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Abstract— Detecting community structure is crucial for
uncovering the links between structures and functions in
complex networks. Most contemporary community detec-
tion algorithms employ single optimization criteria (e.g.,
modularity), which may have fundamental disadvantages.
This paper considers the community detection process as a
Multi-Objective optimization Problem (MOP). Correspond-
ingly, a special Multi-Objective Evolutionary Algorithm
(MOEA) is designed to solve the MOP and two model
selection methods are proposed. The experiments in ar-
tificial and real networks show that the multi-objective
community detection algorithm is able to discover more
accurate community structures.

I. INTRODUCTION

Community Detection (CD) in complex networks has
attracted a lot of attention in recent years. The main
reason is that communities are supposed to play a
special role in the often stochastic dynamics of the
systems under consideration; and detecting communi-
ties (or modules) can be a way to identify substruc-
tures which could correspond to important functions.
Loosely speaking, these communities are groups of
nodes that are densely interconnected but only sparely
connected with the rest of the network [1,2].

There have been many successful algorithms to an-
alyze the community structure in complex network.
The contemporary community detection algorithms can
be roughly classified into two categories: optimization
based methods and heuristic methods. The optimiza-
tion based methods (e.g., GN fast [3], spectral method
[4]) convert the CD into an optimization problem and
the heuristic methods convert the CD into the design
of heuristic rules (e.g., the edge betweenness in GN
[5]). In fact, the heuristic methods usually also need
a measure criterion to stop the iteration process. For
example, the maximum modularity Q is used as the
stopping criterion in GN [5]. And thus the community
detection problem can be regarded as a single-objective
optimization problem. Without loss of generality, we
assume it is a minimum problem. Most contemporary
algorithms for CD are based on the single-objective
optimization. Different algorithms vary in the optimiza-
tion function, for example, the modularity Q in GN
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[5], the ”cut” function in spectral method [4] and the
”description length” in the information-theoretic based
method [6].

The single objective based community detection al-
gorithms have achieved great successes in both theory
and applications. However, they also have some cru-
cial disadvantages. These single-objective algorithms
attempt to optimize just one of such criteria and this
confines the solution to a particular community struc-
ture property. And thus it often causes a fundamen-
tal discrepancies that the different algorithms produce
distinct solutions on the same networks. Moreover, the
single-objective optimization algorithms may fail when
the optimization criteria are inappropriate. An example
is the resolution limit existing in the modularity Q: the
modularity optimization may fail to identify modules
smaller than a scale even in cases where modules are
unambiguously defined [7]. Similar resolution limits
also exist in some other single-objective algorithms [8].
In addition, many single-objective algorithms require
prior information: the number of communities, which
is usually unknown for real networks.

In order to alleviate disadvantages in single-objective
community detection algorithms, a natural approach
may be to consider community detection as a multi-
objective optimization problem. That is to say, we
simultaneously optimize multiple objective functions
to obtain more accurate and comprehensive commu-
nity structure. Compared to the contemporary single-
objective algorithms, the multi-objective approaches for
CD have obvious advantages in concept. Firstly, the
community detection with multiple criteria is more
consistent with human’s intuition. The CD problem
can be regarded as a graph clustering. The concept of
a cluster is a generalization of what human perceive,
as densely connected ”patches” within data space,
whereas human’s intuition is inherently difficult to
capture by means of single objective [13]. Secondly,
besides the optimal solution found by a single-objective
algorithm, a multi-objective algorithm is able to find
the optimal solutions corresponding to the tradeoffs be-
tween the different objectives. Finally, some researchers
have began to be aware that enumerating the modules
in a network is a tradeoff among multi-objectives.
Fortunato et al. believed that finding the maximum
modularity is to look for the ideal tradeoff between the
number of modules and the value of each term [7,11].
Rosvall and Bergstrom also thought that enumerating
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the modules in a network has an inevitable tradeoff
between the amount of the structure information of a
network and its description length [6]. Although these
researchers have been aware of the intrinsic trade-
off, most algorithms still optimize the single objective
which simply combines the conflict components (e.g.,
the linear combination in modularity Q).

Since the community detection process can be
regarded as a Multi-objective Optimization Problem
(MOP), this paper designs a special Multi-Objective
Evolutionary Algorithm (MOEA), named Multi-
Objective Community Detection algorithm (MOCD),
to generate the Pareto optimal solution set of the MOP.
Furthermore, this paper proposes two model selection
methods to assist the decision makers (DMers) in
selecting the proper solutions from the Pareto optimal
solution set. Two experiments on artificial and real
networks illustrate that the community structures
discovered by the MOCD are more accurate than those
generated by three well-established single-objective
algorithms.

