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ABSTRACT

Multi-view graph clustering, which seeks a partition of the graph

with multiple views that often provide more comprehensive yet

complex information, has received considerable attention in recent

years. Although some efforts have been made for multi-view graph

clustering and achieve decent performances, most of them employ

shallow model to deal with the complex relation within multi-

view graph, which may seriously restrict the capacity for modeling

multi-view graph information. In this paper, we make the first

attempt to employ deep learning technique for attributed multi-

view graph clustering, and propose a novel task-guided One2Multi

graph autoencoder clustering framework. The One2Multi graph

autoencoder is able to learn node embeddings by employing one

informative graph view and content data to reconstruct multiple

graph views. Hence, the shared feature representation of multiple

graphs can be well captured. Furthermore, a self-training clustering

objective is proposed to iteratively improve the clustering results.

By integrating the self-training and autoencoder’s reconstruction

into a unified framework, our model can jointly optimize the cluster

label assignments and embeddings suitable for graph clustering.

Experiments on real-world attributed multi-view graph datasets

well validate the effectiveness of our model.
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1 INTRODUCTION

Graph clustering, aiming to partition a graph into several densely-

connected disjoint communities or groups, is a fundamental task in

graph analysis [17]. Graph clustering techniques have been widely

used in practice, such as group segmentation [5], structure analysis

of communicate network [23], and community detection in social

networks [21]. Most existing graph clustering methods focus on

dealing with only one graph [12, 20]. However, the real world graph

data is far more complex. That is, one usually needs to employmulti-

view graph, rather than single-view graph, to better represent the

real graph data [16], in which each graph view represents one type

of relationship among nodes. Taking the academic network as an

example, one graph view can indicate the co-author relationship,

while another view can be the co-conference relationship. Moreover,

the authors can also be associated with representative keywords

as their attributes. Such complex graphs are usually termed as an

attributed multi-view graph, which models an interaction system in

a complementary and comprehensive way and has a great potential

for more accurate graph clustering.

Regarding attributed multi-view graph clustering, previous work

can be categorized into two types. One type of work lies in graph

analysis based methods [1, 14, 25], which aims to maximize the

mutual agreement across different views so as to partition a graph

into groups. Another stream of work mainly employs graph em-

bedding techniques to learn compact representation of nodes from

multi-view graph data [8, 18, 27], and subsequently, traditional

clustering methods such as k-means is used. These methods have

achieved good performances on many applications. However, such

methods discussed before are both recognized as shallow models,

which have limited capacity to reveal the deep relations in complex

graph data. Moreover, aforementioned methods pay little attention

to the node attribute information.

Recently, Graph Neural Network (GNN) [24], a deep nonlinear

representation learning framework, has shown the powerful perfor-

mance on some graph analysis tasks, such as node classification [6]

and clustering [15]. However, most GNNs are developed for sin-

gle view graph. Also, there are some works which extend GNN

to multi-view setting [4, 9], while they are designed in the semi-

supervised scenario and used for classification task. Despite the

great success of GNN in graph analysis, little effort has been made
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towards exploring GNN for unsupervised attributed multi-view

graph clustering task until now.

It is not a trivial task to apply GNN to attributed multi-view

graph clustering, which will face two challenges. 1) How to effec-

tively fuse multi-view graph information in unsupervised setting?

It is clear that only one view information is not sufficient for ac-

curate graph clustering, since multi-view graph provide rich side

information [25]. A straightforward fusion method is to develop

a multi2multi model. That is, multiple encoders and decoders are

developed, and each encoder and decoder is for each view graph.

However, this straightforward method is not effective, due to the

introduction of noise containing in different view graphs. More

importantly, the multi2multi model only extracts each view repre-

sentation separately, while the shared representation may be more

important for our task. 2) How to make embeddings learned by

GNN more suitable for clustering task? Node embedding and clus-

tering are usually two independent tasks. Node embedding aims to

reconstruct the original graph, so the learned node embedding is

not necessarily suitable for node clustering. Therefore, we need to

optimize node embedding and clustering in a uniform way.

