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ABSTRACT
Graph neural network, as a powerful graph representation technique
based on deep learning, has shown superior performance and at-
tracted considerable research interest. However, it has not been fully
considered in graph neural network for heterogeneous graph which
contains different types of nodes and links. The heterogeneity and
rich semantic information bring great challenges for designing a
graph neural network for heterogeneous graph. Recently, one of
the most exciting advancements in deep learning is the attention
mechanism, whose great potential has been well demonstrated in
various areas. In this paper, we first propose a novel heterogeneous
graph neural network based on the hierarchical attention, including
node-level and semantic-level attentions. Specifically, the node-level
attention aims to learn the importance between a node and its meta-
path based neighbors, while the semantic-level attention is able
to learn the importance of different meta-paths. With the learned
importance from both node-level and semantic-level attention, the
importance of node and meta-path can be fully considered. Then
the proposed model can generate node embedding by aggregating
features from meta-path based neighbors in a hierarchical manner.
Extensive experimental results on three real-world heterogeneous
graphs not only show the superior performance of our proposed
model over the state-of-the-arts, but also demonstrate its potentially
good interpretability for graph analysis.
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1 INTRODUCTION
The real-world data usually come together with the graph struc-
ture, such as social networks, citation networks, and the world wide
web. Graph neural network (GNN), as a powerful deep represen-
tation learning method for such graph data, has shown superior
performance on network analysis and aroused considerable research
interest. For example, [10, 20, 24] leverage deep neural network to
learn node representations based on node features and the graph
structure. Some works [6, 14, 18] propose the graph convolutional
networks by generalizing the convolutional operation to graph. A
recent research trend in deep learning is the attention mechanism,
which deals with variable sized data and encourages the model to
focus on the most salient parts of data. It has demonstrated the effec-
tiveness in deep neural network framework and is widely applied to
various applications, such as text analysis [1], knowledge graph [25]
and image processing [38]. Graph Attention Network (GAT) [35], a
novel convolution-style graph neural network, leverages attention
mechanism for the homogeneous graph which includes only one
type of nodes or links.

Despite the success of attention mechanism in deep learning, it
has not been considered in the graph neural network framework for
heterogeneous graph. As a matter of fact, the real-world graph usu-
ally comes with multi-types of nodes and edges, also widely known
as heterogeneous information network (HIN) [28]. For convenience,
we uniformly call it heterogeneous graph in this paper. Because the
heterogeneous graph contains more comprehensive information and
rich semantics, it has been widely used in many data mining tasks.
Meta-path [32], a composite relation connecting two objects, is a
widely used structure to capture the semantics. Taking the movie da-
ta IMDB1 shown in Figure 1(a) as an example, it contains three types
of nodes include movie, actor and director. A relation between two
movies can be revealed by meta-path Movie-Actor-Movie (MAM)
which describes the co-actor relation, while Movie-Director-Movie
(MDM) means that they are directed by the same director. As can
be seen, depending on the meta-paths, the relation between nodes
in the heterogeneous graph can have different semantics. Due to the
complexity of heterogeneous graph, traditional graph neural network
cannot be directly applied to heterogeneous graph.

Based on the above analysis, when designing graph neural net-
work architecture with attention mechanism for heterogeneous graph,
we need to address the following new requirements.

1https://www.imdb.com
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Figure 1: An illustrative example of a heterogenous graph
(IMDB). (a) Three types of nodes (i.e., actor, movie, director).
(b) A heterogenous graph IMDB consists three types of nodes
and two types of connections. (c) Two meta-paths involved in
IMDB (i.e., Moive-Actor-Moive and Movie-Director-Movie). (d)
Moive 𝑚1 and its meta-path based neighbors (i.e., 𝑚1, 𝑚2 and
𝑚3).

Heterogeneity of graph. The heterogeneity is an intrinsic prop-
erty of heterogeneous graph, i.e., various types of nodes and edges.
For example, different types of nodes have different traits and their
features may fall in different feature space. Still taking IMDB as
an example, the feature of an actor may involve in sex, age and
nationality. On the other hand, the feature of movie may involve in
plot and actors. How to handle such complex structural information
and preserve the diverse feature information simultaneously is an
urgent problem that needs to be solved.

Semantic-level attention. Different meaningful and complex se-
mantic information are involved in heterogeneous graph, which are
usually reflected by meta-paths [32]. Different meta-paths in het-
erogeneous graph may extract diverse semantic information. How
to select the most meaningful meta-paths and fuse the semantic
information for the specific task is an open problem [4, 19, 26].
Semantic-level attention aims to learn the importance of each meta-
path and assign proper weights to them. Still taking IMDB as an
example, The Terminator can either connect to The Terminator 2 via
Movie-Actor-Movie (both starred by Schwarzenegger) or connect to
Birdy via Movie-Year-Movie (both shot in 1984). However, when
identifying the genre of the movie The Terminator, MAM usually
plays more important role, rather than MYM. Therefore, treating
different meta-paths equally is unpractical and will weaken the se-
mantic information provided by some useful meta-paths.

Node-level attention. In a heterogeneous graph, nodes can be
connected via various types of relation, e.g., meta-path. Given a
meta-path, each node has lots of meta-path based neighbors. How
to distinguish the subtle difference of there neighbors and select
some informative neighors is required. For each node, node-level
attention aims to learn the importance of meta-path based neighbors
and assign different attention values to them. Still taking IMDB as
an example, when using the meta-path Movie-Director-Moive (the
movies are with the same director), The Terminator will connect
to Titanic and The Terminator 2 via director James Cameron. To
better identify the genre of The Terminator as sci-fi movie, the model
should pay more attention to The Terminator 2, rather than Titanic.
Therefore, how to design a model which can discover the subtle

differences of neighbors and learn their weights properly will be
desired.

In this paper, we propose a novel Heterogeneous graph Attention
Network, named HAN, which considers both of node-level and
semantic-level attentions. In particular, given the node features as
input, we use the type-specific transformation matrix to project differ-
ent types of node features into the same space. Then the node-level
attention is able to learn the attention values between the nodes and
their meta-path based neighbors, while the semantic-level attention
aims to learn the attention values of different meta-paths for the spe-
cific task in the heterogeneous graph. Based on the learned attention
values in terms of the two levels, our model can get the optimal
combination of neighbors and multiple meta-paths in a hierarchi-
cal manner, which enables the learned node embeddings to better
capture the complex structure and rich semantic information in a
heterogeneous graph. After that, the overall model can be optimized
via backpropagation in an end-to-end manner.