This paper is arranged as follows. Section 2 intro-
duces the related work. Section 3 detailedly describes
the multi-objective community detection algorithm.
The experiments on artificial and real networks are
done to validate the effectiveness and efficiency of the
algorithm in Section 4. Section 5 concludes the paper.

II. RELATED WORK

A. Community Detection in Complex Network

Complex systems in various domains may be mod-
eled as complex networks, such as the internet, WWW,
social networks and citation networks. Most of these
networks are generally sparse in global yet dense in
local, which can be described as that the nodes within
the groups have higher density of edges while nodes
among groups have lower density of edges. Those
”groups” are called the communities, which are often
the key elements to reveal many hidden features of a
given network [1,2]. Hence, community identification is
a fundamental step to understand the overall structural
and functional properties of large networks.

There have been many algorithms to analyze the
community structure in complex network. The algo-
rithms use methods and principles of physics, artificial
intelligence, graph theory and even electrical circuits
[18]. One of the most known algorithms proposed so
far is Girvan-Newman (GN) algorithm that introduces
a divisive method by iteratively cutting the edge with
the greatest betweenness value [5]. Some improved al-
gorithms have been proposed [3,17]. These algorithms
are based on a foundational measure criterion of com-
munity, modularity Q, proposed by Newman [5]. The
larger the value of Q is, the more accurate a partition
into communities is. As a consequence, the community
detection becomes a modularity optimization problem

(i.e., a single-objective optimization problem). Since the
search for the optimal (largest) modularity value is
a NP -complete problem [11], many heuristic search
algorithms have been applied to solve the optimization
problem, such as extremal optimization [19], simulated
annealing [2].

Some other criteria are also used as the optimization
objective. The Hamiltonian-based method introduced
by Reichardt and Bornholdt (RB) is based on consid-
ering the community indices of nodes as spins in a q-
state Potts model [9]. Recently, Arenas, Fernandez and
Gomez (AFG) proposed a multiple resolution proce-
dure that allows the optimization of modularity to go
deep into the structure [10]. These methods vary the
thresholds by using a tuning parameter in their criteria
and investigate the community structure at variable
resolutions. The modularity Q is the special case of
these two criteria. In addition, Fosvall and Bergstrom
proposed an information-theoretic foundation for the
concept of modularity in networks [6], in which the
network is composed of modules by finding an optimal
compression of its topology. Although these criteria
could effectively assess the quality of the community,
the recent research show that the optimization based
on single criterion has a fundamental disadvantage.
Fortunato and Barthelemy found that the modularity
optimization may fail to identify modules smaller than
a scale which depends on the total size of the network
and on the degree of interconnectedness of the mod-
ules, even in cases where modules are unambiguously
defined [7]. Kumpula et al. further discussed the similar
limited resolution of community detection methods
where a global energy-like quantity is optimized, for
example, the former two criteria (RB and AFG) [8].

The Genetic Algorithm (GA), as an effective opti-
mization technique, has also been used for community
detection. Tasgin and Bingol first applied GA (GATB)
for CD, in which the objective function is the modular-
ity Q and the encoding scheme is the cluster centers.
Different from GATB, the GA proposed by Shi et al. [15]
uses the locus-based adjacency as the encoding scheme,
respectively. GA-Net proposed by Pizzuti optimizes the
”community score” criteria and applies the the locus-
based adjacency scheme [21,22]. Pizzuti further ex-
tended her algorithm to solve the overlapping commu-
nity problem [23]. These algorithms have the advantage
that the number of communities can be automatically
determined during the evolutionary process. However,
these algorithms also have the resolution limit, since
the single objective is applied.

B. Evolutionary Algorithm for Multi-objective Optimization
Multi-objective optimization problems (MOPs) are

those problems that involve simultaneous optimization
of two or more than two objectives (often competing)
and usually there is no single optimal solution [12]. A
MOP is formally defined as follows:



Definition 1 [12]: General MOP: an MOP mini-
mizes F (~x) = (f1(~x), · · · , fm(~x)) subject to gi(~x) ≤
0, i = 1, · · · , k, ~x ∈ Ω (Ω is the decision variable
space). An MOP solution minimizes the components
of the m-dimensional objective vector F (~x), where
~x = (x1, · · · , xn) is an n-dimensional decision variable
vector from some universe Ω.

It is usually difficult or even impossible to assign
priorities as in single objective optimization problems
(SOPs). This makes an algorithm returning a set of
promising solutions preferable to an algorithm return-
ing only one solution based on some weighting of the
objectives. For this reason, there has been an increasing
interest in applying Evolutionary Algorithms (EA) to
MOPs in the past twenty years. An important notion
is embraced, which can be defined as follows.

