Long Sequences of over 1M Tokens

Ao Sun’
maydomine@bupt.edu.cn
Beijing University of Posts and
Telecommunications, Beijing, China

Cheng Yang"
yangcheng@bupt.edu.cn
Beijing University of Posts and
Telecommunications, Beijing, China

Weilin Zhao*
zwl23@mails.tsinghua.edu.cn
Department of Computer Science and
Technology, Tsinghua University,
Beijing, China

Zhiyuan Liu
Department of Computer Science and
Technology, Tsinghua University,
Beijing, China

Maosong Sun
Department of Computer Science and
Technology, Tsinghua University,
Beijing, China

Xu Han"
han-xu@tsinghua.edu.cn
Department of Computer Science and
Technology, Tsinghua University,
Beijing, China

Chuan Shi
Beijing University of Posts and
Telecommunications, Beijing, China

ABSTRACT

Existing methods for training LLMs on long-sequence data, such
as Tensor Parallelism and Context Parallelism, exhibit low Model
FLOPs Utilization as sequence lengths and number of GPUs increase,
especially when sequence lengths exceed 1M tokens. To address
these challenges, we propose BurstEngine, an efficient framework
designed to train LLMs on long-sequence data. BurstEngine intro-
duces BurstAttention, an optimized distributed attention with lower
communication cost than RingAttention. BurstAttention leverages
topology-aware ring communication to fully utilize network band-
width and incorporates fine-grained communication-computation
overlap. Furthermore, BurstEngine introduces sequence-level se-
lective checkpointing and fuses the language modeling head with
the loss function to reduce memory cost. Additionally, BurstEngine
introduces workload balance optimization for various types of at-
tention masking. By integrating these optimizations, BurstEngine
achieves a 1.2x speedup with much lower memory overhead than
the state-of-the-art baselines when training LLMs on extremely
long sequences of over 1M tokens. We have made our code publicly
available on GitHub: https://github.com/thunlp/BurstEngine.

CCS CONCEPTS

+ Computing methodologies — Distributed computing method-
ologies; Neural networks.

KEYWORDS

Transformer, Distributed Training, Large Language Model

“indicates equal contribution.
findicates corresponding authors.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Pttt it ~

BurstEngine |

Hidden States

Backward Communication| |\

Optimization \ Transformer Block
Topology-aware BurstAttention
Communication

Fine-grained Overlapping |(,/ 1
’

Sequence-level
LM-head and Loss Fusion

If workload is unbalanced

Sparse Attention
Integration

If out of memory

Sequence-level
Selective Checkpointing

!
|
|
|
|
|
|
|
|
|
| .
| .
| .
|
|
|
|
|
|
|
|
|
|
\

Figure 1: The overview of BurstEngine’s main optimizations.

1 INTRODUCTION

Transformers [36] have emerged as the dominant architecture for
large language models (LLMs) [3, 9, 34] and large multimodal mod-
els (LMMs) [5, 6, 43]. However, training Transformer-based models
on long sequences faces two challenges: the memory consumption
associated with storing large intermediate states and the quadratic
cost of the attention mechanism with respect to sequence lengths.
Considering that long-sequence training is crucial for LLMs and
LMMs to generate extensive outputs such as documents, code, and
videos, many efforts have been made to address the challenges
associated with long-sequence training.

These efforts are approached from two perspectives: one focuses
on improving the efficiency of individual devices (e.g., single GPU)
in processing long sequences, while the other leverages distributed
systems (e.g., multiple GPUs) to handle long sequences. On the one
hand, typical works such as FlashAttention [7, 8] employ memory-
friendly online softmax [26], enabling Transformer-based models

https://orcid.org/0009-0002-3631-1233
https://github.com/thunlp/BurstEngine
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

to efficiently process sequences of 32K tokens using a single de-
vice. Other works, such as gradient checkpointing[4, 27], employ
recomputation to restore intermediate states rather than storing
them, thus improving memory efficiency for long sequences. On
the other hand, Context Parallelism (e.g., RingAttention) [13, 24],
Tensor Parallelism [20, 27], and Head Parallelism (e.g., DeepSpeed-
Ulysses) [18] are three typical approaches to leverage distributed
clusters to train models on longer sequences. Recent LLMs and
LMMs need to handle sequences beyond 128K tokens, making par-
allelism methods essential for training long-sequence Transformer-
based models [1, 9, 17, 41]. In this paper, we propose “BurstEngine”,
an efficient framework specifically designed to train Transformer-
based LLMs and LMMs on extremely long sequences of over 1M
tokens. As illustrated in Figure 1, BurstEngine considers long-
sequence optimizations from the perspective of the entire Trans-
former, especially handling the issues of attention for process-
ing long sequences, including four parts: (1) BurstAttention, (2)
Sequence-level Selective Checkpointing, (3) Sequence-level
Fusion of Language Modeling (LM) Head and Loss Function,
and (4) Sparse Attention Integration.

BurstAttention is a highly efficient distributed attention im-
plementation. As illustrated in Figure 1, BurstAttention introduces
three key optimizations: (1) Backward Communication Optimiza-
tion, which reduces nearly 25% of communication cost in the back-
ward pass compared to existing efficient context parallelism by
rewriting the backward pass of attention modules in a communication-
efficient way. (2) Topology-aware ring communication, which splits
communication into intra-node and inter-node communication, and
thus fully takes advantage of the bandwidth of different networks
to reduce communication cost. (3) Fine-grained communication-
computation overlap, which designs a specialized double buffer to
better overlap computation and communication. BurstAttention
significantly enhances Transformers’ efficiency for long sequences,
but long sequence bring high memory consumption due to storing
intermediate states. To address this challenge, we propose sequence-
level selective checkpointing and sequence-level fusion of LM head
and loss function.

Sequence-level Selective Checkpointing is a novel gradient
recomputation scheme specialized for attention modules, which
optimizes the trade-off between memory consumption and com-
putational overhead at the sequence level. Unlike traditional ap-
proaches [4] that store or recompute entire sequences, it selectively
checkpoints the former part of a sequence, storing the latter part
and recomputing the former during backward passes. This approach
can significantly reduce memory consumption while maintaining
limited computational cost.

Sequence-level Fusion of LM Head and Loss Function can
reduce the memory consumption of the Language Model (LM) head
by fusing the LM head with the cross-entropy loss function to
reduce the memory consumption of storing massive intermediate
states. Furthermore, we fuse the forward and backward passes of
the LM head and cross-entropy loss function to avoid recomputing
related intermediate states.

Sparse Attention Integration enables BurstEngine to flexibly
and efficiently incorporate BurstAttention with a variety of sparse
patterns, including causal masking, sliding-window masking, di-
lated masking, and other block-wise sparse patterns.

We evaluate BurstEngine on a series of settings with up to 64x
GPUs. The experimental results show that BurstEngine achieves a
1.2 speedup compared to the state-of-the-art method on extremely
long sequences of over 1M tokens. Additionally, BurstEngine saves
26.4% of memory compared to most memory-efficient baselines.

In summary, we make the following contributions: (1) We pro-
pose BurstAttention, a novel distributed attention with backward
communication optimization, topology-aware ring communication
pattern, and fine-grained overlapping. (2) We introduce a set of
novel optimizations, including sequence-level selective checkpoint-
ing and sequence-level fusion of LM head and loss function, along
with sparse attention integration. (3) We build BurstEngine, an
implementation of the proposed framework with over 35K lines
of Python, C++, and CUDA code, which achieves the state-of-the-
art performance on training LLMs and LMMs on extremely long
sequences of over 1M tokens.

2 PRELIMINARY

2.1 Preliminary of Transformers

A Transformer consists of multiple blocks, each with an attention
module and a feed-forward network (FFN), along with a language
modeling (LM) head mapping the final block’s output to vocabulary
space. In this section, we introduce the attention module and the LM
head in detail as they are key bottlenecks in long-context training.
Transformer Attention Module. Given a sequence containing
N tokens as input, whose embeddings are denoted as X € RN xd,
the attention module can be formalized as
Q = XWo,K = XWg,V = XWy,
T
= % P = Softmax(S), 0 = PV,Y =OW ytp,)
Vd
where Wo, Wi, Wy € RIxd map X to Q, K,V € RNV*d the query,
key, and value embeddings. S € RNXN and P € RVXN indicate
the attention scores and the attention probabilities, respectively.