The contributions of our work are summarized as follows:
• To our best knowledge, this is the first attempt to study the

heterogeneous graph neural network based on attention mechanism.
Our work enables the graph neural network to be directly applied to
the heterogeneous graph, and further facilitates the heterogeneous
graph based applications.

• We propose a novel heterogeneous graph attention network
(HAN) which includes both of the node-level and semantic-level at-
tentions. Benefitting from such hierarchical attentions, the proposed
HAN can take the importance of nodes and meta-paths into consid-
eration simultaneously. Moreover, our model is high efficiency, with
the linear complexity with respect to the number of meta-path based
node pairs, which can be applied to large-scale heterogeneous graph.

• We conduct extensive experiments to evaluate the performance
of the proposed model. The results show the superiority of the pro-
posed model by comparing with the state-of-the-art models. More
importantly, by analysing the hierarchical attention mechanism, the
proposed HAN demonstrates its potentially good interpretability for
heterogeneous graph analysis.

2 RELATED WORK
2.1 Graph Neural Network
Graph neural networks (GNNs) which aim to extend the deep neural
network to deal with arbitrary graph-structured data are introduced
in [10, 24]. Yujia Li et al. [20] proposes a propagation model which
can incorporate gated recurrent units to propagate information across
all nodes. Recently, there is a surge of generalizing convolutional
operation on the graph-structured data. The graph convolutional neu-
ral work generally falls into two categories, namely spectral domain
and non-spectral domain. On one hand, spectral approaches work
with a spectral representation of the graphs. Joan Bruna et al. [2]
extends convolution to general graphs by finding the corresponding
Fourier basis. Michaël et al. [6] utilizes K-order Chebyshev polyno-
mials to approximate smooth filters in the spectral domain. Kipf et
al. [18] proposes a spectral approach, named Graph Convolutional
Network, which designs a graph convolutional network via a local-
ized first-order approximation of spectral graph convolutions. On
the other hand, we also have non-spectral approaches, which define
convolutions directly on the graph, operating on groups of spatially



close neighbors. Hamilton et al. [14] introduces GraphSAGE which
performs a neural network based aggregator over a fixed size n-
ode neighbor. It can learn a function that generates embeddings by
aggregating features from a nodes local neighborhood.

Attention mechanisms, e.g., self-attention [34] and soft-attention
[1], have become one of the most influential mechanisms in deep
learning. Some previous works introduce the attention mechanism
for graph based applications, e.g., the recommendation [15, 16].
Inspired by attention mechanism, Graph Attention Network [35] is
proposed to learn the importance between nodes and its neighbors
and fuse the neighbors to perform node classification. However, the
above graph neural network cannot deal with various types of nodes
and edges and can only be applied to the homogeneous graphs.

2.2 Network Embedding
Network embedding, i.e., network representation learning (NRL),
is proposed to embed network into a low dimensional space while
preserving the network structure and property so that the learned
embeddings can be applied to the downstream network tasks. For
example, the random walk based methods [12, 23], the deep neural
network based methods [36], the matrix factorization based methods
[22, 37], and others, e.g., LINE [33]. However, all these algorithms
are proposed for the homogeneous graphs. Some elaborate reviews
can be found in [5, 11].

Heterogeneous graph embedding mainly focuses on preserving
the meta-path based structural information. ESim [26] accepts user-
defined meta-paths as guidance to learn vertex vectors in a user-
preferred embedding space for similarity search. Even through ESim
can utilize multiple meta-paths, it cannot learn the importance of
meta-paths. To achieve the best performance, ESim needs to con-
duct grid search to find the optimal weights of hmeta-paths. It is
pretty hard to find the optimal combination for specific task. Meta-
path2vec [7] designs a meta-path based random walk and utilizes
skip-gram to perform heterogeneous graph embedding. However,
metapath2vec can only utilize one meta-path and may ignore some
useful information. Similar to metapath2vec, HERec [27] proposes
a type constraint strategy to filter the node sequence and capture the
complex semantics reflected in heterogeneous graph. HIN2Vec [9]
carries out multiple prediction training tasks which learn the laten-
t vectors of nodes and meta-paths simultaneously. Chen et al. [3]
proposes a projected metric embedding model, named PME, which
can preserve node proximities via Euclidian Distance. PME projects
different types of node into the same relation space and conducts
heterogeneous link prediction. To study the problem of comprehen-
sive describe heterogeneous graph, Chen et al. [29] proposes HEER
which can embed heterogeneous graph via edge representations. Fan
et al. [8] proposes a embedding model metagraph2vec, where both
the structures and semantics are maximally preserved for malware
detection. Sun et al. [30] proposes meta-graph-based network embed-
ding models, which simultaneously considers the hidden relations
of all meta information of a meta-graph. In summary, all these afore-
mentioned algorithms do not consider the attention mechanism in
heterogeneous graph representation learning.

3 PRELIMINARY
A heterogeneous graph is a special kind of information network,
which contains either multiple types of objects or multiple types of
links.

Definition 3.1. Heterogeneous Graph [31]. A heterogeneous
graph, denoted as 𝒢 = (𝒱, ℰ), consists of an object set 𝒱 and a link
set ℰ . A heterogeneous graph is also associated with a node type
mapping function 𝜑 : 𝒱 → 𝒜 and a link type mapping function
𝜓 : ℰ → ℛ.𝒜 andℛ denote the sets of predefined object types and
link types, where |𝒜|+ |ℛ| > 2.

Example. As shown in Figure 1(a), we construct a heterogeneous
graph to model the IMDB. It consists of multiple types of objects
( Actor (A), Movie (M), Director (D)) and relations (shoot relation
between movies and directors, role-play relation between actors and
movies).

In heterogeneous graph, two objects can be connected via differ-
ent semantic paths, which are called meta-paths.

Definition 3.2. Meta-path [32]. A meta-path Φ is defined as a

path in the form of 𝐴1
𝑅1−−→ 𝐴2

𝑅2−−→ · · · 𝑅𝑙−−→ 𝐴𝑙+1 (abbreviated as
𝐴1𝐴2 · · ·𝐴𝑙+1), which describes a composite relation 𝑅 = 𝑅1 ∘
𝑅2 ∘ · · · ∘ 𝑅𝑙 between objects 𝐴1 and 𝐴𝑙+1, where ∘ denotes the
composition operator on relations.

Example. As shown in Figure 1(a), two movies can be connect-
ed via multiple meta-paths, e.g., Movie-Actor-Movie (MAM) and
Movie-Director-Movie (MDM). Different meta-paths always reveal
different semantics. For example, the MAM means the co-actor rela-
tion, while Movie-Director-Movie (MDM) means they are directed
by the same director.