Observing real multi-view graph data, we can find that, although

multi-view information reflect node relationship from different as-

pects, they should share some common node characteristics. More-

over, there usually exists one most informative view dominating

clustering performance in many scenarios, which also have been

confirmed in literatures [3, 13, 22]. For example, in the academic

network, co-author and co-conference relation views both reflect

authors’ research interests, while co-conference view is more infor-

mative, due to revealing common research interests, which yields

better cluster performance than other views [3].

According to this observation, we propose a novel One2Multi

graph autoencoder framework for attributed multi-view graph clus-

tering to solve the above mentioned challenges. The basic idea of

the model is that the shared representation can be extracted from

the most informative graph view and content data, and then it is

employed to reconstruct all views. Following this idea, we design a

novel One2Multi graph autoencoder, which consists of one encoder

and multi-decoders. Specifically, it exploits both multi-view graph

structure and node content to learn node representation, through

one multiple layers Graph Convolutional Network (GCN) [6] en-

coder learning node representation from the most informative view

and multiple graph decoders reconstructing all views. Furthermore,

a self-training clustering objective is designed to force the current

clustering distribution approaching to a target distribution more

suitable for clustering task. By jointly optimizing the reconstruction

loss and clustering loss, the model can simultaneously optimize

node embeddings and clustering, and mutually improve them in a

unified framework.

Our major contributions can be summarized as follows:

• To the best of our knowledge, it is the first time to employ

graph deep learning techniques to attributed multi-view

graph clustering task which has great potential for many

applications.

• We propose a novel One2Multi autoencoder framework for

attributedmulti-view graph clustering. TheOne2Multi graph

Figure 1: The framework of O2MAC.

autoencoder provides an effective deep framework to inte-

grate both multi-view graph structure and content informa-

tion. Moreover, the framework jointly optimizes the multi-

view graph embedding learning and graph clustering with

mutual promotion.

• The extensive experiments on real-world attributed multi-

view graphs show that our algorithm outperforms state-of-

the-art graph clustering methods.

2 PROBLEM DEFINITION

In this section, we introduce some notations and definitions that

will be used in this paper.

DEFINITION 1. Attributed Multi-view Graph. An attributed

multi-view graph is represented as G = {V,E1, · · · ,EM ,X}, where
V = {vi }ni=1 consists of a set of nodes in a graph and e

(m)
i,j ∈ Em rep-

resents a linkage between the node i and j in them-th graph view.

The topological structure of graphG can be represented by multiple

adjacency matrixes {A(m) }M
m=1, where A

(m)
i,j = 1 if e

(m)
i,j ∈ Em , oth-

erwise A
(m)
i,j = 0. xi ∈ X indicates the attribute values associated

with each node vi .
Then, we formally define the problem as follows:

DEFINITION 2. Attributed Multi-view Graph Clustering. The

attributed multi-view graph clustering aims to partition nodes in

an attributed multi-view graph into predefined K disjoint clusters

{C1,C2, · · · ,CK }, so that nodes within the same cluster are gener-

ally: (1) close to each other in terms of multi-view graph structure

while distant otherwise; and (2) close to each other in terms of the

node attributes.

3 THE PROPOSED MODEL

In this section, we present the proposed model One2Multi graph

Autoencoder for multi-view graph Clustering (O2MAC).

3.1 Overview

The basic idea of the proposed model O2MAC is to develop an

One2Multi graph autoencoder to learn node representations from

attributed multi-view graph, and then improve the node represen-

tations for clustering task by a self-training clustering objective.
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Figure 1 shows the overall framework of O2MAC. Our model

is mainly composed of two components: One2Multi graph autoen-

coder and self-training graph clustering. One2Multi graph autoen-

coder is composed of one informative graph encoder andmulti-view

graph decoder. With a heuristic metric modularity, we select the

most informative view as the input of graph encoder which encodes

both graph structure and node content into node representation.