S

0 € RN*4 jg the sum of value embeddings weighted by query-key
similarities, mapped to Y € RN*d yia Wattn € R9*d_ Most LLMs
and LMMs use multi-head attention, where each head follows Eq. (1)
and outputs are concatenated. For simplicity, we omit multi-head
details as the number of heads does not affect our optimizations
and conclusions, and denote the process as Y = ATTN(X). Since
our efficiency methods apply broadly to various attention patterns,
we refrain from detailed discussions on these patterns.

Transformer Block and LM head. A Transformer block Y =
Transformer(X) is given as

H = ATTN(X) + X,Y = FFN(H) + H. (2)

After stacking M Transformer blocks, we can build an LLM or LMM
to generate tokens

LM(Transformery;(- - - Transformeri (X))), (3)

where LM(X) = Softmax(XW;rocab) is the language modeling (LM)
head that maps the outputs of a Transformer to the probability
distribution, Wyoeap € R¥9 is the vocabulary embeddings, and v
is the size of the vocabulary set. For training LLMs and LMMs, the
outputs of the LM head are used to calculate loss. For more details
of Transformers, see [36] and surveys [14, 15, 19, 23].

2.2 Challenges of Processing Long Sequences in
Transformers

As we mentioned before, the attention module and the LM head
are key bottlenecks in training Transformers on long sequences. In
this section, we explain why and how they become bottlenecks in
training Transformers on long sequences.

(1) Challenges in Attention
Module. The attention module ex-
hibits quadratic complexity with re-
spect to sequence lengths, making
handling long sequences challeng- ~ 80%
ing in practice. As shown in Fig-
ure 2, attention modules have be-
come the main bottleneck in train-
ing Transformer-based models on 20%
long sequences of over 128K tokens.
Note that recent LLMs and LMMs
are required to handle sequences
of over 1M tokens. In this case, we
have to use distributed clusters to
make Transformers efficiently pro-
cess long sequences.

(2) Challenges of Storing In-
termediate States. Training Trans-
former models requires comput-
ing loss functions through forward
passes and obtaining parameter gra-
dients through backward passes. As sequence length increases,
memory required to store intermediate states during the forward
pass prior to performing the backward pass becomes a significant
bottleneck. To address this, efficient memory optimization solu-
tions are essential, especially for those GPUs with limited storage
capacity but sufficient computing power.

(3) Challenges in Language Modeling Head. When com-
puting the LM head, LM(X) = Softmax(XWIQcab), large memory

is required to store the states XW:';Ocab € RNX? pefore the Soft-
max function. This memory consumption continues to grow as the
sequence length increases, eventually reaching a point where it
exceeds the capacity of a single GPU.

(4) Challenges of Integrating Sparse Attention. In LLMs and
LMMs, attention modules are often coupled with sparse masking
to control which keys and values participate in the attention mech-
anism. In other words, the probabilities in Eq. (1) are obtained by
P = Softmax(M O S), where M € RN*N s the masking matrix.
For example, in LLMs, each token is required to only attend to
the tokens preceding it in the sequence, which necessitates the
use of a triangular masking matrix. Additionally, sparse attention
mechanisms [37, 40] are often employed to speed up long-sequence
processing. These sparse mechanisms rely on a sparse masking
matrix during the attention process to reduce computational com-
plexity. Obviously, the introduction of complex masking leads to an
imbalanced workload, presenting challenges for using distributed
clusters to process long sequences.

In subsequent sections, we will focus on introducing how to ad-
dress these challenges on distributed clusters and efficiently
train Transformer-based models on long sequences.

Attention Operation

T 0,
100% Time (%)

60%

40%

0%

1k 256k 512k 1024k
Sequence Length

Figure 2: The proportion
of time spent by attention
modules during the end-
to-end training process
of a Transformer-based
model (7B parameters).

L S

o

el
:
Attention

Figure 3: The backward pass process of RingAttention and
BurstAttention using 3 GPUs.

3 OVERALL FRAMEWORK OF BURSTENGINE
3.1 BurstAttention

BurstAttention addresses the efficiency challenges encountered
by the attention module during the training of Transformers on
long-sequence data by leveraging a distributed cluster. To facili-
tate introducing the details of BurstAttention, here we define a
distributed cluster as a cluster built by several nodes, and each
node contains several GPUs. Similar to the recent competitive
Context Parallelism method RingAttention, after obtaining
QK. VeRN xd jn Eq. (1), BurstAttention divides these sequence
embeddings into multiple partitions along the sequence dimen-
sion according to the number of GPUs in the cluster. Each GPU is
assigned a query partition, a key partition, and a value partition.
Formally, given the GPU number G of the cluster, the i-th GPU is
assigned Q;,K;, V; € R&*4_Since the parallelism efficiency primar-
ily depends on minimizing communication costs while maximizing
the overlap between communication and computation, BurstAt-
tention introduces three optimizations to reduce communication
cost and achieve better scalability and efficiency: backward commu-
nication optimization, topology-aware ring communication, and
fine-grained overlapping of communication and computation. Next,
we will first introduce how BurstAttention completes basic forward
passes, and then introduce three optimizations in detail.

Forward Pass of BurstAttention. BurstAttention formalizes
the forward pass of an attention module into a multi-step process.
At each step, the i-th GPU receives K; and V; from its neighbor
and performs local attention operations, and these local operations

Algorithm 1 The backward pass of RingAttention

Algorithm 2 The backward pass of BurstAttention

Require: Matrices Q;,K;,V;,0;, VO; € R%Xd, Lse; € R% on the i-th GPU

1: Initialize VQ;, VK;, VV; = (0) &

el xd
2: PutK;,V;, VK;, VV; into communication ring
3: for j =1to G do
: Conduct one step of the ring communication;

GetK;,V;, VK, VV; from communication ring;
Sij= QiKJT-;
P;; =exp(S;; — Lse;);
VV;=VV; +PZJ.VOI-;

9: VP;; = VO; VT
10: D; = rowsum(VO; 0 O;)
11: VS;j=P;i;jo (VP;; —D;);
12: VK; = VK; + VS;jQ,-;
13: VQ, =VQ; +VS;; K;;
14: PutK;,V;, VK;, VV; into communication ring; {4Nd}
output VQ;, VK;, VV;;

AN A

Require: Matrices Q;,K;,V;,0;, VO; € R%Xd, Lse; € R% on the i-th GPU
1: Initialize VQ;, VK;, VV; = (O)de
G
2: D; = rowsum(VO; 0 O;)
3: Put Q;, VQ;, VO;, D;, Lse; into communication ring
4: for j =1to G do
5: Conduct one step of the ring communication;
6: Get Qj, VQj, VO;,Dj,Lse; from communication ring;
7o S = QiKY
8: Pj,i = exp(Sj,i - Lsej);
9: VvV, =VV; +PJT.J.VO]-;
10: VP;; =VO; V];
11: VS;; =P;; 0 (VP;; —Dj);
12: VK; = VK; + VSLQ]-;
13: VQj=VQj+VSjV,'Ki;
14: PutQ;,VQ; VO;,Dj,Lse; into communication ring; {3Nd + 2N}
output VQ;, VK;, VV;;

can be formalized as

QiK;
Sij=———Pij= SoftmaX(Si,j), 0;,; =P;;Vj, 4)

Vd

N N N
where O;; € RS *4 indicates the local hidden states. Sij € RG*G

and P;j € RTX% indicate the local attention scores and the local
attention probabilities, respectively. After local attention opera-
tions, the i-th GPU sends K; and V; to its next neighbor for the
next step. Within each single GPU, we adopt FlashAttention to
efficiently complete local attention operations. For more details
about FlashAttention, please refer to its related papers [7, 8].