Definition 2 [12]: Pareto dominance: If a vector U =
(u1, · · · , um) Pareto dominates V = (v1, · · · , vm), de-
notes as U ¹ V , that is U ¹ V if and only if ~u is
partially less than ~v, i.e.,∀i ∈ {1, . . . , m}: ui ≤ vi ∧ ∃i ∈
{1, . . . , m} : ui < vi.

Most contemporary research on MOP is based on
Pareto dominance. A decision vector ~xu is said to
be Pareto optimal if and only if there is no ~xv for
which F (~xv) ¹ F (~xu). The set of all Pareto optimal
decision vectors is called the Pareto optimal set. The
corresponding set of the objective vector is called the
nondominated set, or Pareto front.

Many multi-objective evolutionary algorithms have
been proposed and these algorithms have successfully
solve some real problems [12]. Handle and Knowles
have applied MOEA for clustering (MOEAC) [24] and
their experiments demonstrated that the performances
of MOEAC are better than a number of well-established
single-objective clustering algorithms and ensemble
techniques. However, no MOEAs are applied for com-
munity detection until now.

III. A MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM
FOR COMMUNITY DETECTION

This paper applies the evolutionary algorithm to
solve the multi-objective community detection prob-
lem. This algorithm consists of the two main phases.
In the detection phase, MOCD optimizes two comple-
mentary objectives and returns a set of Pareto opti-
mal solutions which corresponds to different tradeoffs
between these two objectives. In the model selection
phase, MOCD employs two methods to select the most
preferable solution from the Pareto optimal set.

A. Detection and Candidate Solution Generation Phase
We select an existing MOEA, the Pareto Envelope-

based Selection Algorithm version 2 (PESA-II) [13], as
the framework of the MOCD. In fact, other successful
MOEAs can also be used or a new MOEA can be de-
signed. Because the successful application of a MOEA
depends on the design of its components according to

the problem’s characteristics [12], many components in
the MOCD should be redesigned.

1) Algorithm Framework: PESA-II follows the stan-
dard principles of an EA with the difference that two
populations of solutions are maintained: an internal
population (IP ) of fixed size, and an external popula-
tion (EP ). The IP explores new solutions and achieves
these by the standard EA process of reproduction and
variation. The EP is to exploit good solutions by main-
taining a large and diverse set of the non-dominated
solutions discovered during search. Selection occurs at
the interface between the two populations, primarily in
the update of EP . The detailed implementation can be
seen in ref. [13]. There are five basic parameters in the
algorithm and their meanings are illustrated here:

ipsize and epsize are the size of IP and EP.
pc and pm are the ratio of crossover and mutation.
gen is the running generation.
To apply PESA-II to the community detection prob-

lem, much work should be done. Two or more objec-
tive functions should be determined according to the
characteristics of CD. Moreover, a community structure
should be encoded with a genetic representation, and
the corresponding genetic variation operators need to
be designed. These choices are crucial for the per-
formance and particularly for the scalability of the
algorithm. Our choices for these components are de-
termined after extensive experimentation.

2) Objective Functions: For the evaluating objectives,
we are interested in selecting those reflecting funda-
mentally different aspects of a good community par-
tition. Modularity is a foundational quality index for
CD. Given a simple graph G=(V,E), we follow [5] and
define the following equation.

Q(C) =
∑

c∈C

[
|E(c)|

m
− (

∑
v∈c deg(v)

2m
)
2

] (1)

, where the sum is over the modules of the partition,
|E(c)| is the number of links inside module c, m is the
total number of links in the network, C is a partition
result, and deg(v) is the degree of the node v in module
c. Observing the equation, to maximize the modularity
Q, we should maximize the first term and minimize the
second term. To maximize the first term, many edges
should be contained in clusters (i.e., ”densely intercon-
nected”). To minimize the second term, the graph is
split into many clusters each with small total degrees
each (i.e., ”sparely connected with the rest”). These two
complementary terms reflect two fundamental aspects
of a good partition, and the modularity Q is an intrinsic
trade-off between these two objectives.