Given a meta-path Φ, there exists a set of meta-path based neigh-
bors of each node which can reveal diverse structure information
and rich semantics in a heterogeneous graph.

Definition 3.3. Meta-path based Neighbors. Givien a node 𝑖
and a meta-path Φ in a heterogeneous graph, the meta-path based
neighbors𝒩Φ

𝑖 of node 𝑖 are defined as the set of nodes which connect
with node 𝑖 via meta-path Φ. Note that the node’s neighbors includes
itself.

Example. Taking Figure 1(d) as an example, given the meta-path
Movie-Actor-Movie, the meta-path based neighbors of 𝑚1 includes
𝑚1 (itself), 𝑚2 and 𝑚3. Similarly, the neighbors of 𝑚1 based on
meta-path Movie-Director-Movie includes 𝑚1 and 𝑚2. Obviously,
meta-path based neighbors can exploit different aspects of structure
information in heterogeneous graph. We can get meta-path based
neighbors by the multiplication of a sequences of adjacency matrices.

Graph neural network has been proposed to deal with arbitrary
graph-structured data. However, all of them are designed for ho-
mogeneous network [18, 35]. Since meta-path and meta-path based
neighbors are two fundamental structures in a heterogeneous graph,
next, we will present a novel graph neural network for heterogeneous
graph data, which is able to exploit the subtle difference of nodes
and meta-paths. The notations we will use throughout the article are
summarized in Table 1.



Table 1: Notations and Explanations.

Notation Explanation

Φ Meta-path
h Initial node feature

M𝜑 Type-specific transformation matrix
h′ Projected node feature
𝑒Φ𝑖𝑗 Importance of meta-path based node pair (𝑖,𝑗)
aΦ Node-level attention vector for meta-path Φ
𝛼Φ
𝑖𝑗 Weight of meta-path based node pair (𝑖,𝑗)
𝒩Φ Meta-path based neighbors
ZΦ Semantic-specific node embedding
q Semantic-level attention vector
𝑤Φ Importance of meta-path Φ
𝛽Φ Weight of meta-path Φ
Z The final embedding
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Figure 2: The overall framework of the proposed HAN. (a) All
types of nodes are projected into a unified feature space and the
weight of meta-path based node pair can be learned via node-
level attention. (b) Joint learning the weight of each meta-path
and fuse the semantic-specific node embedding via semantic-
level attention. (c) Calculate the loss and end-to-end optimiza-
tion for the proposed HAN.

4 THE PROPOSED MODEL
In this section, we propose a novel semi-supervised graph neural
network for heterogeneous graph. Our model follows a hierarchical
attention structure: node-level attention→ semantic-level attention.
Figure 2 presents the whole framework of HAN. First, we propose a
node-level attention to learn the weight of meta-path based neighbors
and aggregate them to get the semantic-specific node embedding.
After that, HAN can tell the difference of meta-paths via semantic-
level attention and get the optimal weighted combination of the
semantic-specific node embedding for the specific task.

4.1 Node-level Attention
Before aggregating the information from meta-path neighbors for
each node, we should notice that the meta-path based neighbors of
each node play a different role and show different importance in
learning node embedding for the specific task. Here we introduce

node-level attention can learn the importance of meta-path based
neighbors for each node in a heterogeneous graph and aggregate
the representation of these meaningful neighbors to form a node
embedding.

Due to the heterogeneity of nodes, different types of nodes have
different feature spaces. Therefore, for each type of nodes (e.g.,node
with type 𝜑𝑖), we design the type-specific transformation matrix
M𝜑𝑖 to project the features of different types of nodes into the same
feature space. Unlike [13], the type-specific transformation matrix
is based on node-type rather than edge-type. The projection process
can be shown as follows:

h′
𝑖 = M𝜑𝑖 · h𝑖, (1)

where h𝑖 and h′
𝑖 are the original and projected feature of node 𝑖,

respectively. By type-specific projection operation, the node-level
attention can handle arbitrary types of nodes.

After that, we leverage self-attention [34] to learn the weight
among various kinds of nodes. Given a node pair (𝑖, 𝑗) which are
connected via meta-path Φ, the node-level attention 𝑒Φ𝑖𝑗 can learn
the importance 𝑒Φ𝑖𝑗 which means how important node 𝑗 will be for
node 𝑖. The importance of meta-path based node pair (𝑖, 𝑗) can be
formulated as follows:

𝑒Φ𝑖𝑗 = 𝑎𝑡𝑡𝑛𝑜𝑑𝑒(h
′
𝑖,h

′
𝑗 ; Φ). (2)

Here 𝑎𝑡𝑡𝑛𝑜𝑑𝑒 denotes the deep neural network which performs the
node-level attention. Given meta-path Φ, 𝑎𝑡𝑡𝑛𝑜𝑑𝑒 is shared for all
meta-path based node pairs. It is because there are some similar
connection patterns under one meta-path. The above Eq. (2) shows
that given meta-path Φ, the weight of meta-path based node pair
(𝑖, 𝑗) depends on their features. Please note that, 𝑒Φ𝑖𝑗 is asymmetric,
i.e., the importance of node 𝑖 to node 𝑗 and the importance of node
𝑗 to node 𝑖 can be quite difference. It shows node-level attention can
preserve the asymmetry which is a critical property of heterogenous
graph.

Then we inject the structural information into the model via
masked attention which means we only calculate the 𝑒Φ𝑖𝑗 for nodes
𝑗 ∈ 𝒩Φ

𝑖 , where𝒩Φ
𝑖 denotes the meta-path based neighbors of node

𝑖 (include itself). After obtaining the importance between meta-path
based node pairs, we normalize them to get the weight coefficient
𝛼Φ
𝑖𝑗 via softmax function:

𝛼Φ
𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝑒

Φ
𝑖𝑗) =

exp
(︀
𝜎(aT

Φ · [h′
𝑖‖h′

𝑗 ])
)︀∑︀

𝑘∈𝒩Φ
𝑖
exp

(︀
𝜎(aT

Φ · [h′
𝑖‖h′

𝑘])
)︀ , (3)

where 𝜎 denotes the activation function, ‖ denotes the concatenate
operation and aΦ is the node-level attention vector for meta-path Φ.
As we can see from Eq. (3), the weight coefficient of (𝑖, 𝑗) depends
on their features. Also please note that the weight coefficient 𝛼Φ

𝑖𝑗 is
asymmetric which means they make different contribution to each
other. Not only because the concatenate order in the numerator, but
also because they have different neighbors so the normalize term
(denominator) will be quite difference.