Then a multi-view graph decoder is designed to decode the repre-

sentation for reconstructing all views. Owing to the delicate design

of One2Multi graph autoencoder, it not only learns the shared rep-

resentation, but also absorbs structure characteristics of different

views. Furthermore, we use soft labels, generated by the learned

embedding itself, to supervise the learning of encoder parameters

and cluster centers. The multi-view graph embedding and cluster-

ing are optimized in a unified framework, so that we can get an

informative encoder which makes the representation more suitable

for clustering task.

3.2 One2Multi Graph Convolutional
Autoencoder

To represent both multi-view graph structure A(1) , · · · ,A(M ) and

node contentX in a unified framework, we develop a novel One2Multi

graph Autoencoder (O2MA) architecture in which one graph con-

volutional encoder is shared by all views to extract shared rep-

resentations from one informative graph view and content data,

and a multi-decoder is designed to reconstruct multi-view graph

data from the shared representation. The most straightforward

strategy to integrate multi-view graph information is to develop a

multi2multi model, in which multiple encoders are developed to

learn a mixed representations from multiple views, then the mixed

representation is used to reconstruct multi-view graphs. However,

this multi2multi model has several disadvantages. (1) Each view

representation is learned separately, which can not extract shared

representation well. (2) Mulit-view information introduces much

noise, which may be not good for shared representation learning.

(3) Learning from all views is also time-consuming.

Informative graph convolutional encoder. Because different

graph views represent relationships among the same set of nodes

from different aspects and content information is shared by all graph

views, there are shared information among views. Moreover, there

usually exists one most informative view dominating clustering

performance in many scenarios. Therefore, the shared information

between the informative view and other views can be extracted

from the most informative graph view and content data, and then

it can be used to reconstruct all graph views.

Based on this assumption, we take the most informative graph

view A∗ ∈ {A(1) , · · · ,A(M ) } and node content information X as

input to reconstruct all graph views. Please note that we can use

prior knowledge to select the informative graph view in many ap-

plications. Here, without loss of generality, we provide a heuristic

metric, modularity [11], to select the most informative view. Specif-

ically, we first feed each single-view graph adjacency matrix and

content information into GCN layers to learn node embeddings

respectively, and then perform k-means on the learned embeddings

to obtain their clustering indicators. Based on the clustering indi-

cators and adjacency matrix, we compute the modularity score of

each graph view, and select the graph view with the highest score

as the most informative view. The reason for using modularity is

that it provides an objective metric to evaluate clustering structure.

And to utilize both graph structure A∗ and node attributes X in a

unified framework, we exploit the GCN layers as a graph encoder.

The GCN extends the operation of convolution to graph data in

the spectral domain, and learns a layer-wise transformation by a

spectral convolution function f (Z(l ) ,A∗ |W(l ) ):

Z(l+1) = f (Z(l ) ,A∗ |W(l ) ) = ϕ (D̃− 1
2 ÃD̃

− 1
2 Z

(l )
W

(l ) ). (1)

Z(l ) is the learned representation by the l-th layer, and Z(0) = X ∈
R
N×D (N nodes andD features).W(l ) is the filter parameter matrix

that we need to learn in the l-th layer. Ã = A∗+ I and D̃ii =
∑
j Ãi j .

I is the identity matrix of A∗ and ϕ (·) is an activation function.

As shown in the informative graph encoder part of Figure 1, the

informative graph encoder G = (X,A∗) is a two-layer GCN and its

structure is constructed as follows:

Z = ϕ2 (D̃
− 1

2 ÃD̃
− 1

2ϕ1 (D̃
− 1

2 ÃD̃
− 1

2XW
(0) )W(1) ), (2)

where ϕ1 is the Relu activation function and ϕ2 is the linear activa-
tion function.

Multi-view graph decoder. In order to supervise encoder to ex-

tract shared representation by all views, we propose a multi-view

graph decoder to reconstruct themulti-view graph data Â
(1)
, · · · ,Â(M )

from the representation Z.