This multi-step process continues until all K and V partitions
have gone around the ring and completed all local attention oper-
ations. Generally, after obtaining all local states {O;, j}iG:’szl, we
have to introduce additional communication and computation to
aggregate these states into global states, as well as a lot of memory
consumption to store these local states before aggregating them.
To avoid incurring additional overhead, during the ring process, we
introduce online softmax [26] to progressively aggregate all local

states {0, ; }jc.;:1 into the partitioned global states O; € RE *d and
finally map the concatenated partitioned global states {Oi}?:1 to
the output embeddings Y € RN xd, Specifically, we reformulate the
local operations in Eq. (4) as

-

QlK]
Si,j = W,Lse = LSE(Si’j), (5)

P;j=exp (Si’j — Lse), 0;,j =P;;Vj.

where LogSumExp (LSE) function maps RE*T toRE and given

[Y]; = log) exp([Xli). ©)
=

where [Y]; is the i-th element of the vector Y, [X];.; is the element
located in the i-th row and the j-th column of the matrix X. With

. . G.G GG GG
Eq. (5), we can avoid storing {Sisj}izl,jzl’ {Pi; }i:Lj:l, {0i,; }izl,jzl
to obtain O;. Note that, the subtraction of the matrix S; ; and the
vector Lse requires broadcasting the elements of Lse along the last

dimension of S; j, and we will not repeatedly emphasize this.

Communication Optimization of Backward Pass. Given a
sequence consisting of N tokens, whether using RingAttention

or BurstAttention, the i-th GPU has Q;,K;,V; € R%Xd and the

partitioned global states O; € RE*4 after finishing forward pass.
The communication cost of forward pass is 2Nd, because each GPU
receives and sends {K; }JG:l and {V; }5;:1 once.

As shown in Figure 3 and Algorithm 1, during the backward
pass of RingAttention, K;, V; and their corresponding gradients
VK, VV; are passed around the ring. At each step, the i-th GPU
receives Kj, V;, VK, VV; from its previous neighbor, and then use
K;,V; and the locally stored Q;, O;, VO; to update VQ;, VK, VV;.
After updating gradients, the i-th GPU sends the received partitions
K;,V; and the updated gradients VK, VV; to its next neighbor for
the next step. It is evident that for RingAttention, the communi-
cation cost during the backward pass amounts to 4Nd per GPU,
doubling the cost incurred during the forward pass.

To reduce the communication cost of the backward pass, BurstAt-
tention adopts a different strategy from RingAttention. Specifically,
since P; = Softmax(S;) and VP; = VO; VT, we can get

VS; =P; o VP; —P;VP/P; =P; o VP; - P;(VO,V')"P;

=P; o VP; — (P;V)VO, P; = P; o VP; - O;VO, P;,
where o denotes element-wise multiplication. Given D; = OiVOiT,
VS; = P; o VP; — D;P;. (8)

Based on the above derivation, BurstAttention stores K;, V;, VK;, VV;
on each GPU, and passes Qj, VQ;, VOj,Lsej, D; around the ring.
Through formula substitution, we can pass D; instead of O ; around

the ring, and the whole backward pass of BurstAttention is shown

in Algorithm 2. Since the total size of {D j}]Gzl and {Lse f}]G:I is

N, we can see that the communication cost of backward pass is

3Nd + 2N for BurstAttention, nearly 25% less than RingAttention’s

4Nd. In addition, the computation overhead of BurstAttention is

also lower than that of other RingAttention since we do not need

to calculate rowsum(VO; o O;) in each round.

Topology-aware Ring Communication and Fine-grained
Communication-Computation Overlapping. Traditional Con-
text Parallelism [13, 22, 24] experiences serious performance degra-
dation in multi-node settings because of the limited communication
bandwidth of inter-node networks. To address this, DoubleRing

Topology-aware Ring
Communication

Figure 4: An example of topology-aware ring communication
using 2 X 4 GPUs.

Attention [13] partitions global ring communication into intra-
node and inter-node communication. This approach enhances the
utilization of inter-node network interface controllers (NICs) and
benefits from the overlapping of heterogeneous communication.
While DoubleRing Attention offers notable advantages by overlap-
ping inter-node communication, intra-node communication, and
computation during forward passes, it fails to overlap gradient com-
munication during backward passes. This oversight inevitably leads
to performance degradation as the cost of gradient communication
grows. To overcome these limitations, we introduce the topology-
aware ring communication with fine-grained overlapping.

Table 1: The communication time (forward and backward
pass) of RingAttention, DoubleRingAttention, and BurstAt-
tention. Ti,ra = Latinga + Iﬁ' Tinter = Latinter + ﬁ.
Latj,tra and Latj,te, are the latencies of intra-node commu-
nication and inter-node communication, respectively. Bintra
and Bjpter are the bandwidths of intra-node communication
and inter-node communication, respectively. P is the size
of data to be communicated, Njtra is the number of GPUs
in the same node, Njyter is the node number, and G is total
number of GPUs in all nodes.

Method Communication Time
RingAttention 6 max(N - Tintra» N - Tinter)
: 4max((N — Niter) * Tintra> Ninter * Tinter)
DoubleRin,
& +2((N - Ninter) . Tintra + Ninter Tinter)
BurstAttention | 5max((N — Ninter) * Tintra> Ninter * Tinter)

As Figure 4 shows, in a 2-node cluster, where each node contains
4 GPUs interconnected via NVLink, and the nodes are intercon-
nected with the InfiniBand network, BurstAttention divides the
global ring into two sub-rings, each responsible for communica-
tion among the GPUs within the same node. During each round of
communication, GPUs within the same node perform a ring commu-
nication operation to exchange data. After all GPUs within the same
node have completed their data exchanges (4 rounds intra-node
communication in this case), GPUs in different nodes exchange
data via the global ring. Considering there is commonly more than
one NIC in distributed clusters for LLM training, the global ring
communication can effectively utilize all available NICs’ bandwidth
and reduce inter-node communication cost significantly.

. Intra-node Inter-node
Computation [J NS A
e _—__ _P_ _ _ _ _ _ Communication Communication
S S Y N

7z
{ TimeLine

Timeline

TimeLine

(o2 B)

Gradient Communication

Activation Communication
Overlapping

Overlapping
Figure 5: The communication overlap for activations and
gradients in BurstAttention.

Since intra-node and inter-node communication in Figure 4 have
separate railways in NVLink and InfiniBand networks, respectively,
we can further overlap inter-node communication and intra-node
communication. To achieve this, BurstAttention uses three dedi-
cated buffers based on the topology: one for intra-node communica-
tion, one for inter-node communication, and one for computation.
In each communication round, BurstAttention swaps the intra-node
communication buffer with the computation buffer, allowing GPUs
to obtain the data transmitted in the previous round for attention
computation while continuing data exchange in this round. After
all intra-node communication is complete, the inter-node commu-
nication buffer is swapped with the computation buffer, enabling
GPUs to access data from remote nodes while initiating the next
round of inter-node communication.

To achieve fine-grained overlapping between computation, intra-
node communication, and inter-node communication, it is essential
to properly manage the dependencies between communication and
computation. Specifically, as illustrated in Figure 5, we categorize
overlapping of BurstAttention into two types: 1) Activation (e.g.,
K, V) overlapping, where the first round of computation can be
scheduled to execute concurrently with communication, as each
round of communication is independent of the computation in the
corresponding round; 2) Gradient (e.g., VQ) overlapping, where the
first round of communication has a dependency for the computation
of the corresponding round, thus we have to first compute the
gradients and then communicate these gradients.