Then, the meta-path based embedding of node 𝑖 can be aggre-
gated by the neighbor’s projected features with the corresponding
coefficients as follows:



(a) Node-level Aggregating

(b) Semantic-level Aggregating

Figure 3: Explanation of aggregating process in both node-level
and semantic-level.

zΦ𝑖 = 𝜎

(︂ ∑︁
𝑗∈𝒩Φ

𝑖

𝛼Φ
𝑖𝑗 · h′

𝑗

)︂
. (4)

where zΦ𝑖 is the learned embedding of node 𝑖 for the meta-path
Φ. To better understand the aggregating process of node-level, we
also give a brief explanation in Figure 3 (a). Every node embedding
is aggregated by its neighors. Since the attention weight 𝛼Φ

𝑖𝑗 is
generated for single meta-path, it is semantic-specific and able to
caputre one kind of semantic information.

Since heterogeneous graph present the property of scale free, the
variance of graph data is quite high. To tackle the above challenge,
we extend node-level attention to multihead attention so that the
training process is more stable. Specifically, we repeat the node-
level attention for 𝐾 times and concatenate the learned embeddings
as the semantic-specific embedding:

zΦ𝑖 =
𝐾

‖
𝑘=1

𝜎

(︂ ∑︁
𝑗∈𝒩Φ

𝑖

𝛼Φ
𝑖𝑗 · h′

𝑗

)︂
. (5)

Given the meta-path set {Φ0,Φ1, . . . ,Φ𝑃 }, after feeding node fea-
tures into node-level attention, we can obtain 𝑃 groups of semantic-
specific node embeddings, denoted as {ZΦ0 ,ZΦ1 , . . . ,ZΦ𝑃 }.

4.2 Semantic-level Attention
Generally, every node in a heterogeneous graph contains multiple
types of semantic information and semantic-specific node embed-
ding can only reflect node from one aspect. To learn a more com-
prehensive node embedding, we need to fuse multiple semantics
which can be revealed by meta-paths. To address the challenge of
meta-path selection and semantic fusion in a heterogeneous graph,
we propose a novel semantic-level attention to automatically learn
the importance of different meta-paths and fuse them for the spe-
cific task. Taking 𝑃 groups of semantic-specific node embeddings
learned from node-level attention as input, the learned weights of
each meta-path (𝛽Φ0 , 𝛽Φ1 , . . . , 𝛽Φ𝑃 ) can be shown as follows:

(𝛽Φ0 , 𝛽Φ1 , . . . , 𝛽Φ𝑃 ) = 𝑎𝑡𝑡𝑠𝑒𝑚(ZΦ0 ,ZΦ1 , . . . ,ZΦ𝑃 ). (6)

Here 𝑎𝑡𝑡𝑠𝑒𝑚 denotes the deep neural network which performs the
semantic-level attention. It shows that the semantic-level attention
can capture various types of semantic information behind a hetero-
geneous graph.

To learn the importance of each meta-path, we first transform
semantic-specific embedding through a nonlinear transformation
(e.g., one-layer MLP). Then we measure the importance of the
semantic-specific embedding as the similarity of transformed em-
bedding with a semantic-level attention vector q. Furthermore, we
average the importance of all the semantic-specific node embedding
which can be explained as the importance of each meta-path. The
importance of each meta-path, denoted as 𝑤Φ𝑖 , is shown as follows:

𝑤Φ𝑖 =
1

|𝒱|
∑︁
𝑖∈𝒱

qT · tanh(W · zΦ𝑖 + b), (7)

where W is the weight matrix, b is the bias vector, q is the semantic-
level attention vector. Note that for the meaningful comparation,
all above parameters are shared for all meta-paths and semantic-
specific embedding. After obtaining the importance of each meta-
path, we normalize them via softmax function. The weight of meta-
path Φ𝑖, denoted as 𝛽Φ𝑖 , can be obtained by normalizing the above
importance of all meta-paths using softmax function,

𝛽Φ𝑖 =
exp(𝑤Φ𝑖)∑︀𝑃
𝑖=1 exp(𝑤Φ𝑖)

, (8)

which can be interpreted as the contribution of the meta-path Φ𝑖

for specific task. Obviously, the higher 𝛽Φ𝑖 , the more important
meta-path Φ𝑖 is. Note that for different tasks, meta-path Φ𝑖 may
has different weights. With the learned weights as coefficients, we
can fuse these semantic-specific embeddings to obtain the final
embedding Z as follows:

Z =

𝑃∑︁
𝑖=1

𝛽Φ𝑖 · ZΦ𝑖 . (9)

To better understand the aggregating process of semantic-level, we
also give a brief explanation in Figure 3 (b). The final embedding
is aggregated by all semantic-specific embedding. Then we can
apply the final embedding to specific tasks and design different loss
fuction. For semi-supervised node classification, we can minimize
the Cross-Entropy over all labeled node between the ground-truth
and the prediction:

𝐿 = −
∑︁
𝑙∈𝒴𝐿

Y𝑙 ln(C · Z𝑙), (10)

where C is the parameter of the classifier, 𝒴𝐿 is the set of node
indices that have labels, Y𝑙 and Z𝑙 are the labels and embeddings
of labeled nodes. With the guide of labeled data, we can optimize
the proposed model via back propagation and learn the embeddings
of nodes. The overall process of HAN in shown in Algorithm 1.

4.3 Analysis of the Proposed Model
Here we give the analysis of the proposed HAN as follows:

• The proposed model can deal with various types of nodes and
relations and fuse rich semantics in a heterogeneous graph. The infor-
mation can transfer from one kind of nodes to another kind of nodes
via diverse relation. Benefitted from such a heterogeneous graph



Table 2: Statistics of the datasets.

Dataset Relations(A-B) Number of A Number of B Number of A-B Feature Training Validation Test Meta-paths

DBLP
Paper-Author 14328 4057 19645

334 800 400 2857
APA

Paper-Conf 14328 20 14328 APCPA
Paper-Term 14327 8789 88420 APTPA

IMDB
Movie-Actor 4780 5841 14340

1232 300 300 2687
MAM

Movie-Director 4780 2269 4780 MDM

ACM
Paper-Author 3025 5835 9744

1830 600 300 2125
PAP

Paper-Subject 3025 56 3025 PSP

Algorithm 1: The overall process of HAN.
Input :The heterogeneous graph 𝒢 = (𝒱, ℰ),

The node feature {h𝑖,∀𝑖 ∈ 𝒱},
The meta-path set {Φ0,Φ1, . . . ,Φ𝑃 }.
The number of attention head 𝐾,

Output :The final embedding Z ,
The node-level attention weight 𝛼 ,
The semantic-level attention weight 𝛽 .

