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ABSTRACT
There is a surge of community detection of complex net-

works in recent years. Different from conventional single-
objective community detection, this paper formulates com-
munity detection as a multi-objective optimization problem
and proposes a general algorithm NSGA-Net based on evolu-
tionary multi-objective optimization. Interested in the effect
of optimization objectives on the performance of the multi-
objective community detection, we further study the correla-
tions (i.e., positively correlated, independent, or negatively
correlated) of 11 objective functions that have been used
or can potentially be used for community detection. Our
experiments show that NSGA-Net optimizing over a pair
of negatively correlated objectives usually performs better
than the single-objective algorithm optimizing over either
of the original objectives, and even better than other well-
established community detection approaches.
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1. INTRODUCTION
Recently a large amount of research has been devoted

to the task of defining and identifying communities in so-
cial and information networks. Loosely speaking, commu-
nities are groups of nodes that are densely interconnected
but only sparely connected with the rest of the network [3].
To extract such groups of nodes, one typically chooses an
objective function that captures the intuition of a commu-
nity as a group of nodes with better internal connectivity
than external connectivity. As a consequence, the commu-
nity detection problem (Ω, O) can be formally defined as
a Single-objective Optimization Problem (SOP): determine
the partition C∗ for which

O(C∗) = min
C∈Ω

O(C) (1)

where Ω is the set of feasible partitions, C is a community
structure of a given network G and O : Ω → R is an ob-
jective function. Without loss of generality, we assume O is
to be minimized. Most conventional community detection
algorithms are based on the SOP. Different algorithms vary
in the objective function O and optimization techniques.

These single-objective community detection algorithms have
been widely applied to both artificial and real problems.
However, they also face some fundamental difficulties. These
single-objective algorithms attempt to optimize just one ob-
jective function and this confines the solution to a particular
community structure property. Moreover, these algorithms
may fail when the optimized objectives are inappropriate.
In addition, one single fixed community partition returned
by the single-objective algorithms may not be suitable for
the networks with multiple potential structures (e.g., hier-
archical and overlapping structures).

It might be more natural and reasonable to consider the
community structure from different angles (i.e. multiple op-
timized objectives ) at the same time. That is, in the multi-
objective community detection problem (Ω, O1, O2, · · · , Ot),
we aim to discover the community structure C∗ for which

O(C∗) = min
C∈Ω

(O1(C), O2(C), · · · , Ot(C)) (2)

where t is the number of objectives andOi represents the i-th
objective. With the introduction of multi-objective, there is
usually no single best solution for this optimization task, but



instead, the notion of Pareto optimality should be embraced.
For two partitions C1, C2 ∈ Ω, the partition C1 is said to
dominate the partition C2 (denoted as C1 � C2) if and only
if

∀i ∈ {1, · · · , t} Oi(C1) ≤ Oi(C2)

∧ ∃i ∈ {1, · · · , t} Oi(C1) < Oi(C2)
(3)

A partition C ∈ Ω is said to be Pareto optimal if and only
if there is no other partition dominating C. The set of all
Pareto optimal partitions is the Pareto optimal set and the
corresponding set in the objective space is called the non-
dominated set, or Pareto front.

Compared to single-objective approaches, the multi-objective
community detection has many advantages. (1) The optimal
solutions of the single-objective community detection prob-
lems defined by (Ω, O1), · · · , (Ω, Ot) are always comprised
by the Pareto optimal set of the multi-objective problem
defined by (Ω, O1, · · · , Ot). (2) The multiple objectives can
measure characteristics of community structure from differ-
ent angles, and thus it helps to avoid the risk that one single
objective may only be suitable to a certain kind of networks.
(3) The multi-objective community detection usually returns
a set of community partitions according to the multiple op-
timized objectives. These community partitions reveal com-
munity structure from different angles, which help to dis-
cover complex and comprehensive community structures.

In order to effectively solve the Multi-objective Optimiza-
tion Problem (MOP), we propose a general solution, NSGA-
Net, which simultaneously optimizes multiple objective func-
tions with an evolutionary algorithm. As a general multi-
objective community detection solution, NSGA-Net can op-
timize over any multiple objective functions. For this new
community detection paradigm, one important issue is that
what type of objective functions should be optimized to im-
prove the accuracy of community partition. To solve this
issue, we first study correlation relations among 11 popu-
lar objective functions and divide the relations between any
two objective functions into three categories: positively cor-
related, independent, and negatively correlated. Then we
compare NSGA-Net optimizing over six pairs of objective
functions from these three types of correlations (two pairs
for each type) to a SOP based approach optimizing over
the original single objective. Experiments demonstrate that
NSGA-Net only with negatively correlated objectives usu-
ally leads to a better performance than that can be achieved
by any of the original objectives. We also show that with a
pair of negatively correlated objectives, the NSGA-Net per-
forms better than most conventional community detection
algorithms.

