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Abstract

Given a graph of the money transfers between accounts of
a bank, how can we detect money laundering? Money laun-
dering refers to criminals using the bank’s services to move
massive amounts of illegal money to untraceable destination
accounts, in order to inject their illegal money into the le-
gitimate financial system. Existing graph fraud detection ap-
proaches focus on dense subgraph detection, without consid-
ering the fact that money laundering involves high-volume
flows of funds through chains of bank accounts, thereby
decreasing their detection accuracy. Instead, we propose to
model the transactions using a multipartite graph, and de-
tect the complete flow of money from source to destination
using a scalable algorithm, FlowScope. Theoretical analysis
shows that FlowScope provides guarantees in terms of the
amount of money that fraudsters can transfer without being
detected. FlowScope outperforms state-of-the-art baselines in
accurately detecting the accounts involved in money launder-
ing, in both injected and real-world data settings.

Introduction

Given a big tripartite or multipartite graph, how can we
spot the most suspicious dense flow? Such a flow can be an
illegal money laundering (ML) process from sources to un-
traceable destinations through many adverserial middle ac-
counts and transfers, or transportation flow shows interesting
needs of a group of customers. Fig. 1 shows an example of
ML within a subgraph, containing two-step flow from source
to middle to destination accounts.

Most existing anti-money laundering algorithms (Wang
and Yang 2007; Tang and Yin 2005; Lv, Ji, and Zhang 2008;
Awasthi 2012; Paula et al. 2016) ignore the chain trans-
fer scheme of money laundering behavior, and also ignore
complex dependencies between transactions, leading to low
detection accuracy and easy evasion by adversaries. Dense
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Figure 1: An example of money laundering transfers in a bank, cre-
ating a dense tripartite subgraph. The left accounts A are sources
laundering money through the middle accountsM to the right des-
tination accounts C. Both A and C are outer accounts of the bank.
Edge color and node size indicates the amount of money trans-
ferred.

subgraph or subtensor detection algorithms (Liu, Hooi, and
Faloutsos 2017; Shin et al. 2017; Prakash et al. 2010;
Hooi et al. 2016) have been used for graph fraud detec-
tion, but also only consider single-step transfers. Although
(Michalak and Korczak 2011) claims to handle chain trans-
actions, it needs manually labeled data to train this model,
whereas such data is rare, and the use of specific labels can
make the model less robust for use in different datasets.

In contrast, our FlowScope in this paper considers multi-
step flows of funds: from senders, through middle accounts,
to receivers. In the example based on synthetic data in Fig.
2, fraudulent flows consist of two steps: from A toM and
M to C, where the fraudulent accounts are plotted in the up-
per left of each adjacency matrix. FlowScope correctly de-
tects the accounts involved in this two-step flow, while other
algorithms detect parts of the two disconnected hyperbolic
blocks, which resemble communities commonly observed
in real graphs (Araujo et al. 2014).

Specifically, the FlowScope, proposed in this paper, is a
flow-based approach for detecting money laundering behav-
ior that detects chains of transactions. Due to highly skewed
portion of ML accounts in real data, we propose an optimiza-
tion problem to find suspicious accounts, instead of using a
supervised learning model. Our main ideas are as follows:
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(d) Accuracy for multi-step flows

Figure 2: FlowScope performs the best in money laundering detection. In (a) and (b), FlowScope exactly catches the 2-step flow of money
laundering transfers in synthetic data. The two matrices are bipartite adjacency matrices for transfers into (A-M), and out (M-C) of the
bank’s accounts. The top-left blocks are accounts involved in injected money laundering. The remaining edges are disconnected hyperbolic
blocks which resemble normal communities in real graphs (Araujo et al. 2014). Our FlowScope detects exactly the injections. In real-world
CBank data, FlowScope achieves the best performance, i.e. accurate and early detection (less money being laundered), with ground-truth
label in (c), and injection of multi-step ML flow in (d).

we model the problem using multipartite graphs, and define
a novel anomalousness metric for transfer flows. High values
of the metric indicate high-volume flows of funds which also
do not leave much money left behind in middle accounts,
through specific paths along the graph. In contrast, normal
(i.e. honest) accounts do not always transfer money to spe-
cific accounts consistently, and also do not clear the mid-
dle accounts immediately , thus having lower values of the
metric. FlowScope searches for fraudulent accounts by opti-
mizing our metric, jointly optimizing over subsets of source,
middle and destination accounts greedily. Moreover, we pro-
vide a theoretical guarantee on the near-optimality of our
detection, and an upper bound on the amount of money a
fraudster can transfer without being detected.