1 for Φ𝑖 ∈ {Φ0,Φ1, . . . ,Φ𝑃 } do
2 for 𝑘 = 1...𝐾 do
3 Type-specific transformation h′

𝑖 ←M𝜑𝑖 · h𝑖 ;
4 for 𝑖 ∈ 𝒱 do
5 Find the meta-path based neighbors𝒩Φ

𝑖 ;
6 for 𝑗 ∈ 𝒩Φ

𝑖 do
7 Calculate the weight coefficient 𝛼Φ

𝑖𝑗 ;
8 end
9 Calculate the semantic-specific node embedding

zΦ𝑖 ← 𝜎

(︂∑︀
𝑗∈𝒩Φ

𝑖
𝛼Φ
𝑖𝑗 · h′

𝑗

)︂
;

10 end
11 Concatenate the learned embeddings from all attention

head zΦ𝑖 ←
𝐾

‖
𝑘=1

𝜎

(︂∑︀
𝑗∈𝒩Φ

𝑖
𝛼Φ
𝑖𝑗 · h′

𝑗

)︂
;

12 end
13 Calculate the weight of meta-path 𝛽Φ𝑖 ;
14 Fuse the semantic-specific embedding

Z←
∑︀𝑃

𝑖=1 𝛽Φ𝑖 · ZΦ𝑖 ;
15 end
16 Calculate Cross-Entropy 𝐿 = −

∑︀
𝑙∈𝒴𝐿

Y𝑙 ln(C · Z𝑙) ;
17 Back propagation and update parameters in HAN;
18 return 𝑍,𝛼, 𝛽.

attention network, different types of node embedding can enhance
the mutual integration, mutual promotion and mutual upgrade.

• The proposed HAN is highly efficient and can be easily par-
allelized. The computation of attention can compute individually
across all nodes and meta-paths. Given a meta-path Φ, the time
complexity of node-level attention is 𝑂(𝑉Φ𝐹1𝐹2𝐾 + 𝐸Φ𝐹1𝐾),
where 𝐾 is the number of attention head, 𝑉Φ is the number of n-
odes, 𝐸Φ is the number of meta-path based node pairs, 𝐹1 and 𝐹2

are the numbers of rows and columns of the transformation matrix,
respectively. The overall complexity is linear to the number of nodes

and meta-path based node pairs. The proposed model can be easily
parallelized, because the node-level and semantic-level attention can
be parallelized across node paris and meta-paths, respectively. The
overall complexity is linear to the number of nodes and meta-path
based node pairs.

• The hierarchical attention is shared for the whole heterogeneous
graph which means the number of parameters is not dependent on
the scale of a heterogeneous graph and can be used for the inductive
problems [14]. Here inductive means the model can generate node
embeddings for previous unseen nodes or even unseen graph.

• The proposed model has potentionally good interpretability for
the learned node embedding which is a big advantage for hetero-
geneous graph analysis. With the learned importance of nodes and
meta-paths, the proposed model can pay more attention to some
meaningful nodes or meta-paths for the specific task and give a more
comprensive description of a heterogeneous graph. Based on the
attention values, we can check which nodes or meta-paths make the
higher (or lower) contributions for our task, which is beneficial to
analyze and explain our results.

5 EXPERIMENTS
5.1 Datasets
The detailed descriptions of the heterogeneous graph used here are
shown in Table 2.

• DBLP2. We extract a subset of DBLP which contains 14328 pa-
pers (P), 4057 authors (A), 20 conferences (C), 8789 terms (T). The
authors are divided into four areas: database, data mining, machine
learning, information retrieval. Also, we label each author’s research
area according to the conferences they submitted. Author features
are the elements of a bag-of-words represented of keywords. Here
we employ the meta-path set {APA, APCPA, APTPA} to perform
experiments.

• ACM3. We extract papers published in KDD, SIGMOD, SIG-
COMM, MobiCOMM, and VLDB and divide the papers into three
classes (Database, Wireless Communication, Data Mining). Then
we construct a heterogeneous graph that comprises 3025 papers (P),
5835 authors (A) and 56 subjects (S). Paper features correspond to
elements of a bag-of-words represented of keywords. We employ the
meta-path set {PAP, PSP} to perform experiments. Here we label
the papers according to the conference they published.

• IMDB. Here we extract a subset of IMDB which contains 4780
movies (M), 5841 actors (A) and 2269 directors (D). The movies

2https://dblp.uni-trier.de
3http://dl.acm.org/



Table 3: Qantitative results (%) on the node classification task.

Datasets Metrics Training DeepWalk ESim metapath2vec HERec GCN GAT HAN𝑛𝑑 HAN𝑠𝑒𝑚 HAN

ACM

Macro-F1

20% 77.25 77.32 65.09 66.17 86.81 86.23 88.15 89.04 89.40
40% 80.47 80.12 69.93 70.89 87.68 87.04 88.41 89.41 89.79
60% 82.55 82.44 71.47 72.38 88.10 87.56 87.91 90.00 89.51
80% 84.17 83.00 73.81 73.92 88.29 87.33 88.48 90.17 90.63

Micro-F1

20% 76.92 76.89 65.00 66.03 86.77 86.01 87.99 88.85 89.22
40% 79.99 79.70 69.75 70.73 87.64 86.79 88.31 89.27 89.64
60% 82.11 82.02 71.29 72.24 88.12 87.40 87.68 89.85 89.33
80% 83.88 82.89 73.69 73.84 88.35 87.11 88.26 89.95 90.54

DBLP

Macro-F1

20% 77.43 91.64 90.16 91.68 90.79 90.97 91.17 92.03 92.24
40% 81.02 92.04 90.82 92.16 91.48 91.20 91.46 92.08 92.40
60% 83.67 92.44 91.32 92.80 91.89 90.80 91.78 92.38 92.80
80% 84.81 92.53 91.89 92.34 92.38 91.73 91.80 92.53 93.08

Micro-F1

20% 79.37 92.73 91.53 92.69 91.71 91.96 92.05 92.99 93.11
40% 82.73 93.07 92.03 93.18 92.31 92.16 92.38 93.00 93.30
60% 85.27 93.39 92.48 93.70 92.62 91.84 92.69 93.31 93.70
80% 86.26 93.44 92.80 93.27 93.09 92.55 92.69 93.29 93.99