In this paper, we select these two terms as the
objective functions. In order to formulate the problem
as a minimum optimization problem, we revise the first
term. The first objective function minimizes 1 minus the
intra-link strength of a partition, and it is called intra



Fig. 1. Illustration of the locus-based adjacency representation. (a) shows the topology of a complex network. (b) shows one possible
genotype. (c) shows how the genotype in (b) is translated into a graph structure, for example node 0 links to node 3, because the value of
gene g0 is 3. (d) shows the partition result.

objective.

intra(C) = 1−∑
c∈C

|E(c)|
m

(2)

The second objective function minimizes the inter-link
strength of a partition, and it is called inter objective.

inter(C) =
∑

c∈C (
∑

v∈c deg(v)

2m )2 (3)

According to the two definitions, we deduce that

Q(C) = 1− intra(C)− inter(C) (4)

The motivation of selecting two components of the
modularity Q as the objective functions rather than
other criteria are stated as follows. Firstly, these two
functions have the potential to balance each other’s
tendency to increase or decrease the number of com-
munities, enabling the use of a representation that does
not fix the number of communities. With an increas-
ing number of communities, the fewer edges fall in
communities (i.e., E(c) becomes smaller), and thus the
intra objective value tends to increase. The opposite
trend happens to the inter objective. Secondly, com-
pared to the single-objective algorithms based on the
modularity optimization, the multi-objective algorithm
based on these two components of modularity have
better performances as the experiments will illustrate,
which effectively confirms the advantages of the multi-
objective algorithm. Finally, after many experimenta-
tions, we find these two functions are more empirically
suitable.

3) Genetic Representation and Operators: This pa-
per employs the locus-based adjacency representation
[14,15], in which each genotype g consists of n genes
g1, g2, . . . , gn and each gi can take one of the adjacent
nodes of node i. Thus, a value of j assigned to the
ith gene, is then interpreted as a link between node
i and j. In the resulting solution, they will be in the
same community. Figure 1 illustrates an example of
the genetic representation. The locus-based adjacency

encoding scheme has been validated to be effective for
community discovery [15].

We choose the uniform two-point crossover because
it is unbiased with respect to the ordering of genes
and can generate any combination of alleles from the
two parents. In the mutation operation, we randomly
select some genes and assign them with other randomly
selected adjacent nodes. In the initialization process, we
randomly generate some individuals. For each individ-
ual, each gene gi randomly takes one of its adjacent
nodes of node i.

B. Model Selection Phase

As noted previously, MOCD does not return a single
solution, but a set of Pareto optimal solutions. These
solutions correspond to different tradeoffs between the
two objectives and also consist of the communities
with different sizes. The DMers may desire that the
set of candidate solutions could be narrowed down to
those of interest to him or her. This section proposes
two automated methods for assessing the quality of
solutions and identifying the promising solution.

Maximum Q criterion. The criterion selects the
model with maximum modularity Q. Because of the
relationship of Q and two objective functions (see Equa-
tion 4), we can directly select the model with maximum
Q according to these two objective values. (SF is the
candidate solution set, i.e., the Pareto front)

SMax−Q = argmax
C∈SF

{1− intra(C)− inter(C)} (5)

Max-Min Distance criterion. Since the physical
meaning of Q is the fraction of edges that falls within
communities, minus the expected value of the same
quantity if the edges fall at random without regard for
the community structure, the Q evaluates the extent to
which the community structure deviates from random-
ness [5]. The similar principle can also be used for the
model selection. Firstly, MOCD can be run on the real



network and a random network with the same scale,
and the real candidate solution set (i.e., real Pareto
front) and the random control solution set (i.e., random
Pareto front) can be obtained, respectively. And then
we select the solution in the real Pareto front with the
most deviation from the solutions in the random Pareto
front as the best solution. Since there are multiple
solutions in the real and random Pareto front, we need
to quantitatively evaluate the deviations between any
two solutions in the two sets. Here a heuristic rule is
applied: the deviation of a solution in the real Pareto
front is evaluated by the minimum Euclidean distance
between the solution and a solution in the random
Pareto front, and then the solution in the real Pareto
front with the largest deviation is selected. The model
selection process can be formulated as the following
equation:

dis(C,C ′) =√
(intra(C)− intra(C ′))2 + (inter(C)− inter(C ′))2

diff(C, CF ) = min{dis(C, C ′)|C ′ ∈ CF}
SMax−Min−Dis = maxarg

C∈SF
{diff(C, CF )}

(6)

where CF and SF represent the random and real
Pareto fronts, respectively. In fact, the purpose of the
random control solution set is to obtain an estimate of
the values of intra and inter that would be expected for
unstructured network and the Max-Min Distance crite-
rion evaluates the difference between the real objective
values and the expected ones.

IV. EXPERIMENTS

This section will validate the effectiveness and ef-
ficiency of the multi-objective community detection
algorithm through the artificial and real networks. The
experiments are carried out on a 3GHz and 1G RAM
computer running Windows XP.