As illustrated in Figure 5, for activation overlapping, BurstAt-
tention overlaps computation and communication by launching
inter-node and intra-node communication threads simultaneously
with computation threads. After one round of computation, BurstAt-
tention waits for intra-node communication and launches another
computation thread using received activations. After each device
fully exchanges activations with other devices within the same
node, it waits until inter-node communication is finished and then
launches computation thread using received activations. The over-
lapping method for activations is not applicable for gradients since
the first round of communication has a dependency on the gradient
computation. To solve this issue, as shown in Figure 5, BurstAt-
tention delays intra-node communication and inter-node commu-
nication. Specifically, BurstAttention first performs one round of

Vanilla Selective Sequence-level

Checkpointing Checkpointing++ Selective Checkpointing
| Recompute Vi] .~ Recompute” A
| B 0w .0
! I : : O Get From L : ‘\lj"_ _______ I_:l_/

N

: I .
1 r

Figure 6: The illustration of sequence-level selective check-
pointing in BurstEngine.

Memory (GB) Memory (GB)
[Selective Checkpointing++ ——— Uama3
300 GB | XJ BurstEngine 300GB | ___ jamati2
250 GB 250 GB -
200 GB 200 GB
150 GB 150 GB
100 GB 100 GB
50 GB B0 GB [t tmam=
0GB & 0GB L&==
128k 256k 512k 1024k 8k 256k512k 1024k

Sequence Length Sequence Length

Figure 7: The total memory con- Figure 8: The total memory

sumption of different gradient cost of LM head’s logits for
checkpointing strategies. LLaMA-1/2 and LLaMA-3.

computation for warm-up. Then it initiates the intra-node com-
munication and another round of computation, which gets rid of
the dependency between later gradient communication and gra-
dient computation. After all GPUs have exchanged the gradients
with each other, BurstAttention launches the inter-node commu-
nication to exchange the gradients between different nodes. In
this way, BurstAttention can almost fully overlap the computation,
intra-node communication, and inter-node communication of both
forward and backward passes.

As shown in Table 1, BurstAttention has less communication
time than RingAttention when By, is larger than Bipter. By com-
paring the communication time of DoubleRingAttention and BurstAt-
tention, we can find that BurstAttention not only has less commu-
nication cost due to backward communication optimization but
also can save more communication time by overlapping inter-node
communication and intra-node communication for gradients.

3.2 Sequence-level Selective Checkpointing

As the sequence length increases, the memory required to store
intermediate states becomes a significant bottleneck. To address
this, gradient checkpointing [4] is introduced to mitigate the high
memory demands associated with storing these intermediate states.
Generally, gradient checkpointing methods only store the input
of each Transformer layer and get all intermediate states of each
Transformer layer by using the input to do recomputation.

While gradient checkpointing methods reduce memory con-
sumption, they increase computation overhead when combined

with FlashAttention [7]. This is mainly because FlashAttention [7]
fuses the Softmax process and matrix multiplications of the at-
tention module, which means all intermediate states in attention
would not be saved in forward passes and need to be recomputed
in backward passes. To mitigate this issue, selective checkpoint-
ing++ [13, 21] stores FlashAttention’s output in memory and in-
cludes the outputs in a whitelist, avoiding recomputation and di-
rectly using the outputs stored in GPU memory. However, this
method would introduce substantial memory consumption since
the outputs of FlashAttention are large as the sequence length
increases and the number of layers increases, as shown in Figure 7.

To achieve a balance between memory consumption and compu-
tation overhead, we propose sequence-level selective checkpointing.
As illustrated in Figure 6, the cost of recomputation for different
sequence segments in the attention module is typically uneven,
whereas the cost of storing activations remains the same in LLMs.
Based on this observation, sequence-level selective checkpointing
employs gradient checkpointing by dividing the sequence into two
segments, storing the second segment with higher recomputation
overhead, and only recomputing the first segment, as illustrated
in Figure 6. In this manner, our method exhibits lower memory
consumption with minimal additional computation overhead than
other methods. As shown in Figure 7, sequence-level selective check-
pointing can reduce the memory consumption of gradient check-
pointing by 50% compared to selective gradient checkpointing++
while only introducing a slight decrease in end-to-end throughput.

3.3 Sequence-level Fusion of Language
Modeling Head and Loss Function

In this section, we explain why the LM head becomes a key bottle-
neck in Transformers’ long sequence training and introduce the
details of the sequence-level fusion of the LM head and loss func-
tion. First, we dive into the details of the LM head. Here, we refine
Eq. (3) into

Logits = Hlastw}-ll—ead’ P = Softmax(Logits),

9
L = Cross-Entropy (P, Y), ©)

where Hj,, € RN xd is the output embeddings of the last Trans-
former layer, Wyeoq € R4 s the vocabulary weight of the LM
head, P is the probability distribution over the token vocabulary,
and Y is the ground truth of the input.

To better support multiple languages and tasks, several LLMs
have expanded their vocabulary sizes [9, 17]. Taking LLaMA [9,
33, 34] as an example, the vocabulary size of the LLaMA series
has grown from 32K in LLaMA-1 and LLaMA-2 [33, 34] to 128K
in LLaMA-3 [9]. As the sequence length increases, the memory
consumption of storing the outputs of the LM head becomes a
significant bottleneck, especially with a large vocabulary size. As
shown in Figure 8, the memory consumption increases linearly
with the sequence length, and the memory consumption of the LM
head of LLaMA-3 is astonishingly high when dealing with long
sequences. To address this issue, works like [25, 39] are proposed to
split the hidden states and weights of the LM head into tiles, then
fuse the LM head and cross-entropy at the tile level. In this way,
there is no need to store the whole P matrix. During the backward
pass, the above methods recompute the P matrix in the same way

Algorithm 3 Sequence-level fusion of LM head and loss function

Require: Hp,q € RV*? Wyeq € R4 Y e RN
Block Size Bs, B,
wtarget = Whead [Y] {Index Operation, Wtarget € RNXd}
{Divide Hjast, Whead, Y into the tiles of the size Bs X d, B, X d and B}
1: for blocks H; € RBs*9 jn Hy, do
2 Lse; = —oo;
3: for blocks W; € RBo*4 in Wye,q do
4 Logits;; = H,»W}';
5: Lse;; = log ¥ exp(Logits; ;);
6 Lse; = log(exp(Lse;) + exp(Lse;;));
7 Li=-YH;- wtarget + Lse;;
8 for blocks W € RBo*d i Wy pq do
9: VLogits;; = exp(Logits;; — Lse;);
10: Index; = [jBy+1,---,(j+1)By];

11: E = 1if Index; = Y;, otherwise 0; {E € RN}
12: VH; += (VLogits;; +E)W;'.'.
13: VW; += (VLogits;; + E) TH;.

as the forward pass. However, these methods still introduce unnec-
essary computation overhead since they need to recompute the P
in backward passes and would suffer from low training throughput.
To achieve better efficiency in training Transformers on long-
sequence data, we introduce a sequence-level fusion of LM head
and loss function without the need to recompute P and Logits. As
illustrated in Figure 9, we propose to fuse the forward pass and
backward pass in LM head and loss fusion. In detail, we divide Hi,g;
into tiles along the sequence dimension and Wh,,q into tiles along
the vocabulary dimension. During the forward pass, we loop over
each tile of Hy,5; and Wye,q, and compute Logits and update Lse
for each tile. After that, we compute the loss function for each tile
of Hy,g; using Lse of Logits. Then, we perform the backward pass
immediately after the forward pass, without the need to recompute
logits and P, which is the same idea as the online-softmax part of
BurstAttention, as mentioned before. During the backward pass,
we compute the VLogits, VH,s;, VW4 using tiles of H,g; and
Whead. In this way, the sequence-level fusion of the LM head and
loss function can reduce most memory consumption of storing
the outputs of the LM head and avoid unnecessary computation
overhead in the backward pass, as depicted in Algorithm 3.

3.4 Sparse Attention Integration

In this section, we discuss how BurstAttention integrates with
sparse attention patterns, including common causal attention mask-
ing and other block-wise sparse attention masking.

Causal Attention. In the training process of most LLMs and
LMMs, the goal is to predict the next token in the sequence. In
this task, the training objective is to maximize the log-likelihood
of the next token given the previous tokens. To accomplish this,
Transformer-based models commonly employ causal attention mask-
ing. For each token in the sequence, causal attention masking makes
the token only attend to the key-value pairs of its preceding tokens.
We can formulate this causal attention pattern as

Qi[Ki.Ka, -+, Ki]T
Vd

where Q; is the query embedding of the i-th token, and K, V; are
the key and value embeddings of the j-th token.