IMDB

Macro-F1

20% 40.72 32.10 41.16 41.65 45.73 49.44 49.78 50.87 50.00
40% 45.19 31.94 44.22 43.86 48.01 50.64 52.11 50.85 52.71
60% 48.13 31.68 45.11 46.27 49.15 51.90 51.73 52.09 54.24
80% 50.35 32.06 45.15 47.64 51.81 52.99 52.66 51.60 54.38

Micro-F1

20% 46.38 35.28 45.65 45.81 49.78 55.28 54.17 55.01 55.73
40% 49.99 35.47 48.24 47.59 51.71 55.91 56.39 55.15 57.97
60% 52.21 35.64 49.09 49.88 52.29 56.44 56.09 56.66 58.32
80% 54.33 35.59 48.81 50.99 54.61 56.97 56.38 56.49 58.51

are divided into three classes (Action, Comedy, Drama) according
to their genre. Movie features correspond to elements of a bag-of-
words represented of plots. We employ the meta-path set {MAM,
MDM} to perform experiments.

5.2 Baselines
We compare with some state-of-art baselines, include the (heteroge-
neous) network embedding methods and graph neural network based
methods, to verfify the effectiveness of the proposed HAN. To veri-
fy the effectiveness of our node-level attention and semantic-level
attention, respectively, we also test two variants of HAN.

• DeepWalk [23]: A random walk based network embedding
method which designs for the homogeneous graphs. Here we ignore
the heterogeneity of nodes and perform DeepWalk on the whole
heterogeneous graph.

• ESim [26]: A heterogeneous graph embedding method which
can capture semantic information from multiple meta-paths. Because
it is difficult to search the weights of a set of meta-paths, we assign
the weights learned from HAN to ESim.

• metapath2vec [7]: A heterogeneous graph embedding method
which performs meta-path based random walk and utilizes skip-gram
to embed the heterogeneous graphs. Here we test all the meta-paths
for metapath2vec and report the best performance.

• HERec [27]: A heterogeneous graph embedding method which
designs a type constraint strategy to filter the node sequence and
utilizes skip-gram to embed the heterogeneous graphs. Here we test
all the meta-paths for HERec and report the best performance.

• GCN [18]: It is a semi-supervised graph convolutional network
that designed for the homogeneous graphs. Here we test all the
meta-paths for GCN and report the best performance.

• GAT [35]: It is a semi-supervised neural network which consid-
ers the attention mechanism on the homogeneous graphs. Here we
test all the meta-paths for GAT and report the best performance.

• HAN𝑛𝑑 : It is a variant of HAN, which removes node-level
attention and assigns the same importance to each neighbor.

• HAN𝑠𝑒𝑚 : It is a variant of HAN, which removes the semantic-
level attention and assigns the same importance to each meta-path.

• HAN: The proposed semi-supervised graph neural network
which employs node-level attention and semantic-level attention
simultaneously.

5.3 Implementation Details
For the proposed HAN, we randomly initialize parameters and op-
timize the model with Adam [17]. For the proposed HAN, we set
the learning rate to 0.005, the regularization parameter to 0.001,
the dimension of the semantic-level attention vector q to 128, the
number of attention head𝐾 to 8, the dropout of attention to 0.6. And
we use early stopping with a patience of 100, i.e. we stop training if
the validation loss does not decrease for 100 consecutive epochs. To
make our experiments repeatable, we make our dataset and codes
publicly available at website4.For GCN and GAT, we optimize their
parameters using the validation set. For semi-supervised graph neural
network, including GCN, GAT and HAN, we split exactly the same

4https://github.com/Jhy1993/HAN



training set, validation set and test set to ensure fairness. For random
walk based methods include DeepWalk, ESim, metapath2vec, and
HERec, we set window size to 5, walk length to 100, walks per node
to 40, the number of negative samples to 5. For a fair comparison,
we set the embedding dimension to 64 for all the above algorithms.

5.4 Classification
Here we employ KNN classifier with 𝑘 = 5 to perform node classifi-
cation. Since the variance of graph-structured data can be quite high,
we repeat the process for 10 times and report the averaged Macro-F1
and Micro-F1 in Table 3.

Based on Table 3, we can see that HAN achieves the best per-
formance. For traditional heterogeneous graph embedding method,
ESim which can leverage multiple meta-paths performs better than
metapath2vec. Generally, graph neural network based methods which
combine the structure and feature information, e.g., GCN and GAT,
usually perform better. To go deep into these methods, compared to
simply average over node neighbors, e.g., GCN and HAN𝑛𝑑, GAT
and HAN can weigh the information properly and improve the perfor-
mance of the learned embedding. Compared to GAT, the proposed
HAN, which designs for heterogeneous graph, captures the rich
semantics successfully and shows its superiority. Also, without node-
level attention (HAN𝑛𝑑) or semantic-level attention (HAN𝑠𝑒𝑚), the
performance becomes worse than HAN, which indicates the impor-
tance of modeling the attention mechanism on both of the nodes
and semantics. Note that in ACM and IMDB, HAN improves clas-
sification results more significantly than in DBLP. Mainly because
APCPA is the much more important than the rest meta-paths. We will
explain this phenomenon in Section 5.7 by analyzing the semantic-
level attention.

Through the above analysis, we can find that the proposed HAN
achieves the best performance on all datasets. The results demon-
strate that it is quite important to capture the importance of nodes
and meta-paths in heterogeneous graph analysis.

5.5 Clustering
We also conduct the clustering task to evaluate the embeddings
learned from the above algorithms. Once the proposed HAN trained,
we can get all the node embedding via feed forward. Here we utilize
the KMeans to perform node clustering and the number of clusters
𝐾 is set to the number of classes. We use the same ground-truth
as in node classification. And we adopt NMI and ARI to assess the
quality of the clustering results. Since the performance of KMeans
is affected by initial centroids, we repeat the process for 10 times
and report the average results in Table 4.

As can be seen in Table 4, we can find that HAN performs con-
sistently much better than all baselines. Also, graph neural network
based algorithms usually achieve better performance. Besides, with-
out distinguishing the importance of nodes or meta-paths, metap-
ath2vec and GCN cannot perform well. With the guide of multi-
ple meta-paths, HAN performs significantly better than GCN and
GAT. On the other hand, without node-level attention (HAN𝑛𝑑)
or semantic-level attention (HAN𝑠𝑒𝑚), the performance of HAN
has shown various degrees of degeneration. It demonstrates that
via assigning the different importance to nodes and meta-paths, the
proposed HAN can learn a more meaningful node embedding.
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(a) Meta-path based neighbors of P831

P831 P699 P133  P2384  P2328  P1973

0.14

0.15

0.16

0.17

0.18

0.19
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Figure 4: Meta-path based neighbors of node P831 and corre-
sponding attention values (Different colors mean different class-
es, e.g., green means Data Mining, blue means Database, orange
means Wireless Communication).
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Figure 5: Performance of single meta-path and corresponding
attention value.