A. Artificial Networks

To validate the quality of the solutions selected by
the model selection methods, we first use artificial
networks with a known community structure. These
networks have 128 vertices grouped in four commu-
nities of 32 vertices [5]. Each vertex has on average
zin edges to vertices in the same community and zout

edges to vertices in other communities, keeping an
average degree zin+zout = 16. The network is called the
symmetric network. The experiments further vary the
network structures in the following ways. The first vari-
ation, called the vertex asymmetric network, merges
three of the four groups in the benchmark test to form
a series of test networks each with one large group of
96 vertices and one small group with 32 vertices. In the
second variation, the benchmark networks, called the
edge asymmetric network, compose two groups each

with 64 vertices, but with different average degrees of
edges (8 and 24) per vertex. As the average number
of edges zout increases, it becomes harder and harder
to identify the group structure. To compare the quality
of solutions, the experiments use the Fraction of Ver-
tices Identified Correctly (FVIC), which has been used
in many researches [5,18,19]. The larger the FVIC is
the better partition is. The FVIC can be calculated as
follows.

olSet(c, c′) = {v|v ∈ c ∧ v ∈ c′}
maxOlSet(c, CK) = max

c′∈CK

{|olSet(c, c′)|}

FV IC =
∑

c∈CF

maxOlSet(c, CK)
N

(7)

, where CF and CK represent the found and known
community partition, respectively; c and c′ are a com-
munity in CF and CK , respectively. N is the number
of vertices in the graph.

Five algorithms are included in the experiments. The
first algorithm is based on the information-theoretic
framework proposed by Rosvall and Bergstrom [6]
(called INFO). The second one is the betweenness-
based heuristic algorithm proposed by Newman and
Girvan [5] (called GN). The third one is genetic al-
gorithm based modularity optimization algorithm pro-
posed by Shi et al. [15] (called GACD). The other two
algorithms are MOCD with Max Q model selection
(called MOCD-Q) and Max-Min Distance model se-
lection (called MOCD-D). The parameters setting of
MOCD are as following: ipsize is 100, epsize is 100,
gen are 200, and pc and pm are 0.6 and 0.4, respectively.
GACD uses the same parameters with those of MOCD.
Note that, in the comparison experiments, MOCDs
and GACD evaluate the same number of individuals.
The results are the average values of 100 network
realizations.

Figure 2 presents the FVIC results of the five al-
gorithms. When zout is small, all algorithms find the
correct community partition. As zout increases, these
five algorithms have different performances, and their
differences become more distinct. We can observe that
the MOCD based algorithms have the highest FVIC
in most conditions and INFO is better than GN and
GACD for the asymmetric networks. Comparing the
results in the symmetric networks with those in the
asymmetric networks, we can find that it is more
difficult for all algorithms to discover the community
structure in the asymmetric networks, especially for
GN. However, the asymmetric networks have less im-
pact on the MOCD based algorithms. The NCs found
by these five algorithms are illustrated in Figure 3.
Similar to the results of FVIC, the NCs obtained with
different algorithms are correct for all problems when
zout is small, whereas they have more deviations from
the correct values as zout increases. The NCs found
by MOCD-D are the closest to the correct values in



Fig. 2. Benchmark performance for symmetric and asymmetric group detection measured as Fraction of Vertices Identified Correctly (FVIC).
(a), (b) and (c) are the results of the symmetric networks, the vertex asymmetric networks, and the edge asymmetric networks, respectively.

Fig. 3. The number of communities found for the symmetric and asymmetric networks. (a), (b) and (c) are the results of the symmetric
networks, the vertex asymmetric networks, and the edge asymmetric networks, respectively. The broken line with label 9, as baseline, is the
correct number of communities.

most conditions. When zout is large, GN divides the
graph into so many communities that its FVIC declines
rapidly in Figure 2. In summary, GN and GACD are
more effective in symmetric networks, whereas INFO
is more effective in asymmetric networks. The results
are consistent with those in ref. [6]. Generally speaking,
the MOCD based algorithms are more effective than
the other algorithms both in symmetric and asymmetric
networks.

