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Abstract. In the scenario of next-item recommendation, previous meth-
ods attempt to model user preferences by capturing the evolution of se-
quential interactions. However, their sequential expression is often lim-
ited, without modeling complex dynamics that short-term demands can
often be influenced by long-term habits. Moreover, few of them take into
account the heterogeneous types of interaction between users and items.
In this paper, we model such complex data as a Temporal Heterogeneous
Interaction Graph (THIG) and learn both user and item embeddings
on THIGs to address next-item recommendation. The main challenges
involve two aspects: the complex dynamics and rich heterogeneity of in-
teractions. We propose THIG Embedding (THIGE) which models the
complex dynamics so that evolving short-term demands are guided by
long-term historical habits, and leverages the rich heterogeneity to ex-
press the latent relevance of different-typed preferences. Extensive ex-
periments on real-world datasets demonstrate that THIGE consistently
outperforms the state-of-the-art methods.

Keywords: Temporal heterogeneous interaction graph · Next-item rec-
ommendation · Short-term demands · Long-term habits.

1 Introduction

With the prevalence of e-commerce, our shopping styles are revolutionized in re-
cent years. By modeling historical user-item interactions, recommender systems
play a fundamental role in e-commerce [9, 18]. In particular, the task of next-
item recommendation—to predict the item that a user will interact with at the
next time instance—not only caters to the business requirement of e-commerce
platforms, but also enhances the user experience.

Earlier methods mainly exploit collaborative filtering (CF) [4, 14], which
models interactions without any temporal dynamics. However, temporal evolu-
tion often contributes significantly to the next-item recommendation. As shown
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Fig. 1. Toy example of next-item recommendation, from (a) a temporal sequence of
interactions, to (b) a Temporal Heterogeneous Interaction Graph (THIG).

in Fig. 1(a), Tom’s current demand is more likely to be notebooks, rather than
the general preference of bags which one would have concluded by analyzing
his entire interaction history without temporal consideration. To capture such
evolving demands of users, recurrent neural networks (RNN) [25, 8] have been
widely used by considering a sequence of interactions. While RNNs are only
capable of modelling short-term preferences (e.g., demands of notebooks) from
relatively recent interactions, capturing long-term preferences (e.g., preferred
brands) from historical habits is also an important element of temporal dynam-
ics [18]. However, existing methods usually model short- and long-term prefer-
ences independently, ignoring the role of habits in driving the current, evolving
demands. Taking Fig. 1(a) as an example, when browsing similar items (e.g.,
two schoolbags), users prefer to click those with attributes they habitually care
(e.g., the brands).

This presents the first research challenge: How to effectively model the com-
plex temporal dynamics, coupling both historical habits and evolving demands?
In this paper, we model historical habits as the long-term preferences, and the
current, evolving demands as the short-term preferences. More importantly, we
propose to guide demand learning with historical habits, and develop a habit-
guided attention to tightly couple both long- and short-term preferences.

Another dimension overlooked by existing sequential models is the abundant
heterogeneous structural information. Taking Fig. 1(b) as an example, there ex-
ists large-scale inter-linking between various users and items, e.g., Hua bought
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the carted s2, which cannot be explicitly modeled by separate interaction se-
quences. More importantly, there are also rich user-item interactions of heteroge-
neous types, such as “click”, “favorite”, “cart” and “buy”. As shown in Fig. 1(b),
Hua prefers items of brand B2 for the interactions of “buy” and “cart”, while
s2 is more popular to boys for the various interactions rather than a single
click of Helen. While heterogeneous graphs [15, 13, 16, 2] have been a de facto
standard to model rich structural information and their representation learning
have been studied extensively in heterogeneous network embedding and graph
neural networks (GNN) [1, 21, 24], they ignore the complex temporal dynamics,
treating the graph as a static snapshot. Furthermore, most of them treat the
heterogeneous types of interaction independently, but in reality different types
(e.g., clicks and buys) often express varying latent relevance w.r.t. each other.
On the other hand, temporal graphs have been studied in some recent works in
homogeneous settings [19, 10] without modeling the rich heterogeneity.

This leads to the second research challenge: How to make full use of the tem-
poral heterogeneous interactions to model the preferences of different types? Here
we propose a Temporal Heterogeneous Interaction Graph (THIG) to model the
heterogeneous interactions and the temporal dimension jointly. Compared with
static graphs, THIGs can express the evolving preference of users and the chang-
ing popularity of items; compared with temporal graphs, THIGs can exploit rich
heterogeneous factors that simultaneously contribute to preference learning. Par-
ticularly, we design a novel heterogeneous self-attention mechanism to distill the
latent relevance and multifaceted preferences from multiple interactions.