Based on the above analysis, we can find that the propsed HAN
can give a comprehensive description of heterogeneous graph and
achieve a significant improvements.

5.6 Analysis of Hierarchical Attention Mechanism
A salient property of HAN is the incorporation of the hierarchical
mechanism, which takes the importance of node neighbors and
meta-paths into consideration in learning representative embedding.
Recall that we have learned the node-level attention weight 𝛼Φ

𝑖𝑗 and
the semantic-level attention weight 𝛽Φ𝑖 . To better understand the
importance of the neighbors and meta-paths, we provide a detailed
analysis on the hierarchical attention mechanism.

Analysis of node-level attention. As mentioned before, given a
specific task, our model can learn the attention values between nodes
and its neighbors in a meta-path. Some important neighbors which
are useful for the specific task tend to have larger attention values.
Here we take the paper P831 5 in ACM dataset as an illustrative
example. Given a meta-path Paper-Author-Paper which describes
the co-author of different papers, we enumerate the meta-path based
neighbors of paper P831 and their attention values are shown in
Figure 4. From Figure 4(a), we can see that P831 connects to P699 6

5Xintao Wu, Daniel Barbara, Yong Ye. Screening and Interpreting Multi-item Associa-
tions Based on Log-linear Modeling, KDD’03
6Xintao Wu, Jianpin Fan, Kalpathi Subramanian. B-EM: a classifier incorporating
bootstrap with EM approach for data mining, KDD’02



Table 4: Qantitative results (%) on the node clustering task.

Datasets Metrics DeepWalk ESim metapath2vec HERec GCN GAT HAN𝑛𝑑 HAN𝑠𝑒𝑚 HAN

ACM
NMI 41.61 39.14 21.22 40.70 51.40 57.29 60.99 61.05 61.56
ARI 35.10 34.32 21.00 37.13 53.01 60.43 61.48 59.45 64.39

DBLP
NMI 76.53 66.32 74.30 76.73 75.01 71.50 75.30 77.31 79.12
ARI 81.35 68.31 78.50 80.98 80.49 77.26 81.46 83.46 84.76

IMDB
NMI 1.45 0.55 1.20 1.20 5.45 8.45 9.16 10.31 10.87
ARI 2.15 0.10 1.70 1.65 4.40 7.46 7.98 9.51 10.01
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Figure 6: Visualization embedding on DBLP. Each point indicates one author and its color indicates the research area.

and P133 7, which all belong to Data Mining; conects to P2384 8 and
P2328 9 while P2384 and P2328 both belong to Database; connects
to P1973 10 while P1973 belongs to Wireless Communication. From
Figure 4(b), we can see that paper P831 gets the highest attention
value from node-level attention which means the node itself plays
the most important role in learning its representation. It is reason-
able because all information supported by neighbors are usually
viewed as a kind of supplementary information. Beyond itself, P699
and P133 get the second and third largest attention values. This is
because P699 and P133 also belong to Data Mining and they can
make significant contribution to identify the class of P831. The rest
neighbors get minor attention values that because they do not belong
to Data Mining and cannot make important contribution to identify
the P831’s class. Based on the above analysis, we can see that the
node-level attention can tell the difference among neighbors and
assign higher weights to some meaningful neighbors.

Analysis of semantic-level attention. As mentioned before, the
proposed HAN can learn the importance of meta-paths for the spe-
cific task. To verify the ability of semantic-level attention, taking
DBLP and ACM as examples, we report the clustering results (NMI)
of single meta-path and corresponding attention values in Figure 5.
Obviously, there is a positive correlation between the performance
of a single meta-path and its attention value. For DBLP, HAN gives
APCPA the largest weight, which means that HAN considers the
APCPA as the most critical meta-path in identifying the author’s
research area. It makes sense because the author’s research area and
the conferences they submitted are highly correlated. For example,

7Daniel Barbara, Carlotta Domeniconi, James P. Rogers. Detecting outliers using trans-
duction and statistical testing, KDD’06
8Walid G. Aref, Daniel Barbara, Padmavathi Vallabhaneni. The Handwritten Trie:
Indexing Electronic Ink, SIGMOD’95
9Daniel Barbara, Tomasz Imielinski. Sleepers and Workaholics: Caching Strategies in
Mobile Environments, VLDB’95
10Hector Garcia-Holina, Daniel Barbara. The cost of data replication, SIGCOMM’81

some natural language processing researchers mainly submit their
papers to ACL or EMNLP, whereas some data mining researchers
may submit their papers to KDD or WWW. Meanwhile, it is diffi-
cult for APA to identify the author’s research area well. If we treat
these meta-paths equally, e.g., HAN𝑠𝑒𝑚, the performance will drop
significantly. Based on the attention values of each meta-path, we
can find that the meta-path APCPA is much more useful than APA
and APTPA. So even the proposed HAN can fuse them, APCPA still
plays a leading role in identifying the author’s research area while
APA and APTPA do not. It also explains why the performance of
HAN in DBLP may not be as significant as in ACM and IMDB. We
get the similar conclusions on ACM. For ACM, the results show
that HAN gives the most considerable weight to PAP. Since the
performance of PAP is slightly better than PSP, so HAN𝑠𝑒𝑚 can
achieve good performance by simple average operation. We can see
that semantic-level attention can reveal the difference between these
meta-paths and weights them adequately.

5.7 Visualization
For a more intuitively comparation, we conduct the task of visu-
alization, which aims to layout a heterogeneous graph on a low
dimensional space. Specifically, we learn the node embedding based
on the proposed model and project the learned embedding into a
2-dimensional space. Here we utilize t-SNE [21] to visualize the
author embedding in DBLP and coloured the nodes based on their
research areas.