Through the experiments, we find that the MOCD
based algorithms (especially MOCD-D) have the high-
est FVICs and the best NCs (i.e., the closest to the
correct NCs) for most problems. To study the reason
behind the superior performance of the MOCDs, we
compare GACD with the MOCDs (especially MOCD-
Q). A number of components of these two algorithms
are same (e.g., GA framework, fitness function, ge-
netic representation, and the same number of indi-
viduals evaluated), except that GACD uses Q as the
single criterion function, whereas MOCDs treat the two
components of Q as two criterion functions. There-
fore, the superior performance of MOCDs should be

driven by the multi-criterion functions. We consider
two reasons may account for the effectiveness of the
multi-criterion functions. Firstly, the multiple objectives
can measure the community structure comprehensively
and avoid the risk that one single objective may only
be suitable to a kind of networks (e.g., GN is only
suitable for symmetric networks). Secondly, the multi-
objective optimization process tradeoffs the multiple
conflicting objectives, which can effectively avoid be-
ing trapped to local optima. Between MOCD-Q and
MOCD-D, it is clear that MOCD-D has better perfor-
mances. This shows that Max-Min Distance may be a
better model selection criterion than Max Q. In fact,
Max-Min Distance criterion selects the model with
the largest deviation from the random network with
the same scale, which indicates the selected model
has the most remarkable community structure. As for
INFO and MOCD, they are based on the information-
theoretic framework and the multi-objective frame-
work, respectively. The experiments illustrate that the
multi-objective framework may be more effective than
the information-theoretic framework.



TABLE I
TEST PROBLEMS AND PARAMETERS SETTINGS IN GACD AND MOCD.

Karate
(P1)

Lesmis
(P2)

Polbooks
(P3)

Adjnoun
(P4)

Football
(P5)

Celegans
nearal(P6)

Celegansme
tabolic(P7)

Netscien
ce(P8)

Power
(P9)

Hep-th
(P10)

Number of nodes 34 77 105 112 115 297 453 1589 4941 8361
Number of edges 78 254 441 425 613 2345 2025 2742 6594 15751
GACD pop 50 50 50 50 50 100 100 200 300 400

gen 50 50 100 100 100 100 100 200 300 400
MOCD ep 50 50 50 50 50 100 100 100 100 100

ip 50 50 50 50 50 100 100 200 300 400
gen 50 50 100 100 100 100 100 200 300 400

TABLE II
THE EXPERIMENTAL RESULTS FOR REAL SOCIAL NETWORKS. CNUM IS THE NUMBER OF COMMUNITIES, SRAT IS THE

RATIO OF STRONG COMMUNITIES, WRAT IS THE RATIO OF WEAK COMMUNITIES, AND TIME IS THE RUNNING TIME

(THE UNIT IS SECOND).
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

INFO cNum 2.0 5.0 3.0 1.01 9.0 7.0 25.4 396.0 12.0 –2

sRat 0.5000 0.4000 0.3333 1.0000 0.7777 0.0000 0.0124 0.6767 0.1666 –
wRat 1.0000 1.0000 1.0000 1.0000 1.0000 0.3333 0.3218 0.6767 1.0000 –
time 0.1091 0.2856 3.7030 4.5547 1.5616 88.130 145.67 27.657 10779 –

GN cNum 5.0 11.0 5.0 69.0 10.0 33.0 38.0 405.0 45.0 –
sRat 0.5000 0.0909 0.0000 0.0000 0.5000 0.0000 0.0263 0.9876 0.1555 –
wRat 0.6000 0.7272 1.0000 0.0144 1.0000 0.0909 0.3157 1.0000 1.0000 –
time 0.0328 0.2029 0.4295 1.7235 1.4016 64.603 135.82 1.8170 11784 –

GACD cNum 4.0 7.0 4.3 6.2 8.3 6.0 18.0 413.0 355.0 1601.0
sRat 0.5000 0.2428 0.3200 0.0000 0.4945 0.0000 0.0536 0.6803 0.1267 0.4141
wRat 1.0000 1.0000 0.9400 0.2547 0.9909 0.4696 0.3921 0.6900 0.9352 0.5203
time 0.4264 0.8969 2.3860 2.4891 2.5548 12.855 19.989 828.94 2428.0 15256

MOCD-D cNum 3.5 6.0 4.2 5.1 7.6 5.0 20.8 449.0 700.0 1837.0
sRat 0.5500 0.3700 0.3733 0.1000 0.3741 0.2000 0.0954 0.6436 0.1485 0.5679
wRat 1.0000 1.0000 1.0000 0.3402 1.0000 0.5511 0.4442 0.7037 0.9571 0.6307
time 1.0764 2.0986 5.6749 5.4952 7.2204 54.461 69.412 1375.4 10505 51284

MOCD-Q cNum 3.8 6.9 4.5 7.3 7.1 6.4 23.3 438.0 715.0 1832.0
sRat 0.5000 0.3279 0.3200 0.1000 0.2886 0.1000 0.0844 0.6552 0.1454 0.4733
wRat 1.0000 1.0000 1.0000 0.2914 1.0000 0.4723 0.3938 0.7077 0.9549 0.5343
time 0.5454 1.1734 3.2438 3.0750 3.6687 28.776 39.114 882.09 5657.5 33291

1 For P4, INFO always partitions the network into one community, and thus sRat and wRat both are 1. However,
the partition is irrational.