As shown in the multi-view graph decoder part of Figure 1, our

decoder is composed ofM view-specific decoders {p (Â(m) |Z,Wm )}M
m=1

predicting whether there is a link between two nodes in viewm,

where Wm ∈ RD×D is the view-specific weights for viewm. More

specifically, we train a multi-view link prediction layer based on

the graph embeddings:

M∑

m=1

p (Â
(m) |Z,Wm ) =

M∑

m=1

sigmoid(Z ·Wm · ZT ). (3)

Reconstruction loss. For multi-view graph autoencoder, we min-

imize the sum of reconstruction error of each graph view data

by:

Lr =
M∑

m=1

L
(m)
r =

M∑

m=1

loss (A(m) , Â(m) ), (4)

where L
(m)
r is the reconstruction loss for view m and Lr is the

reconstruction loss for all views. Due to the multi-view architec-

ture of the decoder, the gradients of multi-decoder will propagate

through the informative graph encoder during backpropagation

process. Therefore, when forward-propagation is processed, the

graph encoder will extract the shared representations by all views.

This model can also be viewed as multi-task learning [2]. The

multi-view graph decoder provides the multi-task supervised signal

for the informative graph encoder to extract shared representation,

which makes the shared representation more comprehensive and

generalized.
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3.3 Self-training Clustering

Aforementioned One2Multi graph convolutional autoencoder can

encode attributed multi-view graph into a compact representation.

However, the node proximity in embedding space is to preserve

local structure of original multi-view graph data, which may be not

be guaranteed suitable for clustering. A good data distribution for

clustering is that the nodes within the same cluster are gathered

densely, and the boundaries between different clusters are distinct.

Therefore, it is necessary to introduce other objectives to guide the

embedding learning process. Inspired by DEC [26], we employ a

self-training clustering objective to utilize “highly confident” nodes

as soft labels to supervise the graph clustering process.

Apart from optimizing the reconstruction loss, we input our

hidden embeddings into a self-training clustering objective which

minimizes the following objective:

Lc = KL(P | |Q ) =
∑

i

∑

j

pi j log
pi j

qi j
, (5)

where KL(·|·) is Kullback-Leibler divergence between two distri-

bution, Q is the distribution of the soft labels and qi j is measured

by Student’s t-distribution [10] to indicate the similarity between

node i’s embedding zi and cluster center μ j :

qi j =
(1 + | |zi − μ j | |2)−1∑
j′ (1 + | |zi − μ j′ | |2)−1

. (6)

It can be seen as a soft clustering assignment distribution of each

node. And pi j in Eq.5 is the target distribution defined as:

pi j =
q2i j/fj∑
j′ q

2
i j′/fj′

, (7)

where fj =
∑
i qi j is the soft cluster frequencies to normalize the

loss contribution of each centroid to prevent large clusters from

distorting the hidden feature space. As we can see, the target distri-

bution P raises Q to the second power to get a denser distribution.

By minimizing KL divergence betweenQ and P , it will make the dis-

tribution ofQ more dense. Indeed, in the subsection 4.4, we observe

that “highly confident” nodes contribute more to the gradients at

the start of KL divergence minimization. The “highly confident”

nodes indicate that the nodes have high probability belonging to

some cluster which is computed by Eq. 6. This phenomenon can

be interpreted as semi-supervised training, which has been demon-

strated very effectively in GCN [6].

Overall objective function. We jointly optimize the One2Multi

graph autoencoder embedding and clustering learning, and the

total objective function is defined as:

L = Lr + γLc , (8)

where γ > 0 is a coefficient that controls the degree of distorting

embedded space, and we let γ = 0.1 for all experiments.

3.4 Optimization

We first pretrain the One2Multi graph autoencoder without the

self-training clustering part to obtain a well-trained embedding Z

as described in subsection 3.2. Self-training clustering objective is

then performed to improve this embedding. To initialize the cluster

centers, we perform standard k-means clustering on the embedded

nodes Z to obtain k initial centroids {μ j }kj=1. To be specific, there

are three kinds of parameters to update: the weights of One2Multi

graph autoencoderW (l ) andW1, · · · ,WM , cluster centers μ and

target distribution P .