Hinged on the above insights, we propose THIGE, a novel model for Temporal
Heterogeneous Interaction Graph Embedding, to effectively learn user and item
embeddings on THIGs for next-item recommendation. In THIGE, we first en-
code heterogeneous interactions with temporal information. Building upon the
temporal encoding, we take into account the influence of long-term habits on
short-term demands, and design a habit-guided attention mechanism to couple
short- and long-term preferences. To fully exploit the rich heterogeneous interac-
tions to enhance multifaceted preferences, we futher capture the latent relevance
of varying types of interaction via heterogeneous self-attention mechanisms.

We summarize the main contributions of this paper as follows.

– To our best knowledge, this work formulates and illustrates the first use of
temporal heterogeneous interaction graphs for the problem of next-item rec-
ommendation. Different from previous sequential models which mainly focus
on homogeneous sequences, here we fully utilize the structure information of
multiple behaviors for item recommendation.

– We propose a novel model THIGE to couple long- and short-term prefer-
ences of heterogeneous nature, which fully exploits the temporal and het-
erogeneous interactions via habit-guided attention and heterogeneous self-
attention. Both the dependence of heterogeneous preferences and impact
from historical habits to recent demands are effectively modeled.



4 Yugang Ji et al.

– We perform extensive experiments on the public datasets Yelp and CloudTheme,
and the industrial dataset UserBehavior. We compare THIGE against vari-
ous state of the arts and obtain promising results.

2 Related Work

We introduce the related work in two main domains, one of which is graph
embedding and the other is next-item recommendation.

Graph neural networks. Graph neural networks (GNN) are widely used for
node representation on real-world graphs including GCN [7], GraphSAGE [6] and
GAT [20] to construct node embedding via neighborhood aggregation. Recently,
taking the dynamic of links into considerations, Dyrep [19] and M2DNE [10]
split the graph into several snapshots to capture global evolution of local inter-
ests. Inspired by position embedding proposed in [13], it is promising to design
the continuous-time function to generate time span-based temporal embedding.
However, all these algorithms are proposed for homogeneous networks, which is
not suitable to deal with graphs like THIGs in which nodes/edges are of mul-
tiple types. HetGCN [22] aggregates neighborhood information with meta-path
guide random walks. HAN [21] proposes the hierarchical attention to guide ag-
gregating heterogeneous neighborhood information. Furthermore, GATNE [1]
combines heterogeneous information aggregated from different-typed neighbor-
hoods via heterogeneous attention mechanisms. Furthermore, to fuse sequential
information, MEIRec [5] captures evolution of users’ same-typed interactions
by LSTM. Unfortunately, this model is limited to the sequence length. How to
model temporal heterogeneous graphs is challenging and meaningful [1].

Next-item recommendation. For dealing with next-item recommendation,
sequence-based recommender systems are to understand the temporal dynam-
ics between users and items [17]. The related works mainly focus on short-term
interest learning. STAMP [9] captures the general and current interests by an
attentive memory priority model. DIEN [25] respectively utilizes the classical
and attentional GRUs on the interest extractor and evolving layers to capture
short-term interest. Taking long-term preference into consideration, SHAN [23]
designs the hierarchical attention to combine habits and demands modeling on
hierarchical layers. M3R [18] mixes long-term, short-term and current interest
modeling together to obtain the final interest. However, all of these sequential
models cannot model the heterogeneous interactions. Le et al. [8] learn user pref-
erence from different-typed interactions by respectively modeling different-typed
interactions with GRUs. Lv et al. [11] focus on capturing long-term preferences
in different latent aspects like brands and categories. However, few of these mod-
els pay attention to the types of interactions within THIGs while different-typed
interactions indicates various semantics.
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3 Problem Formulation

Here we introduce the definition of THIGs and the problem of next-item recom-
mendation on THIGs.

Definition 1 Temporal Heterogeneous Interaction Graph (THIG). A
THIG is G = (V, E , T ,A,O,R, φ, ψ), where V is a set of nodes with types O, E
is the set of edges with types R, T is the set of timestamps on edges, and A is
the set of attributes on nodes. Moreover, φ : V → O is the node type mapping
function and ψ : E → R is the edge type mapping function. In THIGs, |O| ≥ 2
and |R| ≥ 2.

As shown in Figure 1(b), there are four types of interactions (edges), i.e.,
R = {click, favorite, cart, buy}, between two types of nodes O = {user, item}.
A user may interact with the same item under multiple interactions like “click”
and “buy” at different timestamps. Moreover, users and items contain their own
features like age or brand. By modeling such heterogeneous interaction data with
THIGs, richer semantics of dynamic interactions can be preserved for effective
next-item recommendation.