0; = Softmax [V, Vo,---,Vi] (10)

Sequence-Level LM-head&Loss Fusion

0 Hy, € RV*¢ B3 Logits € RV*Y E VH,,, € RV*¢ EVLogits € RV*?
I Wieat € RV B3 £ e RV BN VW),.,q € RV BBVL e RY

LTI 1]

o i
g | é i
| O !

Cross-Entro, Cross-Entro)
Py Py

o]
5
g
4
o
]
g
S
<

1
I
1
I
I
I
I
I
I
I
I
1
I
1
I
I
I
I
I
I
I
I
1
I
1

Figure 9: The illustration of the sequence-level fusion of the
LM head and loss function.

To balance the workload of causal attention in Context Paral-
lelism [13, 24], two typical methods [2, 28, 44] have been proposed:
striped-way workload balance and zigzag-way workload balance, as
illustrated in Figure 10. Next, we will introduce how BurstAttention
integrates these two kinds of methods to balance workloads.

For zigzag-way workload balance, the input sequence is initially
partitioned along the sequence dimension across multiple devices.
Given a sequence containing N tokens {xi, ..., x,} and G devices,
the sequence is divided into 2G subsequences, where the subse-
quence length is P = % For the i-th device (1 < i < G), it obtains
two subsequences, one in the front and one in the back: Sl.1 and Sl.z,

Sh={xx |ke[(i-1)xP+1ixP]},

] , . (a1

Si={xg |ke[n—ixP+1,n~-(i—1)xP]}.
After getting subsequences, each device first performs causal atten-
tion on the two subsequences and then communicates with other
devices to obtain the key-value. Based on the partition, the i-th
device has a front query and a back query, after getting the front
key-value and back key-value from other devices. When the i-th
device has the query embeddings {Qll, Qf} of Sl.l, Si2 and receives
{K}, K? 1 {V}.,V?} of the j-th device’s S]l., S?, we get

CausalATTN({Q}, Q7}, {K}, K2}, {VL, V3}) ifi=j,
0;; = { FullATTN(Q7, {K}, K3}, {V}, V3})
FullATTN({Q}, Q7},K], V)

ifi < j,
ifi > j.
(12)
For striped-way workload balance, the input sequence is initially
partitioned along the sequence dimension across multiple devices
into G subsequences, where the subsequence length is P = % For
the i-th device (1 < i < G), it obtains one subsequence as
Si={xx |ke{i+Gxm|me[0,P-1]}}. (13)
The striped-way workload balance method ensures that each device

can perform causal attention on the same number of tokens. When
the i-th device has the query embeddings Q; of S; and receives the

S g

e e =

[[]
Do
DEa000

oooor
BEEOOL
ooono
=[S
oo
0080

[]] | o
0000000

Figure 10: Two types of workload balance methods for dis-
tributed causal attention.

Unbalanced

| WorkLoad Balance for \
CIGPU 1 . .

| B GPU 2 Block-wise Sparse Attention |

! 12345678 12345678 1337 ‘2“65:

I 1000 !

I 2 : @EOOE 3 g 1

B [BER_ Bi e
(AN NN EENE 1]

R T R T L
6 6

| ;OOEE00EE - 00000000 2 :BOC0 -@000)

| .O0EEO0EE .OoEEc0oss (0800 -E800 !

I

1 [

Figure 11: Workload balance for block-wise sparse attention.

key-value embeddings K;, V; of the j-th device’s S;, we can get

Q; = {Qik | k € [2,P]},
K!={Ky | ke [1,P-1]},

1

Vi={Vi | ke [LP~-1]}, (14)

1
Os = Causal ATTN(Q;,K;,V;) ifi >=j,
Y Causal ATTN(Q}, K, V) if i < j.

By adopting a zigzag-way workload balance or striped-way work-
load balance, each device has exactly the same compute workload,
and FlashAttention’s optimization of causal attention can be further
leveraged to achieve workload balance at the streaming processor
level. For BurstEngine, both zigzag-way workload balance and
striped-way workload balance can be integrated. From our pilot
experiments, integrating BurstEngine and striped-way workload
balance achieves better performance.

Block-wise Sparse Attention. In addition to causal attention,
block-wise sparse attention is another common sparse attention
pattern. In block-wise sparse attention, the input sequence is di-
vided into blocks, and each token only attends to tokens within the
same block or some neighboring blocks. This pattern is widely used
in reducing the computation and memory consumption of training
Transformers [11, 12]. While sparse patterns are inherently difficult
to integrate with conventional Context Parallelism methods due to
extreme workload imbalance among workers, BurstEngine adopts
a strategy similar to striped-way workload balance to balance the
workload for block-wise sparse attention. In block-wise sparse at-
tention, we first divide the sequence into blocks along the sequence
dimension, and the size of each block Ny needs to be a multi-
ple of the number of devices G, which is a strict requirement for
block-wise sparse attention workload balance. Then we define the

N o N
block-masking matrix as My € RNoik " Nbik , where My [i, j] =1
if all tokens in the i-th block can attend to the tokens in the j-th

block. Then, as shown in Figure 11, we adopt a strategy similar
to striped-way workload balance for block-wise sparse attention.
With the strategy, each device can get exactly the same compute
workload, and there is no unnecessary idle time for each device
since the workload is balanced.

4 EXPERIMENTS

4.1 Experimental Settings

Hardware Settings. We adopt two configurations: 32xXA800
and 64xA800. For all configurations, each node is equipped with
8xA800-SXM4-80GB GPUs linked via 400GB/s NVLink, 8 NVIDIA
Mellanox HDR InfiniBand NICs(200Gb/s), and 128 CPU cores.

Model Sizes. In experiments, we mainly perform experiments
on two settings of model sizes: LLaMA Transformer [9, 33, 34] with
7 billion parameters (7B, 32 layers, 32 heads, 4096 dimensions, 32K
vocabulary tokens) and with 14 billion parameters (14B, 40 layers,
40 heads, 5120 dimensions, 120K vocabulary tokens).

Training Settings. We adopt fully sharded data parallelism
(FSDP) [31, 42] to partition model parameters across devices. All
evaluations are conducted with gradient checkpointing [4] to achieve
better training efficiency under limited memory. For 7B and 14B
models, we respectively set the sequence length to 2M and 1M on
32xA800, and to 4M and 2M on 64xA800.

Implementation details For BurstEngine, we adopt the FSDP
implementation from BMTrain [29, 38], which achieves overlap of
communication and computation at the Transformer-block level
and supports optimizer offloading [32]. Our Topology-aware ring
communication is built on top of NCCL and uses multi-stream
programming to overlap inter-node communication, intra-node
communication and computation. Additionally, we incorporate
sequence-level fusion of LM head and loss fusion to reduce the
memory consumption of storing the outputs of the LM head.

Evaluation Metrics. For evaluation of training efficiency, we
employ tokens per second per GPU (TGS) and model FLOPs utiliza-
tion (MFU). TGS provides a direct measure of end-to-end training
throughput, while MFU reflects the actual utilization of the GPU
device. To evaluate memory consumption, we measure the peak
memory allocated on each GPU for each method, since peak mem-
ory can directly evaluate the scalability of the method to larger
models or longer sequences.

Baselines. We compare BurstEngine with the following base-
lines in our experiments: (1) Megatron Context Parallelism (CP):
Megatron-LM’s implementation [28] for context parallelism, using
RingAttention integrated with zigzag-way workload balance. (2)
DeepSpeed-Ulysses: DeepSpeed’s implementation [18] for head
parallelism. (3) LoongTrain-DoubleRing: LoongTrain’s imple-
mentation [13] for context parallelism, using DoubleRingAttention
integrated with zigzag-way workload balance. (4) LoongTrain-
USP: LoongTrain’s implementation for Head-Context Hybrid Par-
allelism [10, 13], achieving the state-of-the-art performance for
long-sequence Transformer training, adopts head-first device place-
ment and RingAttention with zigzag-way workload balance.