2 –represents the algorithm cannot solve the problem in twenty hours.

B. Real Networks

In order to further compare the performance of dif-
ferent algorithms, we use ten real social networks (these
networks all are from ref. [25]). These test problems are
widely used as benchmarks in community detection
[2,4,11,12,15], and they have different scales with the
number of vertices ranging from 34 to 8361. These
test problems and the parameters setting in GACD
and MOCDs are illustrated in Table 1 (pc and pm in
GACD and MOCDs both are 0.6 and 0.4, respectively).
Note that we do not make any effort in setting good
parameters for GACD and MOCDs and the appropriate
parameters are settled according to the scale of the
problems. Moreover, the same numbers of individu-
als are evaluated in GACD and MOCDs. Since the
community structure of most networks is unknown,
we can only evaluate the quality of solutions from
the structural characteristics. Here we use two popular
criteria to measure the quality. According to the strong
and weak community definition given by Radicchi et al.
[17], each community c is validated based on whether
satisfying the strong (or weak) community definition.

The ratio of strong (or weak) communities is the fraction
of communities in a partition C satisfying the strong
(or weak) community definition.

strRatio(C) =
|{c|kin

i (c) > kout
i (c)∀i ∈ c ∧ ∀c ∈ C}|
|C|

weakRatio(C) =
|{c|∑i∈c kin

i (c) >
∑

i∈c kout
i (c)∀c ∈ C}|

|C|
(8)

, where c is a community in the partition C; kin
i (c)

is the number of edges connecting node i to other
nodes belonging to c, and kout

i (c) is the number of
connections toward nodes in the rest of the network.
These two criteria quantitatively evaluate how obvious
the community structure is. The larger value means the
better partition. According to the definitions, a strong
community should be a weak community, and thus the
ratio of weak communities is usually larger than the ratio
of strong communities. Only one random Pareto front is
generated for MOCD-D in the experiments. The results



are the average of ten runs.
The experimental results are illustrated in Table.2.

MOCD-D discovers the community structure with the
highest accuracy for most real networks (e.g., P1, P3,
P4, P6, P7, and P10), and INFO also has the highest
accuracy for three real networks (e.g., P2, P5, and
P9). The experiments validate the conclusions drawn
in the above simulated networks again. Due to the
multi-objective framework, MOCD-Q has the better
performance than GACD for most problems (e.g., P2,
P3, P4, P6, P7, P9, and P10). Max-Min Distance criterion
is better than Max Q criterion, because the performance
of MOCD-D is better that of MOCD-Q for almost all
problems. Observing the running time in Table 2, we
can find that although the running times of the GA
based algorithms (i.e., GACD, MOCD-D, MOCD-Q)
are longer than that of GN and INFO for the small-
scale problems, such as P1-P5, it is not the case for the
large-scale problems, especially for P10 where GN and
INFO cannot obtain the results in the given time. An
exception case is P8 which has a obvious community
structure and is very suitable for GN. The experiments
show that the running time of MOCDs are acceptable
and it is especially suitable for large-scale networks.
Although GACD and MOCD evaluate the same num-
ber of individuals, the multi-objective algorithms are
more complicated than the single-objective algorithms,
so the running times of MOCDs are longer than that
of GACD. Since MOCD-D needs to run twice to obtain
the real and random Pareto fronts, the running times
of MOCD-D are near the twice of that of MOCD-Q.
The Max-Min Distance criterion in MOCD-D has better
performance at the cost of longer running times.

V. CONCLUSION

This paper considers the community detection prob-
lem as a Multi-Objective optimization Problem (MOP)
and designs a special Multi-Objective Evolutionary Al-
gorithm (MOEA) for the MOP (called MOCD). The
method includes two phases. In the first phase, an exist-
ing MOEA, PESA-II, is adapted with two complemen-
tary objective functions and the locus-based adjacency
genetic representation. To help the DMers select the
proper community partitions from the optimal candi-
date solution set generated in the first phase, the second
phase further proposes two model selection methods:
Max Q and Max-Min Distance. The experiment on the
artificial and real networks show that MOCD can dis-
cover more accurate community structure compared to
the three representative single-objective algorithms: the
heuristic algorithm GN [5], the optimization algorithm
GACD [15], and the information-theoretic framework
based algorithm INFO [6]. The future work can further
explore to make use of the Pareto solutions and employ
other objective functions.