Update O2MAC’s weights and cluster centers. Fixing target

distribution P and givenN samples, the gradients of Lc with respect
to cluster center μ j can be computed as:

∂Lc
∂μ j
= 2

N∑

i=1

(1 + | |zi − μ j | |2)−1 (qi j − pi j ) (zi − μ j ). (9)

Then given learning rate λ, μ j is updated by

μ j = μ j − λ ∂Lc
∂μ j
. (10)

Them-th view specific decoder’s weights are updated by

Wm =Wm − λ ∂L
(m)
r

∂Wm
. (11)

As we can see, the update ofWm only relates to viewm reconstruc-

tion loss, therefore, the view specific decoder’s weights can capture

view specific local structure information.

Then the graph encoder’s weights are updated by

W (l ) =W (l )−λ( ∂Lr
∂W (l )

+γ
∂Lc

∂W (l )
) =W (l )−λ(

M∑

r=1

∂L
(m)
r

∂W (l )
+γ
∂Lc

∂W (l )
).

(12)

One can observe that the update ofW (l ) is related to all views’

reconstruction loss, so that the encoder’s weights can extract the

shared representation by all views.

Update target distribution.The target distribution P which serves

as “groundtruth” soft label also depends on predicted soft label.

Therefore, to avoid instability in the self-training process, P should

be updated using all embedded nodes everyT iterations. We update

P according to Eq. 6 and Eq. 7. When updating target distribution,

the label assigned to vi is obtained by

si = argmax
j

qi j , (13)

whereqi j is computed by Eq. 6. The training process will be stopped

if label assignment change (in percentage) between two consecutive

updates for target distribution is less than a threshold δ . And we

can obtain clustering results from the last optimized Q .

4 EXPERIMENTS

4.1 Datasets

• ACM1: This is a paper network from the ACM dataset. We

exploit co-paper (two papers are written by same author) re-

lationship and co-subject (two papers contain same subjects)

relationship to construct a two view graph. Paper features

are the elements of a bag-of-words represented of keywords.

And we use papers’ research area as ground truth.

1 http://dl.acm.org
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Table 1: The statistics of the datasets.

Dataset #Node #Features #Edges in each view #Class

ACM 3025 1830 co-paper (29,281) co-subject (2,210,761) 3

DBLP 4057 334 co-author (11,113) co-conference (5,000,495) co-term (6,776,335) 4

IMDB 4780 1232 co-actor (98,010) co-director (21,018) 3

Table 2: Clustering results on three datasets. The ‘*’ indicates the best performance of the baselines. Best results of all methods

are indicated in bold. The ‘-’ represents the method run out-of-memory on this dataset.

Method
ACM DBLP IMDB

Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI

LINE 0.6479 0.6594 0.3941 0.3433 0.8689 0.8546 0.6676 0.6988 0.4268 0.2870 0.0031 -0.0090

LINE-avg 0.6479 0.6594 0.3941 0.3432 0.8750 0.8660 0.6681 0.7056 0.4719 0.2985 0.0063 -0.0090

GAE 0.8216∗ 0.8225∗ 0.4914∗ 0.5444∗ 0.8859 0.8743∗ 0.6925 0.7410 0.4298 0.4062 0.0402 0.0473

GAE-avg 0.6990 0.7025 0.4771 0.4378 0.5558 0.5418 0.3072 0.2577 0.4442 0.4172∗ 0.0413∗ 0.0491∗

MNE 0.6370 0.6479 0.2999 0.2486 - - - - 0.3958 0.3316 0.0017 0.0008

PMNE (n) 0.6936 0.6955 0.4648 0.4302 0.7925 0.7966 0.5914 0.5265 0.4958 0.3906 0.0359 0.0366

PMNE (r) 0.6492 0.6618 0.4063 0.3453 0.3835 0.3688 0.0872 0.0689 0.4697 0.3183 0.0014 0.0115

PMNE (c) 0.6998 0.7003 0.4775 0.4431 - - - - 0.4719 0.3882 0.0285 0.0284

RMSC 0.6315 0.5746 0.3973 0.3312 0.8994∗ 0.8248 0.7111∗ 0.7647∗ 0.2702 0.3775 0.0054 0.0018

PwMC 0.4162 0.3783 0.0332 0.0395 0.3253 0.2808 0.0190 0.0159 0.2453 0.3164 0.0023 0.0017