4.2 Training Performance

Throughput Performance. For comparisons of training effi-
ciency, we evaluate the end-to-end training throughput of four

Il (A) Megatron CP
[(B) Deepspeed-Ulysses
[(C) LoongTrain-DoubleRing

EE® (D) LoongTrain-USP
BB (E) BurstEngine

7B 32xA800

MFU Tokens/s MFU
2M Sequence 2M Sequence 1M Sequence
120 120

14B 32xA800

Tokens/s
1M Sequence

0.5 05

100 A 100 -
0.4 80 - 0.4 1 80 -
0.3 1 60 - 0.3 1 60
0.2 40 0.2 40 4 H
0.1 20 1 0.1 1 20 1
0.0 X 0 X 0.0 X X 0 X X

ABCDE ABCDE ABCDE ABCDE

7B 64xA800 14B 64xA800

MFU Tokens/s MFU Tokens/s
4M Sequence 120 4M Sequence 2M Sequence 2M Sequence

05 120
0.51 100 - : 100 A

0.4 1 80 041 80
0.3 1 60 - 0.3 1 60 -
0.2 40 - 0.2 40 4

oo XX xx 2g'xxxxlo';'xxxx 2g'xxxxl
ABCDE

0
ABCDE ABCDE ABCDE

Figure 12: The end-to-end training throughput (TGS) of
BurstEngine and other baselines.

[(A) Megatron CP =1 (C) LoongTrain-DoubleRing (223 (E) BurstEngine
[(B) Deepspeed-Ulysses ™9 (D) LoongTrain-USP

7B 32xA800 14B 32xA800
Memory(GB) Memory(GB)
2M Sequence 1M Sequence
80 80
60 : | 60 i
40 o ? 40)
20 - 20 .
0 X ’ 0 X X o
A B c D E A B c D E
7B 64xA800 14B 64xA800
Memory(GB) Memory(GB)
4M Sequence 2M Sequence
80 80
60 60
40 40 7
20 4 20 ’
0 X X X X 0 X X X X
A B c D E A B c D E

Figure 13: The peak memory usage (GB) per GPU in the end-
to-end training of BurstEngine and other baselines.

baselines and BurstEngine on 7B and 14B models. As shown in
Figure 12, BurstEngine outperforms all baselines in terms of TGS
and MFU on both 7B and 14B models. BurstEngine achieves up to
1.19%/1.15X speedups on 7B/14B models, respectively, on 32xXA800
GPUs, compared to the state-of-the-art method LoongTrain-USP.
In the 7B/14B model training under the 32xXA800 setting, Megatron-
CP fails because of the out-of-memory issue, which is mainly due
to the huge memory consumption of storing optimizer states and
model weights since Megatron does not provide FSDP implemen-
tation and optimizer offloading. DeepSpeed-Ulysses has less mem-
ory consumption since it has FSDP and optimizer offloading, but
still performs worse than LoongTrain-USP and BurstEngine be-
cause it can not overlap all-to-all communication with computation.

[(A) Megatron-CP BB (C) LoongTrain-USP
ZZZ (B) LoongTrain-DoubleRing EZS (D) BurstAttention

Distributed Attention
on 32xA800

5371 I
B R 7 A]

L
£
=)
<
]
=
Q
o
8
S S

>
g o
n

N

(N

Y
0 50 100 150 200
Performance (TFLOPs/s)

Figure 14: Performance of different distributed attention
implementations

LoongTrain-DoubleRing demonstrates superior throughput perfor-
mance compared to DeepSpeed-Ulysses, leveraging its advanced
capability to overlap communication with computation. However,
it still underperforms compared to LoongTrain-USP, primarily be-
cause of the significant communication cost that remains unopti-
mized. Though LoongTrain-USP has higher training throughput
than other baselines, it still suffers from the communication cost
of Head Parallelism and RingAttention, respectively. BurstEngine
achieves the best training efficiency (TGS and MFU), showing the
efficiency of backward communication optimization and topology-
aware ring communication with fine-grained overlap.

Memory Performance. In terms of memory performance, as
illustrated in Figure 13, BurstEngine exhibits the lowest peak mem-
ory usage. The figure highlights that DeepSpeed-Ulysses, Loong-
Train-DoubleRing, and LoongTrain-USP exhibit comparable mem-
ory consumption under the setting (7B model, 32xXA800), while
BurstEngine saves 26.4% memory compared to the best baseline.
Under the setting (14B model, 32xXA800), DeepSpeed-Ulysses en-
counters an out-of-memory error due to its limitation on the num-
ber of model heads. LoongTrain-DoubleRing and LoongTrain-USP
suffer from high memory consumption, which is mainly due to
storing the outputs of the LM head. Under this setting, BurstEngine
saves 24.2% memory compared to the best baseline by adopting
sequence-level fusion of LM head and loss function. Under the
setting of 64xA800, BurstEngine can support training a 7B model
with a 4M sequence length and a 14B model with a 2M sequence
length, which all baseline models fail to achieve. This is because
BurstEngine exhibits nearly identical memory usage, indicating
that BurstEngine achieves almost linear scaling with the device
number along the sequence dimension.

4.3 Attention Performance

We evaluate the performance of BurstAttention using a 14B model’s
attention configuration on a setup of 32x A100 GPUs, comparing it
with other RingAttention implementations such as Megatron’s CP,

Table 2: The ablation study of BurstEngine for using 32XA800 to train a 14B model on the sequences of 1M tokens.

Backward Topology-aware Sequence-level Sequence-level Selective Memory
Communication Ring Communication Fusion of Selective Checkpointing ++ MFU (%) TGS (GB)
Optimization LM head and Loss Checkpointing
X X X X X 36.75 83.79 48.47
v X X X X 38.37 87.48 49.31
v v X X X 41.69 95.06 48.97
v v v X X 41.58 94.81 41.45
v v v v X 47.72 108.82 45.93
v v v X v 51.68 117.83 53.91

LoongTrain’s DoubleRingAttention, and USP. Given that the con-
figuration involves 40 attention heads, DeepSpeed-Ulysses can not
be applied in this scenario, as head parallelism is infeasible when
the number of heads is not divisible by the number of GPUs. The ex-
perimental results, illustrated in Figure 14, highlight the efficiency
of each method. From experimental results, Megatron’s CP imple-
mentation encounters evaluation failures due to an out-of-memory
issue when the sequence length exceeds 256k. Additionally, even in
scenarios without memory issues, Megatron-CP performs poorly
due to significant inter-node communication overhead. BurstAtten-
tion outperforms all other distributed attention implementations,
achieving a 1.05X speedup over LoongTrain’s USP and a 1.33x
speedup over LoongTrain’s DoubleRingAttention under 1M se-
quence setting. This superior performance can be attributed to
BurstAttention’s topology-aware ring communication strategy and
its ability to finely overlap communication and computation.

At first glance, it might be a bit confusing why BurstAttention
shows only marginal improvements compared to LoongTrain’s
USP, while BurstEngine achieves a 1.2Xx speedup. This is due to the
difference between benchmarking attention alone and end-to-end
training. When benchmarking attention alone, communication and
computation can be overlapped perfectly. In end-to-end training,
extra communication operations caused by FSDP result in huge
communication costs and make perfectly overlapping impossible.
In these cases, reducing communication cost leads to much bigger
improvements in performance.

4.4 Ablation study

Main Optimization Strategies. We present an ablation study to
assess the impact of individual optimization strategies in BurstEngine.
The experiments are conducted using a 14B model and sequences
of 1M tokens, evaluated on 32xA800. As shown in Table 2, we can
observe how each optimization strategy contributes to the overall
performance of BurstEngine. Backward communication optimiza-
tion brings approximately a 1.05X speedup, while topology-aware
ring communication and fine-grained communication-computation
overlap contribute to an approximately 1.08x speedup. Further-
more, sequence-level fusion of LM head and loss function can save
15.3% memory compared to the baseline without introducing any
performance degradation in training efficiency since there is no
additional computation overhead. Sequence-level selective check-
pointing can save another 14.8% memory compared to the baseline
and can achieve a 1.14X speedup compared to the baseline with full
checkpointing, positioning it as an optimal solution that balances

Table 3: The throughput of integrating BurstEngine with
different sparse attention masking strategies.