In summary, the main advantages of our work are:
• Novel anomalousness metric for money-laundering

flow: We propose a novel anomalousness metric for dense
and multi-step flow, and show its utility for detecting ML.
• Theoretical guarantee: We show the theoretical bound

of near-optimality of our algorithm for detecting flow in
graphs, as well as an upper bound on the amount of money
that fraudsters can transfer, given limited resources of bank
accounts.
• Effectiveness and robustness: FlowScope outperforms

state-of-the-art baselines under various graph topologies,
by accurately catching ML in an earlier stage (i.e. when
less volume of illegal money is injected, see Fig. 3a). And
FlowScope effectively detects adversarial ML when using
more fraudulent accounts, and longer transfer chains (see
Fig. 3c and 2d).
• Scalability: FlowScope is near-linear with the number

of edges (i.e. transfers, see Fig. 5b), thus being well-suited
to the rapid growth of the banking sector.

Our algorithm is reproducible, and open-sourced 1.

1See code in https://github.com/aplaceof/FlowScope

Related Work

The common approaches used for anti-ML are rule-based
classification. (Rajput et al. 2014) presented an ontology-
based expert system to detect suspicious transactions.
(Khanuja and Adane 2014) monitored ongoing transactions
and qualified the degree of anomaly by Dempster Shafer
Theory. However, rule-based algorithms are easy to be
evaded by fraudsters.

Machine learning algorithms are also applied for detect-
ing ML activities. SVM was applied in (Tang and Yin 2005)
to process large size of data and achieved higher accuracy.
(Michalak and Korczak 2011) used fuzzy matching to catch
subgraphs that may contain suspicious accounts. (Lv, Ji, and
Zhang 2008) judged whether the capital flow is involved in
ML activities using RBF neural networks calculating from
time to time. And (Paula et al. 2016) also showed some suc-
cess for using deep neural networks. However, these algo-
rithms detect the ML activities in a supervised manner, suf-
fering from highly skewed labels and limited adaptability.
Additionally, ML detection is usually an adversarial task,
and deep models may lack robustness under adversarial at-
tacks. We propose to detect ML activities in an unsupervised
manner based on graphs.

In many areas, data objects are inherently interrelated.
Graphs provide a powerful mechanism to capture this as-
sociation (Akoglu, Tong, and Koutra 2015). Many graph-
based anomaly detection techniques have been developed
for discovering structural anomalies. SpokEn (Prakash et al.
2010) studied patterns in eigenvectors, and was applied for
anomaly detection in (Jiang et al. 2014) later. Fraudar (Hooi
et al. 2016) proposed a suspiciousness metric which consid-
ers on the density of subgraph, and EigenPulse (Zhang et al.
2019) detects the dense subgraph in the streaming graphs.
D-Cube (Shin et al. 2017) considers the dense subtensor
problem regarding all dimensions, and CatchCore (Feng,
Liu, and Cheng ) solves this problem in a Hierarchical way,
while D-Spot (Yikun et al. 2019) catches high density on a



subset of all dimensions in tensors. HoloScope (Liu, Hooi,
and Faloutsos 2017) (Liu, Hooi, and Faloutsos 2018) pro-
posed contrast suspiciousness, focused on the strange behav-
ior which was far normal patterns. RRCF (Guha et al. 2016)
tries to preserve pairwise distance, which is very useful for
reducing false alarm. However, as these are general-purpose,
they do not focus on flow across multiple nodes, which is
important for accuracy and robustness against camouflage
in the ML activities.

For ML detection, (Dreżewski, Sepielak, and Filipkowski
2015) and (Colladon and Remondi 2017) utilized social net-
work analysis to reveal the underlying roles and organization
structure. Clustering-based method (Le Khac and Kechadi
2010) detected ML activities by grouping transactions into
clusters. However, those methods do not perform flow track-
ing, or provide theoretical guarantees.