Definition 2 Next-item recommendation on THIGs. On a THIG, a user
u is associated with his/her historical interactions {(vi, ti, ri) | 1 ≤ i ≤ n}
where the triple (vi, ti, ri) denotes that item vi is interacted under type ri at
time ti, for some tn < T such that T is the current time. Similarly, an item v
is associated with its historical interactions {(uj , tj , rj) | 1 ≤ j ≤ n} where the
triple (uj , tj , rj) denotes that item uj interact with item v under type rj at time
tj for some tn < T . This task is to predict whether u will interact with v at the
next time instance.

For instance, as shown in Figure 1(b), given that Tom has clicked or bought
S1, S2, S3 and S4 before, our goal is to predict the next item he will interact with,
based on each candidate item’s interaction history. This problem is fundamental
and meaningful in e-commerce platforms to understand both user and items
simultaneously.

4 Proposed Approach: THIGE

In this section, we propose our model called THIGE. We begin with an overview,
before zooming into the details.

4.1 Overview

The overall framework is shown in Fig. 2. Specifically, we divide the historical
interactions of a user into long and short term based on their timestamps. For
short-term preferences, we model users’ sequences of recent interactions with
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Fig. 2. Overall framework of user embedding in THIGE for next-item recommendation.

gated recurrent units (GRU), to embed users’ current demands h
(S)
u . For long-

term preference, we model users’ long-term interactions with a heterogeneous

self-attention mechanism, to embed users’ historical habits h
(L)
u . Different from

the decoupled combination (e.g., simple concatenation) of long- and short-term
embeddings in previous methods [8, 23], we propose to exploit the long-term his-
torical habits to guide the learning of short-term demands using the habit-guided
attention, which effectively captures the impact of habits on recent behaviors.

Note that Fig. 2 only shows the learning of user representations. For items,
we do not distinguish their long- and short-term interactions, and only adopt a
long-term model similar to that of users. The reason lies in the fact that there
may be numerous users interacting with an item around a short period of time,
and these users have no significant short-term sequential dependency.

4.2 Embedding layer with temporal information

Each interacted item of a user is associated with not only attributes but also a
timestamp. As shown in Fig. 2, the timestamps is in the form of [t1, t2, · · · , tn].

Thus, the temporal embedding of an item v consists of both a static and
a temporal component. The static component xv = Wφ(v)av, where the input

vector av ∈ Rdφ(v) encodes the attributes of v, Wφ(v) ∈ Rd×dφ(v) denotes the
latent projection, dφ(v) and d are the dimension of attributes and latent rep-
resentation of v. Moreover, at time t, denoting ∆t as the time span before the
current time T and dividing the overall time span into B buckets, the temporal
component of v is defined as W ξ(∆t), where ξ(∆t) ∈ RB denotes the one-hot
bucket representation of ∆t, and W ∈ RdT ×B denotes the projection matrix
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and dT is the output dimension. Thus, the temporal embedding of an item v at
time t is

xv,t = [W ξ(∆t)⊕ xv], (1)

where ⊕ denotes concatenation. Similarly, we generate the static representation
of a user u as xu ∈ Rd, and temporal representation of u at time t as xu,t.

To further consider the sequential evolution of heterogeneous interactions, we
generate the ith interacted item embedding xvi,ti,ri = [xvi,ti ⊕ ri] as the combi-
nation of the temporal embedding xvi,ti and the corresponding type embedding
ri = WRI(ri) where I(ri) denotes the one-hot vector of ri with dimension
|R|, WR ∈ RdR×|R| is the projection matrix and dR is the latent dimension.
For long-term preference modeling, we input the temporal embedding into type-
aware aggregators to distinguish preferences of different types.

4.3 Short-term preference with habit-guidance

Recent interactions of users usually indicate the evolving current demands. For
instance, as shown in Fig. 1(a), Tom’s current demand has been evolved from
bags to notebooks. In order to model the short-term and evolving preferences,
we adopt gated recurrent units (GRU) [3], which can capture the dependency
of recent interactions. Consider a user u here. Let his/her k recent interactions
be {(vi, ti, ri) | 1 ≤ i ≤ k}, where tk is the most recent timestamp before the

current time T . Subsequently, we encode the user preference at time ti as h
(S)
u,ti ,

using a GRU based on the embedding of interaction (vi, ti, ri), namely, xvi,ti,ri ,
and his/her preference at ti−1, as follows.

h
(S)
u,ti = GRU(xvi,ti,ri ,h

(S)
u,ti−1

), ∀1 < i ≤ k, (2)

where h
(S)
u,ti ∈ Rd. The time-dependent user embeddings {h(S)

u,ti |1 ≤ i ≤ k} can
be further aggregated to encode the current demand of user u.