Implementation | TGS Speedup
Attention Masking | 227.58 1.00x
Causal Attention | 393.44 1.72%
SWA 837.79 3.68X

Table 4: The performance of BurstEngine across different
nodes, with each node having 8xA800.

Nodes Sequence | MFU (%) TGS Memory (GB)
2 0.5M 53.1 223.25 63.13
4 1M 53.2 118.36 53.96
8 2M 52.7 60.49 50.96

Table 5: The performance of BurstEngine across different
context parallel size settings on 8xXA800.

CP Sequence | MFU (%) TGS Memory (GB)
1 32K 47.34 1201.14 57.71
2 64K 48.85 928.24 55.18
4 128K 50.55 639.43 55.58
8 256K 51.90 393.44 53.56

memory and throughput. In the end, BurstEngine achieves a 1.4x
speedup and saves at least 15% memory compared to the baseline
without any optimization.

Workload Balance for Sparse Attention. We present an ab-
lation study to assess the impact of workload balance for sparse
attention in BurstEngine. The experiments are conducted using a
14B model and sequences of 1M tokens, on 32XA800. We measure
the training throughput of three sparse attention implementations:

BurstEngine w. Attention Masking is the implementation of
sparse attention without any workload optimization, which simply
applies attention masking to restrict the attention range of each
token and has the same computation overhead as full attention.

BurstEngine w. Causal Attention is the implementation of
integrating BurstEngine with zigzag-way workload balance for
causal attention, which can balance the workload of each device
and avoid unnecessary communication and computation overhead.

BurstEngine w. SWA is the implementation of integrating
BurstEngine with Sliding Window Attention (SWA). In this imple-
mentation, we adopt the block-wise sparse method, as illustrated
in Figure 11, to balance the workload of each device.

As shown in Table 3, we can see that BurstEngine w. Causal
Attention achieves a 1.72x speedup compared to BurstEngine w.
Attention Masking. As for the SWA pattern with a 32K sliding win-
dow size, BurstEngine achieves a 3.68x speedup compared to the
baseline without any workload balance strategy. While there still
remains a gap in training efficiency compared to the theoretical
optimization effect, BurstAttention has significantly reduced the
idle occupancy caused by an imbalanced workload across devices.
However, there remains potential for further optimization in com-
munication patterns for sparse attention and single-device kernel
optimization, which will be the focus of our future work.

4.5 Scalability Analysis

The scalability experiments are divided into two parts:

Intra-node scalability: In this experiment, we assess the train-
ing efficiency and memory consumption of BurstEngine using
8xA800 GPUs within a single node, evaluating its behavior un-
der different context parallel sizes from 1 to 8. Besides, we enable
optimizer offloading [32] since the memory consumption of opti-
mizer states is quite high as the world size is small.

Inter-node scalability: We evaluate BurstEngine’s training
efficiency and memory consumption across different numbers of
nodes from 2 to 8. Here, we disable optimizer offloading since
optimizer states can be stored in each worker now. For all these
settings, we set the sequence length per GPU to 32K, and the total
training sequence length is n * 32k, in which n is the number of
GPUs. As shown in Table 5, BurstEngine’s MFU exceeds 50% in
the single-node scenario with the context parallel size > 4 and
the sequence length > 128K. In the 8XA800 setting, BurstEngine
achieves a TGS of 393.44 tokens/s per GPU with a context parallel
size of 8 and a sequence length of 256K. Meanwhile, BurstEngine’s
memory consumption remains stable as the context parallel size
and the sequence length increase proportionally.

Table 4 shows BurstEngine can achieve an MFU of 52.7% with
8 nodes when processing sequences of 2M tokens. The MFU re-
mains stable and memory consumption as the node number and
the sequence length increase, showing BurstEngine can scale when
extending to multiple node settings.

5 RELATED WORK

To improve the efficiency of Transformers in processing longer
sequences, several optimization techniques have been proposed.
Korthikanti et al. [20] introduce selective activation recompu-
tation, which avoids storing attention Softmax logits during the
forward pass and then recomputes these logits during the backward
pass. Rabe et al. [30] formalize attention modules at the block level,
and assign each thread block on the device to handle the atten-
tion computation of a subsequence, further reducing temporary
memory usage and achieving logarithmic memory complexity with
respect to sequence length. Dao et al. [8] develop FlashAttention, a
CUDA-based implementation that utilizes the high-speed I/O capa-
bilities of SRAM to offer even greater performance improvements.

While these works significantly reduce the memory consumption
of attention modules for processing long sequences, they still face
limitations due to the performance constraint of individual devices
and bring huge computational costs as the sequence length grows.

To overcome this, some efforts have been made to utilize dis-
tributed clusters. Adopting general parallelism strategies [16, 31,
32, 35] is the most straightforward, especially using Tensor Paral-
lelism [20, 27]. Besides, Context Parallelism methods like RingAt-
tention [10, 13, 22, 24] and Head Parallelism [18] like DeepSpeed-
Ulysses have also been proposed, which distribute the attention
computation across multiple devices along the sequence dimension
or head dimension. Meanwhile, to better balance the recompu-
tation cost of FlashAttention, Li et al. [21] propose the selective
checkpointing++, which stores FlashAttention’s output and avoids
recomputation in the backward pass. Other work, such as [25, 39]
focus on optimizing the memory consumption of the LM head and
propose adopting ideas similar to FlashAttention for the LM head
and cross-entropy.

While these works can support efficient training when sequence
length grows to 128k, 256k, or even 512k, they still suffer from
high memory consumption and performance degradation when
sequence length extends to 1M or even longer. Moreover, existing
methods poorly integrate with sparse attention, especially as se-
quences grow extremely long. Thereby, we propose BurstEngine, a
system that builds upon these optimizations and further reduces
the communication, memory, and computation overhead through
our specific optimizations.

6 CONCLUSION

BurstEngine presents a novel and efficient framework for training
transformer-based models on long-sequence data. By introducing
BurstAttention, sequence-level selective checkpointing, sequence-
level fusion of language modeling head and loss function, and
sparse attention integration, BurstEngine addresses the scalability
and efficiency challenges posed by long-sequence training. These
optimizations achieve a 1.2X speedup over the state-of-the-art base-
line while reducing memory consumption by 26.4%. BurstEngine
demonstrates the capability to support training on extremely long
sequences exceeding 1M tokens, paving the way for more efficient
and scalable approaches to training more effective LLMs and LMMs.

ACKNOWLEDGMENTS

This work is supported by the National Key Research and Devel-
opment Program of China (2024YFB4505603), the National Natural
Science Foundation of China (No.62192784), the high-quality devel-
opment project of MIIT, and the Institute Guo Qiang at Tsinghua
University. Cheng Yang is also supported by the Young Elite Scien-
tists Sponsorship Program (No.2023QNRC001) by CAST.

REFERENCES

(1]

(6]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad
Awan, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl,
et al. 2024. Phi-3 technical report: A highly capable language model locally on
your phone. arXiv preprint arXiv:2404.14219 (2024).

William Brandon, Aniruddha Nrusimha, Kevin Qian, Zachary Ankner, Tian Jin,
Zhiye Song, and Jonathan Ragan-Kelley. 2023. Striped attention: Faster ring
attention for causal transformers. arXiv preprint arXiv:2311.09431 (2023).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. In Proceedings of
NeurlPS. 1877-1901.

Tiangi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training deep
nets with sublinear memory cost. arXiv preprint arXiv:1604.06174 (2016).