Problem Formulation
To conceal funds, money launderers make fraudulent trans-
fers from source accounts to destination accounts, through
one or many layers of middle accounts. In general, the ML
process involves high money flow passing through a bank or
a series of banks, we use “bank” in the following to refer a
bank or a collection of banks that ML detection is performed
on. We then assume that ML has the following traits:
Trait 1 (dense transfers). Fraudsters create a high-volume
and dense subgraph of transfers both into the bank and out
of the bank.

This is because the number of fraudulent accounts is lim-
ited, and a high volume of funds need to be transferred into
the bank and out of the bank in a short span of time, resulting
in a dense subgraph of transfers.
Trait 2 (zero out middle accounts). The middle accounts
serve as a bridge: most of the received money will be trans-
ferred out, resulting in a balance between their weighted in-
degree and outdegree.

This is because the money left in the middle accounts is
subject to risk for fraudsters of being detected and frozen,
particularly if the volume is high. Thus fraudsters leave as
little money as possible in these accounts.

Algorithms which focus on individual transfers, e.g.
feature-based approaches, can be easily evaded by adver-
saries by keeping each individual transfer realistic. Instead,
for the sake of robustness against adversarial camouflage,
we focus on combinations of high-volume transfers into the
bank, internal transfers through several middle accounts, and
out of the bank, which cannot be as easily hidden by the
fraudsters, as follows:
Problem 1 (ML detection). Given a money transfer graph
G = (V, E), with accounts as nodes V , and transfers as
edges E ,

Find: a dense flow of money transfers (i.e. a subgraph of
G),

Such that:
- 1) the flow involves high-volume money transfers into

the bank, and out of the bank to the destinations;
- 2) it maximizes density as defined in our ML metric.

The design of the ML metric is very important, because,
as we will show, it allows us to offer theoretical guarantees
on the near-optimal detection of the dense flow, and an upper
bound on the amount of money that fraudsters can transfer.

Table 1: Notations and symbols

Symbol Interpretation

W Inner accounts of the bank
X , Y Outer accounts mainly transferring money

into or receiving money transfers out of
the bank

G = (V, E) Tripartite graph of transfers in the bank
V Nodes of graph G, i.e. X ∪W ∪ Y
S Node subset of graph G, i.e. A ∪ M1 ∪
· · · ∪Mk−2 ∪ C

eij Total amount of money on edge (i, j)
di, d+i , d−i Degree (weight), out-degree, in-degree of

node
fi(S), qi(S) Minimum and maximum of node’s out-

degree and in-degree, ∀vi ∈Ml

wi Weight assigned to a node in priority tree
S∗ Optimal subset of nodes maximizing met-

ric
Ŝ Subset returned by FlowScope
S ′ Subset just before removing node v∗ ∈

S∗ in the next step by FlowScope
g(S) Metric of ML anomalousness

In general, let graph G = (V, E) be a graph money trans-
fers. Define V = X ∪W∪Y , whereW is the inner accounts
of the bank, and X and Y are sets of outer accounts. X is the
set of accounts that have net transfer of money into the bank,
and Y is the set of accounts that have net transfer out of the
bank. An edge (i, j) ∈ E indicates that account vi transfers
money into vj , for vi, vj ∈ V , and eij is the total amount
of money transferred on the edge. Table 1 summarizes the
main notations and symbols used in our paper.

Proposed metric
Intuitively, high-volume flows of funds among a small num-
ber of accounts become dense subgraphs of this multipar-
tite graph. Fraudsters may transfer through multiple layers
of middle accounts, making the internal transfers more real-
istic to evade detection.

We next define how to evaluate the anomalousness of a
subgraph induced by subset of nodes. For example, money
transfers may follow a k-partite subgraph induced by subset
of nodes S = A ∪ M1 ∪ · · · ∪ Mk−2 ∪ C, where A ⊆
X ,Mi ⊆ W , C ⊆ Y . Note thatM1, · · · ,Mk−2 can have
overlapped middle nodes to consider cyclic transfers during
ML as camouflage. In terms of detecting suspicious 3-partite
subgraph induced by subset S, we neglect the subscript of
subsetMi, thus S = A ∪M∪ C, whereM⊆W .