2. NSGA-NET
In order to effectively solve the multi-objective community

detection problem, we propose the NSGA-Net solution based
on Evolutionary Algorithm (EA). EA has been proven to be
an effective method for MOP. Evolutionary Multi-objective
Optimization (EMO) has become one of the main research
fields in the EA community, which has also been applied
in data mining [11]. Conventional EMO algorithms are de-
signed for numerical optimization problems. When we solve
a real problem with EMO, many components of EA need to
be redesigned.
Multi-objective optimization mechanism. In this paper,

we select NSGA-II [2] as the multi-objective optimization

mechanism in NSGA-Net. Four parameters govern the run
of NSGA-Net: the population size popSize, the running gen-
eration gen, the ratio of crossover croRat and the ratio of
mutation mutRat.

Genetic representation. We apply the locus-based adja-
cency [4] to represent a partition. In this graph-based repre-
sentation, each genotype g consists of n genes g1, g2, · · · , gn
and each gi can take one of the adjacent nodes of node i.
Thus, a value of j assigned to the i-th gene, is then inter-
preted as a link between node i and j. In the resulting
solution, they will be in the same community. The decoding
of this representation requires the identification of all con-
nected components. All nodes belong to the same connected
component are then assigned to one community.

Genetic operation and initialization. The uniform two-
point crossover is employed. In the mutation operation,
NSGA-Net randomly selects some genes and assigns them
with other randomly selected adjacent nodes. In the ini-
tialization process, we randomly generate some individuals.
For each individual, each gene gi randomly takes one of the
adjacent nodes of node i.

Model selection. NSGA-Net returns a set of solutions,
which provides Decision Makers (DMers) with more choices.
Sometimes DMers may desire that the set of candidate solu-
tions could be narrowed down to those of most interest. In
this paper, we therefore propose the novel Max-Min Distance
model section method to select one single recommendation
solution from the Pareto front. Inspired by Gap statistic [4],
the Max-Min Distance method selects the solution model
that mostly deviates from the null models generated by
NSGA-Net by running on random networks with the same
distribution. Concretely, NSGA-Net firstly runs on the real
network and randomly generated networks with the same
scale. Thus the optimal solution set on the real network
(called CandSet) and the corresponding random network
(called RandSet) can be obtained, respectively. For each
solution in CandSet, we calculate the minimum-distance
with solutions in RandSet, and then we select the solution
in CandSet with the maximum minimum-distance as the
recommendation solution. Here, Euclidean distance is em-
ployed. Intuitively, the recommendation solution is the most
different one from the solutions in RandSet.
Objective function. Still NSGA-Net has an important

component unsolved: objective functions. As a general multi-
objective community detection solution, NSGA-Net can ap-
ply any multiple objective functions. With NSGA-Net, we
will examine the general performance of the multi-objective
community detection. Furthermore, we explore what type
of objectives is suitable for the multi-objective paradigm.

3. PERFORMANCES OF MULTI-OBJECTIVE
COMMUNITY DETECTION

3.1 Objective Functions
Many objective functions have been proposed to capture

the intuition of communities. We summarize 11 objective
functions that are already widely used in community detec-
tion literatures or can be potentially used for community
detection.

• Conductance (Q1) measures the fraction of total edge volume
that points outside the cluster [6].

• Expansion (Q2) measures the number of edges per node that
point outside the cluster [6].
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Figure 1: Pearson correlative coefficients of the 11
objectives. 1-11 represent the objective functions
O1 −O11, respectively.

• Cut Ratio (Q3) is the fraction of all possible edges leaving the
cluster [6].

• Normalized Cut (Q4) is the normalized fraction of edges leaving
the cluster [6].

• Maximum-ODF(Out Degree Fraction) ((Q5)) is the maxi-
mum fraction of edges of a node pointing outside the cluster [6].

• Average-ODF (Q6) is the average fraction nodes’ edges pointing
outside the cluster [6].

• Flake-ODF (Q7) is the fraction of nodes in S that have fewer
edges pointing inside than to the outside of the cluster [6].

• Q (Q8) measures the number of within-community edges, relative
to a null model of a random graph with the same degree distribution
[8].

• Description Length (Q9) is the number of edges between the
community i and j. The objective regards the community as a optimal
compression of network’s topology [7].

• Community Score (Q10) measures the density of a sub-matrices
based on volume and row/column means [9].

• Internal Density (Q11) is the internal edge density of the cluster
[6].

We roughly classify the objective functions into three cat-
egories. The first category contains the first four objectives
from graph theory community, which are called the cut-
based objectives. The three objectives ended with ”ODF”
are called the degree-based objectives. Finally, the remain-
ing objectives are classified into one category. These objec-
tive functions come from different research fields, such as
graph theory and physics. All these objectives attempt to
capture a group of nodes with better internal connectivity
than external connectivity, and thus they all can be poten-
tially used in community detection.

3.2 Objective Correlations
We can observe that the definitions of some objectives

are similar, such as the cut-based objectives. Namely, these
objectives are correlated. Here we apply the Pearson cor-
relation coefficients to describe their relations. Because it
is difficult to analyze their correlations from the definitions
directly, we perform experiments to estimate the Pearson
correlation coefficients. The experiments are done with the
following steps. (1) For a given network, we generate a set
of random partitions. (2) For each partition, we calculate
the values of the different objective functions. Thus each
objective function has a vector of random samples. (3) We
estimate the Pearson correlation coefficients among these
objective vectors. (4) In order to reduce the estimation vari-
ance, we repeat step 1 to 3 many times and get the average
values.