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan
Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. 2024. Internvl: Scaling up
vision foundation models and aligning for generic visual-linguistic tasks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
24185-24198.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao,
Weisheng Wang, Boyang Li, Pascale Fung, and Steven Hoi. 2023. InstructBLIP:
towards general-purpose vision-language models with instruction tuning. In
Proceedings of the 37th International Conference on Neural Information Processing
Systems. 49250-49267.

Tri Dao. 2023. Flashattention-2: Faster attention with better parallelism and
work partitioning. arXiv preprint arXiv:2307.08691 (2023).

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. FlashAt-
tention: Fast and memory-efficient exact attention with io-awareness. In Pro-
ceedings of NeurIPS. 16344-16359.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).
Jiarui Fang and Shangchun Zhao. 2024. A Unified Sequence Parallelism Approach
for Long Context Generative Al arXiv preprint arXiv:2405.07719 (2024).

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. 2023.
Megablocks: Efficient sparse training with mixture-of-experts. Proceedings of
Machine Learning and Systems 5 (2023), 288-304.

Scott Gray, Alec Radford, and Diederik P Kingma. 2017. Gpu kernels for block-
sparse weights. arXiv preprint arXiv:1711.09224 3, 2 (2017), 2.

Diandian Gu, Peng Sun, Qinghao Hu, Ting Huang, Xun Chen, Yingtong Xiong,
Guoteng Wang, Qiaoling Chen, Shangchun Zhao, Jiarui Fang, et al. 2024. Loong-
train: Efficient training of long-sequence llms with head-context parallelism.
arXiv preprint arXiv:2406.18485 (2024).

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua
Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, et al. 2022. A survey on
vision transformer. IEEE transactions on pattern analysis and machine intelligence
45,1 (2022), 87-110

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong
Qiu, Yuan Yao, Ao Zhang, Liang Zhang, et al. 2021. Pre-trained models: Past,
present and future. AI Open 2 (2021), 225-250.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. 2019.
GPipe: efficient training of giant neural networks using pipeline parallelism. In
Proceedings of NuerIPS. 103-112.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu
Liu, Jiajun Zhang, Bowen Yu, Keming Lu, et al. 2024. Qwen2.5-coder technical
report. arXiv preprint arXiv:2409.12186 (2024).

Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Shuai-
wen Leon Song, Samyam Rajbhandari, and Yuxiong He. 2023. Deepspeed ulysses:
System optimizations for enabling training of extreme long sequence transformer
models. arXiv preprint arXiv:2309.14509 (2023).

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fa-
had Shahbaz Khan, and Mubarak Shah. 2022. Transformers in vision: A survey.
ACM computing surveys (CSUR) 54, 10s (2022), 1-41.

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael
Andersch, Mohammad Shoeybi, and Bryan Catanzaro. 2023. Reducing activation
recomputation in large transformer models. In Proceedings of MLSYS.

Dacheng Li, Rulin Shao, Anze Xie, Eric P Xing, Xuezhe Ma, Ion Stoica, Joseph E
Gonzalez, and Hao Zhang. 2024. DISTFLASHATTN: Distributed Memory-
efficient Attention for Long-context LLMs Training. In First Conference on Lan-
guage Modeling.

Shenggui Li, Fuzhao Xue, Chaitanya Baranwal, Yongbin Li, and Yang You. 2021.
Sequence parallelism: Long sequence training from system perspective. arXiv
preprint arXiv:2105.13120 (2021).

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. 2022. A survey of
transformers. Al open 3 (2022), 111-132.

[29

[30

[31]

(32]

(33]

(34]

[35

(36]

[37

(39]

[40

[41]

[42]

[43

[44

Hao Liu, Matei Zaharia, and Pieter Abbeel. 2023. Ring attention with blockwise
transformers for near-infinite context. arXiv preprint arXiv:2310.01889 (2023).
Cheng Luo, Jiawei Zhao, Zhuoming Chen, Beidi Chen, and Anima Anandkumar.
2024. Mini-Sequence Transformer: Optimizing Intermediate Memory for Long
Sequences Training. (9 2024). [Online; accessed 2024-12-26].

Maxim Milakov and Natalia Gimelshein. 2018. Online normalizer calculation for
softmax. arXiv preprint arXiv:1805.02867 (2018).

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale language model
training on gpu clusters using Megatron-LM. In Proceedings of SC.

NVIDIA. 2023. TransformerEngine. https://github.com/NVIDIA/
TransformerEngine/blob/main/transformer_engine/pytorch/attention.py#
L1644.

OpenBMB. 2023. BMTrain: Efficient Training for Big Models. https://github.
com/OpenBMB/BMTrain.

Markus N Rabe and Charles Staats. 2021. Self-attention Does Not Need O (n?)
Memory. arXiv preprint arXiv:2112.05682 (2021).

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. ZeRO:
Memory optimizations toward training trillion parameter models. In Proceedings
of SC.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. ZeRO-Offload:
Democratizing Billion-Scale Model Training. In Proceedings of ATC. 551-564.
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. LLaMA: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. LLaMA 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

Leslie G Valiant. 1990. A bridging model for parallel computation. Commun.
ACM (1990), 103-111.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of NeurIPS.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. 2020. Lin-
former: Self-attention with linear complexity. arXiv preprint arXiv:2006.04768
(2020).

Yuzhong Wang, Xu Han, Weilin Zhao, Guoyang Zeng, Zhiyuan Liu, and Maosong
Sun. 2024. H3T: Efficient Integration of Memory Optimization and Parallelism
for Large-scale Transformer Training. Advances in Neural Information Processing
Systems 36 (2024).

Erik Wijmans, Brody Huval, Alexander Hertzberg, Vladlen Koltun, and Philipp
Krihenbuhl. [n.d.]. Cut Your Losses in Large-Vocabulary Language Models.
arXiv:2411.09009 [cs] http://arxiv.org/abs/2411.09009

Genta Indra Winata, Samuel Cahyawijaya, Zhaojiang Lin, Zihan Liu, and Pascale
Fung. 2020. Lightweight and efficient end-to-end speech recognition using
low-rank transformer. In Proceedings of ICASSP. 6144-6148.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Cheng-
peng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2 technical
report. arXiv preprint arXiv:2407.10671 (2024).

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu,
Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can
Balioglu, Pritam Damania, Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit
Mathews, and Shen Li. 2023. PyTorch FSDP: Experiences on Scaling Fully Sharded
Data Parallel. https://dlLacm.org/doi/10.14778/3611540.3611569. Proceedings of
the VLDB Endowment 16, 12 (8 2023), 3848-3860. [Online; accessed 2024-12-18].
Deyao Zhu, Jun Chen, Xiaogian Shen, Xiang Li, and Mohamed Elhoseiny. 2024.
MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large
Language Models. In The Twelfth International Conference on Learning Represen-
tations. https://openreview.net/forum?id=1tZbq88f27

Zhuzilin. 2023. Ring-Flash-Attention. https://github.com/zhuzilin/ring-flash-
attention.git.

https://github.com/NVIDIA/TransformerEngine/blob/main/transformer_engine/pytorch/attention.py#L1644
https://github.com/NVIDIA/TransformerEngine/blob/main/transformer_engine/pytorch/attention.py#L1644
https://github.com/NVIDIA/TransformerEngine/blob/main/transformer_engine/pytorch/attention.py#L1644
https://github.com/OpenBMB/BMTrain
https://github.com/OpenBMB/BMTrain
https://arxiv.org/abs/2411.09009
http://arxiv.org/abs/2411.09009
https://openreview.net/forum?id=1tZbq88f27
https://github.com/zhuzilin/ring-flash-attention.git
https://github.com/zhuzilin/ring-flash-attention.git

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Preliminary of Transformers
	2.2 Challenges of Processing Long Sequences in Transformers

	3 Overall Framework of BurstEngine
	3.1 BurstAttention
	3.2 Sequence-level Selective Checkpointing
	3.3 Sequence-level Fusion of Language Modeling Head and Loss Function
	3.4 Sparse Attention Integration

	4 Experiments
	4.1 Experimental Settings
	4.2 Training Performance
	4.3 Attention Performance
	4.4 Ablation study
	4.5 Scalability Analysis

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