Nevertheless, using a high number of middle layers and
disguised cyclic transfers will definitely increase fraudsters’
costs and risks in being caught by an audit. Therefore, for
limited k, we then describe how we represent the original



transfer graph G for detecting k-partite dense subgraphs.
We simply duplicate W by k − 2 times between source

nodes X and destination nodes Y:

Vk = X ∪W ∪ · · · ∪W︸ ︷︷ ︸
k−2

∪ Y

for convenient we define W0 = X , Wk−1 = Y . Next, our
ML metric is defined as follows for spotting k-partite dense
flow. First define eij as the total amount of money transfers
from vi to vj , and define the total (weighted) out-degree and
in-degree of node vi ∈ Ml, l ∈ {1, 2, ·, k − 2}, w.r.t. node
subset S:

d+i (S) =
∑

vj∈Ml+1∧(i,j)∈E

eij

d−i (S) =
∑

vk∈Ml−1∧(k,i)∈E

eki

Next we define the minimum and maximum value be-
tween total weighted out-degree and in-degree of a middle
account, w.r.t. node subset S:

fi(S) = min{d+i (S), d
−
i (S)}, ∀ vi ∈Ml (1)

qi(S) = max{d+i (S), d
−
i (S)}, ∀ vi ∈Ml (2)

Next, our ML metric is defined as follows for spotting k-
partite dense flow:

Definition 1 (Anomalousness of ML for k-partite subgraph).
The anomalousness of a flow from a subset of nodes A,
through one layer or many layers of inner accounts M, to
another subset C is:

gk(S) = 1

|S|

k−2∑
l=1

∑
vi∈Ml

fi(S)− λ(qi(S)− fi(S)) (3)

=
1

|S|

k−2∑
l=1

∑
vi∈Ml

(1 + λ)fi(S)− λqi(S), k ≥ 3

(4)

Intuitively, fi(S) in Eq. (3) is the maximum possible flow
that could go through middle account vi ∈ M, from ac-
counts A to accounts C. qi(S) − fi(S) is the “remaining
money” in vi’s balance after transfers, which can be penalty
of ML, since fraudsters prefer to zero out middle accounts as
Trait 2. The “remaining money” could be retention or deficit
(i.e. received from others than A and C) of middle accounts,
occurring as a form of camouflage to evade detection.

The numerator in the objective (3) only uses the degree
of middle accounts M1, · · · ,Mk−2, since out-degree and
in-degree of middle accounts are related to themselves and
those of source nodes A and target nodes C.

Interpretation of λ and our metric: We define λ as the im-
balance cost rate, a constant coefficient which quantifies to
what extent the fraudsters would suffer due to a unit of reten-
tion or deficit (cost of camouflage). Now our anomalousness
metric g(S) can be interpreted as the potential profit, i.e.
earnings subtracted by cost, per account that the fraudulent
accounts in subset S could make in a ML process.

Example 1 (Anomalousness of ML in a subgraph). Fig. 1
illustrates an example of ML from real-world bank. The sizes
of nodes sets, A,M and C, are 4, 12, 2 separately. v5 both
receives and transfer out money of about 452.1 million Yuan,
leaving q5(S)− f5(S) ≈ 0 in balance. So there is basically
no money is left over in v5, or borrowed from outside or
previous deposits. As we can see, our anomalousness metric
captures the characteristics of real-world ML.

As we can see, this example also agrees with Trait 1 and
Trait 2 as mentioned before. The carefully designed met-
ric also has the following advantages: a) scalable, and b)
offers theoretical guarantees, which means a scalable algo-
rithm can be designed for the metric, and the approximation
algorithm provides theoretical bounds to optimality, as we
will show later.

Moreover, the metric (4) measures the “density” not only
by considering the topology density, but also based on the
volume of money transferred i.e. weighted edges. Thus, even
if high volumes of money are transferred along a sparse
topology, those transfers will be very suspicious in our pro-
posed metric.

Proposed algorithm: FlowScope
We propose a near-greedy algorithm, FlowScope, to find
subset S that maximizes the objective g(S) in (3). We first
build a priority tree for nodes in S. The weight (i.e. priority)
assigned to node vi is defined as:

wi(S) =

fi(S)−
λ

1 + λ
qi(S), if vi ∈Ml

di(S), if vi ∈ A ∪ C
(5)

where di(S) is the degree of node itself. Note that we can
also add prior anomalousness as a weight to wi(S) for ap-
plications.