SwMC 0.3831 0.4709 0.0838 0.0187 0.6538 0.5602 0.3760 0.3800 0.2671 0.3714 0.0056 0.0004

O2MA 0.8880 0.8894 0.6515 0.6987 0.9040 0.8976 0.7257 0.7705 0.4697 0.4229 0.0524 0.0753

O2MAC 0.9042 0.9053 0.6923 0.7394 0.9074 0.9013 0.7287 0.7780 0.4502 0.4159 0.0421 0.0564

• DBLP2: This is an author network from the DBLP dataset.

Three views are identified including the co-authorship (two

authors have worked together on papers), co-conference

(two authors have published papers at the same conference),

and co-term (two authors have published papers with the

same terms). Author features are the elements of a bag-of-

words represented of keywords. To evaluate the method, we

use authors’ research area as ground truth.

• IMDB3: This is a movie network from the IMDB dataset. We

exploit co-actor (movies are acted by the same actor) rela-

tionship and co-director (movies are directed by the same

director) relationship to construct a two view graph. Movie

features correspond to elements of a bag-of-words repre-

sented of plots. To evaluate the method, we use the movies’

genre as ground truth.

The detailed descriptions of the datasets are shown in Table 1.

4.2 Baselines

• LINE [19]: It is a classical single-view graph embedding

method. For single-view methods, we perform the methods

on each graph view respectively, and report the best results.

• GAE [7]: It is a single-view graph autoencoder method.

• X-avg: To exploit multiple views of a network, we apply X

method to learn node representations on each single view,

then average all learned representations.

• MNE [27]: A scalable multi-view network embedding model.

For all the multi-view graph embedding/clustering methods,

we use the multi-view graph adjacency matrixes as the input.

2 https://dblp.uni-trier.de/
3 https://www.imdb.com/

• PMNE [8]: We compare our method with all the three multi-

view network embedding models proposed by PMNE, i.e.,

PMNE (n), PMNE (r), and PMNE (c).

• RMSC [25]. A robust multi-view spectral clustering method

via low rank and sparse decomposition.

• PwMC and SwMC [14]. PwMC is a parameter-weighted

multi-view graph clustering method and SwMC is a self-

weighted multi-view graph clustering method.

• O2MA. A variant of O2MAC, which does not contain clus-

tering loss in the objective function.

• O2MAC. Our proposed method for attributed multi-view

graph clustering.

Parameter settings and Metrics. For DBLP and IMDB datasets,

we train all autoencoder-related models (GAE, O2MAC, O2MA)

for 1000 iterations and optimize them with Adam algorithm. As

ACM is a smaller dataset, we iterate 250 times for the training. The

learning rate λ set as 0.001 for autoencoder-related models. The

dimension of all embedding methods is 32. For GAE, it has the

same structure with our encoder. For O2MAC, the convergence

threshold is set as δ = 0.1%, and the update intervals T = 20. For

the rest of the baselines, we retain to the settings described in the

corresponding papers. Since all the clustering algorithms depend on

the initializations, we repeat all the methods 10 times using random

initialization and report the average performance. Moreover, we

employ four metrics to validate the clustering results: accuracy

(Acc), F-score (F1), NMI and ARI [25].

4.3 Graph Clustering Performance

The results on the three datasets are given in Table 2. As can be seen,

the results of O2MAC and O2MA significantly outperform the other
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Table 3: Clustering results on different input views. The se-

lected views used in our experiments are indicated in bold.