From Figure 6, we can find that GCN and GAT which design for
the homogeneous graphs do not perform well. The authors belong
to different research areas are mixed with each other. Metapath2vec
performs much better than the above homogeneous graph neural
networks. It demonstrates that the proper meta-path(e.g., APCPA)
can make a significant contribution to heterogeneous graph analysis.
However, since metapath2vec can only take only one meta-path
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Figure 7: Parameter sensitivity of HAN w.r.t. Dimension of the final embedding 𝑍, Dimension of the semantic-level attention vector 𝑞
and Number of attention head 𝐾.

into consideration, the boundary is still blurry. From Figure 6, we
can see that the visualization of HAN peform best. With the guide
of multiple meta-paths, the embedding learned by HAN has high
intra-class similarity and separates the authors in different research
area with distinct boundaries.

5.8 Parameters Experiments
In this section, we investigate the sensitivity of parameters and
report the results of clustering (NMI) on ACM dataset with various
parameters in Figure 7.

• Dimension of the final embedding Z. We first test the effect
of the dimension of the final embedding Z. The result is shown
in Figure 7(a). We can see that with the growth of the embedding
dimension, the performance raises first and then starts to drop slowly.
The reason is that HAN needs a suitable dimension to encode the se-
mantics information and larger dimension may introduce additional
redundancies.

• Dimension of semantic-level attention vector q. Since the
ability of semantic-level attention is affected by the dimension of
the semantic-level attention vector q, we explore the experimental
results with various dimension. The result is shown in Figure 7(b).
We can find that the performance of HAN grows with the dimension
of semantic-level attention vector and achieves the best performance
when the dimension of q is set to 128. After that, the performance
of HAN starts to degenerate which may because of overfitting.

• Number of attention head 𝐾. In order to check the impact
of multihead attention, we explore the performance of HAN with
various number of attention head. The result is shown in Figure
7(c). Note that the multihead attention is removed when the number
of attention head is set to 1. Based on the results, we can find
that the more number of attention head will generally improve the
performance of HAN. However, with the change of attention head,
the performance of HAN improve only slightly. Meanwhile, we also
find that multihead attention can make the training process more
stable.

6 CONCLUSION
In this paper, we tackle several fundamental problems in heteroge-
neous graph analysis and propose a semi-supervised heterogeneous

graph neural network based solely on attention mechanism. The
proposed HAN can capture complex structures and rich semantics
behind heterogeneous graph. The proposed model leverages node-
level attention and semantic-level attention to learn the importance
of nodes and meta-paths, respectively. Meanwhile, the proposed
model utilizes the structural information and the feature information
in a uniform way. Experimental results include classification and
clustering demonstrate the effectiveness of HAN. By analyzing the
learned attention weights include both node-level and semantic-level,
the proposed HAN has proven its potentially good interpretability.
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[6] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In NIPS.
3844–3852.

[7] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In SIGKDD. 135–
144.

[8] Yujie Fan, Shifu Hou, Yiming Zhang, Yanfang Ye, and Melih Abdulhayoglu. 2018.
Gotcha-sly malware!: Scorpion a metagraph2vec based malware detection system.
In SIGKDD. 253–262.

[9] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. HIN2Vec: Explore Meta-
paths in Heterogeneous Information Networks for Representation Learning. In
CIKM. 1797–1806.

[10] Marco Gori, Gabriele Monfardini, and Franco Scarselli. 2005. A new model for
learning in graph domains. In IJCNN, Vol. 2. 729–734.

[11] Palash Goyal and Emilio Ferrara. 2017. Graph embedding techniques, applications,
and performance: A survey. arXiv preprint arXiv:1705.02801 (2017).



[12] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In SIGKDD. 855–864.

[13] Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec.
2018. Embedding logical queries on knowledge graphs. In Advances in Neural
Information Processing Systems. 2030–2041.

[14] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representa-
tion Learning on Large Graphs. In NIPS. 1024–1034.

[15] Xiaotian Han, Chuan Shi, Senzhang Wang, S Yu Philip, and Li Song. 2018. Aspect-
Level Deep Collaborative Filtering via Heterogeneous Information Networks.. In
IJCAI. 3393–3399.

[16] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S Yu. 2018. Leveraging
Meta-path based Context for Top-N Recommendation with A Neural Co-Attention
Model. In SIGKDD. 1531–1540.

[17] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. ICLR (2015).

[18] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[19] Xiang Li, Yao Wu, Martin Ester, Ben Kao, Xin Wang, and Yudian Zheng. 2017.
Semi-supervised clustering in attributed heterogeneous information networks. In
WWW. 1621–1629.

[20] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2016. Gated
graph sequence neural networks. ICLR (2016).

[21] Laurens Van Der Maaten and Geoffrey Hinton. 2008. Visualizing data using
t-SNE. Journal of Machine Learning Research 9, 2605 (2008), 2579–2605.

[22] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric transitivity preserving graph embedding. In SIGKDD. 1105–1114.

[23] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online
learning of social representations. In SIGKDD. 701–710.

[24] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. 2009. The graph neural network model. IEEE Transactions
on Neural Networks 20, 1 (2009), 61–80.

[25] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European Semantic Web Conference. Springer, 593–607.

[26] Jingbo Shang, Meng Qu, Jialu Liu, Lance M. Kaplan, Jiawei Han, and Jian
Peng. 2016. Meta-Path Guided Embedding for Similarity Search in Large-Scale

Heterogeneous Information Networks. CoRR abs/1610.09769 (2016).
[27] Chuan Shi, Binbin Hu, Xin Zhao, and Philip Yu. 2018. Heterogeneous Information

Network Embedding for Recommendation. IEEE Transactions on Knowledge and
Data Engineering (2018).

[28] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and Philip S. Yu. 2017. A
Survey of Heterogeneous Information Network Analysis. IEEE Transactions on
Knowledge and Data Engineering 29 (2017), 17–37.

[29] Yu Shi, Qi Zhu, Fang Guo, Chao Zhang, and Jiawei Han. 2018. Easing Embed-
ding Learning by Comprehensive Transcription of Heterogeneous Information
Networks. In SIGKDD. ACM, 2190–2199.

[30] Lichao Sun, Lifang He, Zhipeng Huang, Bokai Cao, Congying Xia, Xiaokai
Wei, and S Yu Philip. 2018. Joint embedding of meta-path and meta-graph for
heterogeneous information networks. In 2018 IEEE International Conference on
Big Knowledge (ICBK). 131–138.

[31] Yizhou Sun and Jiawei Han. 2013. Mining heterogeneous information networks:
a structural analysis approach. Acm Sigkdd Explorations Newsletter 14, 2 (2013),
20–28.

[32] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Pathsim:
Meta path-based top-k similarity search in heterogeneous information networks.
VLDB 4, 11 (2011), 992–1003.

[33] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In WWW. 1067–1077.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In NIPS. 5998–6008.
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