The algorithm is described in Alg 1. After building the
priority tree, we perform the near greedy optimization: sub-
set S starts at the whole node set; in every iteration we re-
move the node v in S with minimum weight in the tree, ap-
proximately maximizing objective (3); and then we update
the weight of all its connected nodes. The iteration is re-
peated until one of node setsA,M1, · · ·,Mk−2, C is empty.
Finally, the subset Ŝ that we have seen with the largest value
g(Ŝ) is returned. The complexity of FlowScope for k-partite
flow is O(k|E|log|V|) 2.

In a real-world setting, we have no prior knowledge on
how many middle layers are used by fraudsters. However,
too many steps of transfers also raise the risks and costs.
So it is possible that we give an upper bound K. To detect
multi-step laundering, we then try every possible k up to at
most K, and return the subset maximizing the follows:

S∗, k∗ = arg max
S,k≤K

{gk(S)}

In terms of detecting another dense subgraphs, we can
simply remove the previous one, and rerun our algorithm.

2See complexity analysis and all proofs in the supplement:
https://github.com/aplaceof/FlowScope/blob/master/FlowScope-
supplement.pdf



Algorithm 1: FlowScope
Input: Graph G = (V, E)
Output: Node set of dense tripartite flow: Ŝ

1 A← X ,M1 ←W , · · · ,Mk−2 ←W , C ← Y
// generate k-partite node
subsets from G

2 S ← A ∪M1 ∪ · · · ∪Mk−2 ∪ C
3 wi ← calculate node weight as Eq. (5)
4 T ← build priority tree for S with wi(S)
5 while A,M1, · · · ,Mk−2 and C is not empty do
6 v ← find the minimum weighted node in T
7 S ← S \ {v}
8 update priorities in T for all neighbors of v
9 g(S)← calculate as Eq. (3)

10 end
11 return Ŝ that maximizes g(S) seen during the loop.

Moreover, the algorithm is near-greedy, yet provide a theo-
retical guarantee to approximate the optimal as we will show
below.

Theoretical Analysis
For simplicity, we analyze FlowScope theoretically in case
of three transfer layers. First of all, we show two lemmas
derived from our algorithm before showing the theoretical
bound 2 .

Let S∗ = A∗ ∪M∗ ∪ C∗ be the optimal subset. Then we
have

Lemma 1. ∀vi ∈ S∗, then (1 + λ)wi(S∗) ≥ g(S∗).
Lemma 2. ∀vi,S ′ such that vi ∈ A∗ ∪ C∗ and S∗ ⊆ S ′,

then wi(S ′) ≥ wi(S∗);
∀vi,S ′ such that vi ∈M∗ and S∗ ⊆ S ′,
then wi(S ′) ≥ wi(S∗)− λ

λ+1 (qi(S
′)− qi(S∗)).

Lemma 1 provides a lower bound of the weight of nodes
in the optimal subset. Lemma 2 shows the relationship be-
tween the weight of a particular node measured in the graph
over optimal set S∗ and its weight in the graph over the
larger superset S ′.

Now let S ′ be the subset just before the first node vi ∈ S∗
was removed, and Ŝ be the subset returned by FlowScope.
Thus, the theoretical bound that our FlowScope algorithm
can achieve is:

Theorem 1 (Theoretical Bound). Given graph G and
anomalousness metric of ML g(S), the subset Ŝ returned
by FlowScope satisfies:

g(Ŝ) ≥ |M
′|

|S ′|
(g(S∗)− λε) (6)

In formula (6), ε = maxvi∈S∗{qi(V) − qi(S∗)} i.e. the
highest volume of money transfers that a laundering account
vi ∈ S∗ sends to or receives from other non-fraudulent
accounts as possible camouflage. Note that the volume of
camouflage ε usually cannot be as large as the volume of
fraudulent transfers. Camouflage is much smaller, otherwise

fraudsters take too much cost and risk for camouflage. Coef-
ficient |M

′|
|S′| = (1+ |A

′|+|C′|
|M′| )−1 cannot be arbitrarily small,

because |M′|≥ |M∗| as ML fraudsters use many middle
accounts. Since vi ∈ S∗ at the same time is the next node
removed from S ′ by FlowScope, then ∀vj ∈ A′ ∪ C′ sat-
isfies: wj(S ′) ≥ wi(S ′) ≈ wi(S∗) ≥ minvj∈S∗{wi(S∗)},
assuming that a small amount or none of money transfers are
used as camouflage. Hence such nodes are limited in a real
transfer graph, and |A′|+|C′| cannot be very large.