VI. ACKNOWLEDGMENTS

This work is supported by the National Science
Foundation of China (No. 60905025, 90924029). It is
also supported the National High-tech R&D Program of
China (No.2009AA04Z136) and the National Key Tech-
nology R&D Program of China (No.2006BAH03B05).

REFERENCES

[1] S.Boccaletti, V.Latora, Y.Moreno, M.Chavez and D.U.Hwang,
”Complex Networks: Structure and Dynamics,” Physics Report,
424(4-5):175-308, 2006.

[2] R.Guimera and L.A.N.Amaral, ”Functional Cartography of Com-
plex Metabolic Networks,” Nature, 433:895-900, 2005.

[3] A.Clauset, M.E.J.Newman and C.Moore, ”Finding community
structure in very large networks,” Physical Review E, vol-70:06611.

[4] A.Pothen, H.Sinmon, K-P.Liou, ”Partitioning Sparse Matrices
with Eigenvectors of Graphs,” SIAM J. Matrix Anal App., Vol-
11:430-452.

[5] M.E.J.Newman, M.Girvan, ”Finding and Evaluating Community
Structure in Networks,” Physics Review E 69:026113, 2004.

[6] R.Martin and T.B.Carl, ”An information-theoretic framework for
resolving community structure in complex networks,” PNAS
2007, 104, 7327-7331.

[7] S.Fortunato and M.Barthelemy, ”Resolution Limit in Community
Detection,” Proceedings of the National Academy of Sciences, vol.104,
no.1, Jan. 2, 2007.

[8] J.M.Kumpula, J.Saramaki, K.Kaski and J.Kertesz, ”Limit Resolu-
tion and Multiresolution Models in Complex Network Commu-
nity Detection,” arXiv:0706. 2230v2, 25 Jan 2008.

[9] J.Reichardt, S.Bornholdt, ”Statistical Mechanics of Community
Detection,” Physics Review E, 74(1):016110, 2006.

[10] A.Arenas, A.Fernandez, and S.Gomez, ”Analysis of the struc-
ture of complex networks at different resolution levels,” arXiv:
physics/ 0703218 v1, 2007.

[11] U.Brandes, D.Delling, M.Gaetler, et al., ”On Modularity Clus-
tering,” IEEE Transactions on Knowledge and Data Engineering, vol.
20, issue 2, pages 172-188 2008.

[12] K.Deb, Multiobjective Optimization using Evolutionary Algorithms,
U.K: Wiley, 2001.

[13] D.W.Corne, N.R.Jerram, J.D.Knowles, and M.J.Oates, ”PESA-II:
Region-based Selection in Evolutionary Multiobjective Optimiza-
tion,” in Proc. Genetic Evol. Comput. Conf. 2001, pp.283-290.

[14] Y.J.Park, M.S.Song, ”A Genetic Algorithm for Clustering Prob-
lem,” Proc. 3rd Annu. Conf. Genetic Program, 1998, pp. 568-575.

[15] C.Shi, Y.Wang, B.Wu, C.Zhong, ”A New Genetic Algorithm for
Community Detection,” Complex 09, 5(1), 1298-1309.

[16] A.Arenas, A.Diaz-Guiler and C.J.Perez-Vicente, ”Synchroniza-
tion Reveals Topolotical Scales in Complex Networks,” Physics
Review Letter, 96 114102.

[17] F.Radicchi, C.Castellano, F.Cecconi, V.Loreto, D.Parisi, ”Defining
and Identifying Communities in Networks,” PNAS, vol-101:2658.

[18] L.Danon, A.Diaaz-Guilera, J.Duch and A.Arenas, ”Comparing
Community Structure Identification,” Journal of Statistical Mechan-
ics: Theory and Experiments, 9, 2005.

[19] J.Duch, A.Arenas, ”Community Detection in Complex Networks
using Extremal Optimization,” arXiv:cond-mat/0501368, 2005.

[20] M.Tasgin and H.Bingol, ”Community Detection in Complex
Networks using Genetic Algorithm,” arXiv:cond-mat/0604419,
2006.

[21] C.Pizzuti, ”GA-Net: a genetic algorithm for community detec-
tion in social networks,” in PPSN2008, pp. 1081-1090.

[22] C.Pizzuti, ”Community Detection in Social Networks with Ge-
netic Algorithms,” in GECCO’08.

[23] C.Pizzuti, ”Overlapped Community Detection in Complex Net-
works,” in GECCO’09 859-866.

[24] J.Handle and J.Knowles, ”An Evolutionary Approach to Mul-
tiobjective Clustering,” Transaction on Evolutionary Computation,
vol.11 no. 1, 2007.

[25] http://www-personal.umich.edu/ mejn/netdata.