The results are illustrated in Figure 1. We can observe
that the cut-based objectives are highly correlated (espe-
cially O1 − O3). It is the same case for the degree-based
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Figure 2: The NMI comparison of NSGA-Net opti-
mizing over three types of objective functions (i.e.,
positively correlated, independent, negatively corre-
lated) and GACD optimizing over original single ob-
jectives on artificial networks. The larger the NMI,
the better the performance.

objectives. In addition, we notice that InternalDensity is
negatively correlated with Q and CommunityScore. The
relations of these objectives can be roughly classified into
three categories in terms of their correlation coefficients:
positively correlated (e.g., {O1, O2, O3, O4}, {O5, O6, O7},
{O8, O9, O10}), independent (e.g., {O1, O8}, {O1, O10}, {O4, O9}),
and negatively correlated (e.g., {O8, O11}, {O10, O11}).

3.3 Performance Effect of Objective Selection
In this section, we will test the performances of the multi-

objective community detection method (i.e., NSGA-Net) and
find what kind of objectives are suitable for the method.
Here we only consider two objectives, rather than more ob-
jectives, in order to focus on the effectiveness of the multi-
objective method and reduce the complexity. From each
of the three categories of objective correlations, we select
two pairs as the optimized objectives in NSGA-Net. Par-
ticularly, for the positively correlated objectives we choose
{O1, O2}, {O8, O9}; the independent objectives, {O1, O8},
{O4, O9}; and the negatively correlated objectives, {O8, O11},
{O10, O11}. For the SOP: minC∈Ω O(C), we choose GACD
[12] as the single-objective community detection optimizer.
NSGA-Net is equipped with the same parameters with GACD
for a fair comparison. That is, popSize = gen = 200; croRat =
0.6; and mutRat = 0.4.

We use a popular artificial network with a known commu-
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Figure 3: The comparison of NSGA-Net with a pair
of negatively correlated objectives (i.e., O8 and O11)
with other popular algorithms on artificial networks.

nity structure [5], which has the heterogeneity in the distri-
butions of node degrees and community sizes. Same in ref.
[5], each node in the benchmark graphs share a fraction 1−µ
of its links with the other nodes of its community and a frac-
tion µ with the other nodes of the network. As µ increases, it
becomes harder and harder to identify the community struc-
ture. To compare the built-in modular structure with the
one delivered by different objectives, we adopt the Normal-
ized Mutual Information (NMI), a measure of similarity of
partitions borrowed from information theory [5].

We first run NSGA-Net on the artificial networks. The
comparison results of NSGA-Net optimizing over six pairs
of objectives and GACD optimizing over original single ob-
jectives are shown in Figure 2. When the optimized objec-
tives are positively correlated or independent, NSGA-Net’s
performances have no obvious differences from the perfor-
mances of the optimization on each single objective with
GACD. Most results of NSGA-Net are between those of the
single objectives. However, it is obvious that NSGA-Net
with a pair of negatively correlated objectives has better
performance than the optimization on the original single ob-
jective, since their NMI are larger than those of the single
objective in most conditions.

3.4 Comparison with Other Algorithms
We further validate the performance of NSGA-Net through

comparing it with representative community detection algo-
rithms. NSGA-Net is equipped with a pair of negatively
correlated objectives O8 and O11. Other five algorithms are
included in the experiments. It includes the betweenness-
based heuristic algorithm [8] (named GN) and its improved
version [1] (named GN Fast). The EA-based optimization al-
gorithm [12] (named GACD) optimizes theO8. The information-
theoretic framework based algorithm (named INFO) [7] opti-
mizes the O9. Another multi-objective method MOGA-Net
[10] is also included. In order to obtain one single recommen-
dation solution, MOGA-Net also employs the Max-Min dis-
tance model selection method. NSGA-Net and MOGA-Net
are set as the same parameters with GACD. The benchmark
is the same artificial networks as before.

The experimental results are shown in Figure 3. In most
conditions, NSGA-Net obviously performs better than other
five algorithms including not only the single-objective algo-
rithms but also the multi-objective method, MOGA-Net.
An important difference between NSGA-Net and MOGA-
Net lies in the objective functions. We think the absence
of the sufficient negative correlation between objectives in
MOGA-Net causes its bad performances.

4. CONCLUSION
In this paper, we study the multi-objective community

detection problem and propose a novel solution NSGA-Net.
Aiming to exploit the universal validity of the multi-objective
solution for community detection and its requisition on ob-
jective functions, we first analyze the intrinsic correlations
among 11 objectives. Then we compare the performances of
NSGA-Net optimizing over different types of objectives to
those of a single-objective based approach optimizing over
the original single objective. The experiments show that
NSGA-Net only with a pair of negatively correlated objec-
tives remarkably improve the performance.
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