Next we show that the limited bound (6) holds:

Theorem 2 (Bounding Money Laundering). Suppose Ŝ is
the subset returned by FlowScope. The maximum amount
of money that may be laundered per account in our dataset
without being detected is given by:∑

vi∈S∗ fi(S
∗)

n0
≤ 1

1− λη
(
|S′|
|M ′|

g(Ŝ) + λε)

where n0 is the number of accounts used by fraudsters, ε
denotes the maximum amount of transfer to non-fraudulent
accounts as we expected in a particular account that gets
involved in ML, and η denotes the deficit or retention, the
criminals, if exist, are suffering as a percentage of dirty
money laundered:

η =

∑
vi∈S∗(qi(S

∗)− fi(S∗))∑
vi∈S∗ fi(S

∗)
, η ∈ [0,

1

λ
]

Theorem 2 provides an estimation of the amount of
money that could be laundered per account in our dataset
without being detected, and gives the formulation as a func-
tion of the retention or deficit fraudsters can tolerate and
the amount of transfer to other non-fraudulent accounts they
have.

Experiments
The datasets used are summarized in Table 2, CBank
dataset: Real-world transfer data from an anonymous bank
under an NDA agreement, with a group of money launder-
ing accounts being labeled, and the accounts opened in other
banks are labeled. Czech Financial Dataset (CFD): An
anonymous transfers of Czech bank released for Discovery
Challenge in PKDD’99 (Lütkebohle ).

To evaluate our FlowScope under various money launder-
ing behaviors, we inject ML as follows: fraudulent accounts
are randomly picked from V as the multipartite groups, e.g.
A,M and C. Denote the total number of injected accounts as
N . The edges between each group are randomly generated
with probability p. The total amount of laundering money
D, starting from A, throughM, to C, is assigned to gener-
ate edges proportional to Gaussian distribution (mean = 10
and std = 1). The balance of accounts inM is kept accord-
ing to the total in-degree of each node. Camouflage edges
are randomly connected to normal accounts, with amount of
money for each edge uniformly generated from 100 to 1000.
Note that we remove labeled fraudsters in CBank when per-
forming injection experiments.

The evaluation of our FlowScope is organized accord-
ing to the following four questions: effectiveness, real-world
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Figure 3: FlowScope outperforms baselines robustly under different adversarial densities by descending amount of money or ascending # of
accounts. In Fig. 3a-3b, we keep # of accounts as (7,5,3), and evaluate on different amount of money. FlowScope can detect earlier ML,
i.e. the detection reaches high accuracy when fraudsters launder a smaller amount of money. In Fig. 3c- 3d, we keep amount of money as 6
billion and 210 million separately, and evaluate on different # of accounts with ratio 7:5:3. Other possible # of accounts and ratios are tested
in our result table.

Datasets #Nodes #Edges Time Span

CBank
6.13M

43.98M Aug.07,2017 -
Aug.13,20170.99M,3.15M,

1.99M

CFD 11.38K 273.51K Jan.01,1993 -
Dec.31,1998

Table 2: The statistics of the real-world datasets.

performance, robustness against longer transfer chains and
scalability 3.

Effectiveness: one middle layer (Q1)
We first conduct an experiment on a synthetic dataset show
in Fig. 2a-2b. The two adjacency matrices of transfer sub-
graphs are generated by SNAP network library (Leskovec
and Faloutsos 2007). Hyperbolic and rectangular blocks
have volume density around 0.8 and 0.7 respectively. Thus
we can see that FlowScope detects exactly the fraudulent
blocks, while other baselines return parts of two discon-
nected hyperbolic blocks, which is thought to be normal
communities (Araujo et al. 2014).

In the real scenario, the crimes can make arbitrary of
topology with the respect of A, M and C accounts to de-
ceive the anti-ML system. So fraudsters are injected with a
lot of variants to check the robustness of the algorithm in
this experiment 4.