Dataset Input view NMI ARI Modularity

ACM
co-subject 0.4486 0.4129 0.4896

co-paper 0.6515 0.6987 0.6002

DBLP

co-term 0.0164 0.0109 -0.0356

co-author 0.2419 0.1518 0.3599

co-conf. 0.7257 0.7705 0.4392

IMDB
co-actor 0.0391 0.0411 0.0308

co-director 0.0524 0.0753 0.6516

baselines on almost all four metrics, indicating the effectiveness

of our proposed model. Then, by comparing the results of O2MA

and GAE (GAE-avg), we conclude that our proposed One2Multi

graph autoencoder is a more effective graph neural network to fuse

multi-view graph information. Moreover, compared with O2MA,

the better results of O2MAC on ACM and DBLP datasets imply

that the self-training clustering objective can further improve the

performance after an effective pretraining. While, we also notice

that O2MA outperforms O2MAC on IMDB dataset. The reason is

that it is difficult to obtain “highly confident” nodes on IMDB. In

such situation, these “highly confident” nodes may confine low-

confidence nodes to the wrong clusters. To avoid this, we can set

γ = 0 on these datasets, i.e., only use O2MA version.

For baselines, we have the following observations. First, embed-

ding methods significantly outperform other methods, therefore,

graph embedding is a promising method to solve graph clustering

problem. Second, deep learning method (i.e., GAE) achieves com-

petitive results than other baselines. However, it can only utilize

single-view graph and content information. It is possible that a well-

designed deep neural network integrating multiple graph views

can achieve promising results. Third, the simple multi-view graph

average operation, X-avg, does not improve the results, even re-

duces the performance. Because X-avg is a two-step fusion method,

and this mix operation may introduce noise. Therefore, designing

an end-to-end fusion model is necessary for clustering task.

(a) Performances of O2MA with additive
views.

(b) Gradient visualization at the start of
KL divergence minimization.

Figure 2: Model analysis.

4.4 Model Analysis

In this subsection, we analyze various properties of our model. We

first validate the necessity of using modularity [11] to select the

informative view. We use each graph view as the input of O2MA

and reconstruct all graph views on three datasets, and report their

results on graph clustering task in Table 3. One can observe that

if we feed the graph view with higher modularity value into the

encoder, our model will achieve better results. It validates that

modularity is a feasible solution to select the informative view.

In our model, we fuse multiple graph views to improve the clus-

tering performance. To further investigate the effect of multiple

views on the learned embeddings for the clustering task, we closely

examine the performance of O2MA through adding the graph view

one by one in DBLP dataset. These three views are co-conference,

co-term, and co-paper, and they are added into the model by their

order. Figure 2(a) is the four metrics performance of O2MA with

additive views. The results with four metrics demonstrate that the

performance of our proposed model stably increases as we add

views one by one. Therefore, O2MA provides a flexible framework

to utilize more graph views.

The underlying assumption of self-training clustering loss is

that the highly confident predictions of initial classifier are mostly

correct and they will contribute more to the gradients. To verify this

assumption for our task, we plot the magnitude of the gradient of

Lc with respect to each embedded point, |∂Lc/∂zi |, against its soft
assignment, qi j , to a random chosen ACM cluster j (Figure 2(b)).
We observe that nodes that are closer to the cluster center (large

qi j ) contribute more to the gradient (with higher value), and the

gradient will propagate through the GCN encoder, which makes

the neighborhood nodes have similar embeddings. We also color

the majority class of nodes as red, and the rest classes as blue. One

can see that most of the nodes in the highly confident area are red

and the blue dots are mostly in the low confidence area. Therefore,

the highly confident “right” nodes will guide the training process,

which in turn helps to improve low confidence ones.

5 CONCLUSION

In this paper, we study the attributed multi-view graph cluster-

ing problem, which aims to partition the graph into several non-

overlapping clusters with the utilization of its multiple views and

attributed information. To solve the challenges in the problem, we

propose a novel One2Multi graph autoencoder method for graph

clustering, which is called O2MAC. O2MAC utilizes one view graph

convolutional encoder and multi-view graph structure decoder to

encode the attributedmulti-view graphs to a low-dimensional space.

Besides that, a self-training clustering loss is introduced to super-

vise the encoder with highly confident nodes, which makes the

feature space more suitable for clustering. The effectiveness of the

method is validated by comparing its experimental results with

various state-of-the-art algorithms.
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