The influence of the amount of money: In this experi-
ment, given sizes of A,M, C and edge probabilities fixed,
we increase the amount of injected money laundered step
by step while fixing the other conditions. The results were
shown in Fig. 3a-3b, in both cases, FlowScope detects the
ML behavior early and accurately, and the methods based
on bipartite graph are unable to catch suspicious tripartite
dense flow in the graph. RRCF (Guha et al. 2016) gives the

3RRCF is only compared in a smaller size of CFD dataset, be-
cause of the efficiency problem.

4We abbrev (|A|,|M|, |C|) = (a,m,c) as sizes=(a,m,c) and
(|A|:|M|: |C|) = (a:m:c) as ratio=(a:m:c).

lowest performance on the injected experiment, as it gener-
ally catches the largest amount of money transferred natu-
rally within the bank. HoloScope is also overly influenced
by such large amount of transfers due to its definition of the
‘contrast suspiciousness’ measure.

The influence of the number of fraudulent accounts:
Another possible case is that the money launderers try to em-
ploy as many as people possible to disperse the dirty money,
making the ML behavior much harder to detect. In this ex-
periment we increase the number of fraudsters while keep-
ing other conditions unchanged. The value of the amount of
injected money D over the total number of fraudsters N ,
i.e. density(by the number of accounts) is used as horizontal
axis in Fig. 3c-3d, which illustrate FlowScope’s effective-
ness and robustness against large ML groups.

Summary comparisons in table: We summarize the com-
parison results in transfer data of CBank and CFD in Ta-
ble 3. We use a slash ‘/’ to separate results from two kinds
of injections in the table for saving space: 1) Varying amount
of money injected: injection of different volumes of money,
from 300 million to 3 billion, given fixed number of accounts
in each layer. For example, in the row of 7:5:3, we inject
money laundering through 7, 5, and 3 accounts in the respec-
tive layers; 2) Varying # of accounts injected: injection of
different # of accounts given a fixed volume of money, e.g.
in the row of 7:5:3, we inject (7, 5, 3) fraudulent accounts in
the respective layers, then (14, 10, 6), and so on.

Then two metrics are evaluated for comparison. FAUC:
the areas under curve of F-measure as in Fig. 3. We nor-
malize the density in horizontal axis to scale FAUC between
0 and 1. Higher FAUC indicates better performance. ‘F1 ≥
0.9’: the lower bound of money volume (in million $) or
upper bound of account size such that the F-measure curve
stays above or equal to 0.9, as low volume of money and
large size of accounts can reduce detection accuracy.

Thus we can see from the table, FlowScope achieves the
best results at most of the settings, indicating earlier and
more accurate detection for more fraudulent accounts than
baselines, which has better results when the ratio is 7:5:3.



Dataset metrics* A:M:C D-Cubeari D-Cubegeo Fraudar HoloScope SpokEn RRCF FlowScope

CBank

FAUC

5:9:1 0.417 / 0.600 0.591 / 0.810 0.347 / 0.634 0.276 / 0.466 0.610 / 0.753 - / - 0.633 / 0.800
5:5:5 0.502 / 0.658 0.501 / 0.709 0.467 / 0.683 0.379 / 0.655 0.598 / 0.708 - / - 0.757 / 0.843
7:5:3 0.533 / 0.727 0.522 / 0.779 0.529 / 0.704 0.377 / 0.547 0.633 / 0.708 - / - 0.761 / 0.843

(million $ / node size)

5:9:1 190 / 30 - / 45 - / 30 210 / 15 154 / 30 - / - 132 / 75
F1 ≥ 0.9 5:5:5 150 / 45 - / 45 - / 42 - / 30 116 / 45 - / - 84.0 / 90

7:5:3 175 / 30 166 / 54 180 / 33 - / 15 122 / 30 - / - 76.0 / 90

CFD

FAUC

5:9:1 0.498 / 0.577 0.528 / 0.577 0.409 / 0.770 0.125 / 0.773 0.716 / 0.894 0.253 / 0.538 0.939 / 0.877
5:5:5 0.565 / 0.633 0.592 / 0.736 0.549 / 0.867 0.143 / 0.810 0.716 / 0.897 0.236 / 0.364 0.962 / 0.900
7:5:3 0.580 / 0.734 0.520 / 0.725 0.593 / 0.826 0.0356 / 0.818 0.728 / 0.898 0.213 / 0.434 0.970 / 0.900

(million $ / node size)

5:9:1 2.21 / 15 2.19 / 15 - / 60 3.52 / 60 1.71 / 120 - / 15 0.400 / 150
F1 ≥ 0.9 5:5:5 1.87 / 30 2.05 / 30 - / 150 - / 75 1.23 / 150 - / 15 0.240 / 150

7:5:3 - / 30 - / 30 - / 120 - / 60 1.46 / 135 - / 15 0.240 / 150

Table 3: Experimental results. The results of injected different volumes of money and # of accounts are reported in one cell separated by ‘/’.
And ’-’ in the table means never returning a possible solution either in limited time or injection density.

Real-world performance (Q2)
Our CBank dataset contains labeled ML activity: based on
the A to M to C ML schema, the number of each type of
accounts is 4, 12, 2 as shown in Fig. 1. We test how ac-
curately and early, we can detect the fraudsters in CBank
dataset. To do this, we first scale down the percentage of
dirty money laundered from source accounts to destination
accounts, then gradually increase the volume of money laun-
dering linearly back to the actual value in the dataset. As
shown in Fig. 2c, our FlowScope is the earliest to catch the
ML behaviors accurately, as the total volume of dirty money
is roughly 10% lower than other baselines given the same
accuracy, and is the only algorithm catching the exact ML
fraudsters.

Robustness against longer transfer chains (Q3)
Further, we investigate the case where the criminals trans-
fer the dirty money using two levels of middle accounts,
which is much more difficult to detect. The injection is made
in the same way for the two groups of middle accounts.
As illustrated in Fig. 2d (setting sizes=(3,7,7,3) and p=0.6
in CBank data) and Fig. 4a-4b, for different sizes of the
transfer groups. The results show that even when ML has
longer transfer chains, our algorithm by far outperforms the
baselines, indicating FlowScope’s ability to catch suspicious
multi-step flow of money transfers.
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(a) CBank: Transfer chains of
(5,5,5,5)
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(b) CBank: Transfer chains of
(2,8,8,2)

Figure 4: FlowScope is robust against longer transfer chains.

Sensitivity and Scalability (Q4)
Sensitivity: FlowScope is not sensitive to constant coeffi-
cient λwithin reasonable range (see Fig. 5a ). We hence set λ
to 4.0 for all our experiments as we assume 1/λ= 0.25 is the
highest rate of retention or deficit as camouflage that fraud-
sters can afford. We conduct experiments on CBank with
ground-truth labels with a series of λ fixing the other condi-
tions. FAUC is measured for each λ. As illustrated in Fig. 5a,
FlowScope is not sensitive to λ within a reasonable range.
Scalability: We use the CBank dataset by accumulating time
by hours, to get increasing-size data. As Fig. 5b shows,
FlowScope is nearly linear with the number of edges.
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(a) FlowScope is stable for a
reasonable range of λ.
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Figure 5: Model analysis of FlowScope.

Conclusion
In this paper, we model the money laundering problem as
detecting the densest multi-step flow, and define a novel
density metric. An algorithm FlowScope is proposed for
searching dense flow in big transaction graphs from banks
accurately yet efficiently. We propose a novel anomalous-
ness metric for dense multipartite flow. FlowScope offers
theoretical guarantees on the near optimal detection of the
dense flow. Experiments demonstrate the effectness of
FlowScope’s utility in detecting money laundering, as it
outperforms state-of-the-art baselines under various exper-
iment settings. Meanwhile, FlowScope is near-linear with
the number of transactions. The code is open-sourced for
reproducibility.



Acknowledgments
This material is based upon work supported by the Strategic
Priority Research Program of CAS (No. XDA19020400),
the National Natural Science Foundation of China (No.
61772082), the Beijing Municipal Natural Science Foun-
dation (4182043), the NFS of China (No. 91746301,
61772498, 61872206), and the Beijing NSF (No. 4172059),
and the Tencent Open Fund.

References
Akoglu, L.; Tong, H.; and Koutra, D. 2015. Graph based
anomaly detection and description: a survey. Data mining
and knowledge discovery 29(3):626–688.
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