However, the current and evolving demands of user are not only influenced
by their recent transactions. Their long-term preferences, i.e., historical habits
such as brands and lifestyle inclinations, often play a subtle but important role.
Thus, we enhance the encoding of short-term preferences under the guidance of
historical habits, in order to discover more fine-grained and personalized pref-
erences. Specially, we propose a habit-guided attention mechanism to aggregate
short-term user preferences, as follows.

h(S)
u = σ

(
W (S) ·

∑
i

au,ih
(S)
u,ti + bs

)
, ∀1 ≤ i ≤ k, (3)

where h
(S)
u ∈ Rd denotes the overall short-term preference of u, W (S) ∈ Rd×d

denotes the projection matrix, σ is the activation function and we adopt RELU
here to ensure the non-linearity , bs is the bias, and au,i is the habit-guided
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weight:

au,i =
exp

(
[h

(L)
u ⊕ xu]TWah

(S)
u,ti

)
∑k
j=1 exp

(
[h

(L)
u ⊕ xu]TWah

(S)
u,tj

) , (4)

where h
(L)
u ∈ Rd is the long-term preference of u which would have encoded the

habits of u, and Wa ∈ R2d×d is a mapping to quantify the fine-grained relevance
between the short-term preference of u at different times, and the long-term

habits of u. Therefore, how to encode the long-term habits h
(L)
u in the context

of heterogeneous interactions is the second key thesis of this work, as we will
introduce next.

4.4 Long-term preference with heterogeneous interactions

Besides short-term preferences to encode current and evolving demands, users
also exhibit long-term preferences to express personal and historical habits. In
particular, there exist multiple types of heterogeneous interactions which have
different relevance w.r.t. each other. For example, a “click” is more relevant to
a “cart” or “buy” on the same item or similar items; “favorite” could be less
relevant to “cart” or “buy”, but is closely tied to the user’s brand or lifestyle
choices in the long run. Thus, different types of interactions entail both latent
relevance and multifaceted preferences.

Thus, our goal is to fully encode the latent, fine-grained relevance of multi-
faceted long-term preferences.

Consider a user u, and his/her long-term interactions {(vi, ti, ri) | 1 ≤ i ≤ n}
where n � k (k is the count of recent interactions in short-term modeling). To
differentiate the explicit interaction types, we first aggregate the embeddings of
items which the user have interacted with under a specific type r:

h′(L)u,r = σ (Wr · aggre({xvi,ti | 1 ≤ i ≤ n, ri = r})) , (5)

where h
′(L)
u,r ∈ Rd is the type-r long-term preferences of user u, Wr ∈ Rd×(dT +d)

is the type-r learnable mapping, aggre(·) is an aggregator, and we utilize mean-
pooling here.

While we can simply sum or concatenate the type-specific long-term prefer-
ences into an overall representation, there exists latent relevance among the types
(e.g., “click” and “buy”), and latent multifaceted preferences (e.g., brands and
lifestyles). In this paper, we design a heterogeneous self-attention mechanism to
express the latent relevance of different-typed interactions and long-term multi-
faceted preferences. By concatenating all long-term preferences of different types

as H
(L)
u = ⊕r∈Rh′(L)

u,r with size d-by-|R|, we first formulate the self-attention to
capture the latent relevant of heterogeneous types in R w.r.t. each other:

h(L)
u,r =

∑
r′∈R

(
exp

(
QT
u,rKu,r′/

√
da
)∑

r′′∈R exp
(
QT
u,rKu,r′′/

√
da
)Vu,r′) , (6)
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where Qu = WQH
(L)
u ,Ku = WKH

(L)
u ,Vu = WVH

(L)
u , WQ,WK ∈ Rda×d and

WV ∈ Rd×d are the projection matrices, and da is the dimension of keys and
queries.

Next, to express multifaceted preferences, we adopt a multi-head approach
to model latent, fine-grained facets. Specifically, the original embeddings of pref-
erences are split into multi-heads and we adopt the self-attention for each head.

The type-r long-term preference is concatenated from the h heads:

h(L)
u,r = ⊕m=h

m=1h
(L)
u,r,m, (7)

where h
(L)
u,r,m denotes the mth head based preference and there are h heads. The

overall long-term preference can also be derived by fusing different types in R:

h(L)
u = σ

(
W (L)(⊕r∈Rh(L)

u,r ) + bl

)
, (8)

where W (L) ∈ Rd×|R|d and bl are the projection parameters. By now, both short-
and long-term preferences haven been modeled. Taking the inherent attributes
of users into consideration, the final representation of user u is calculated by

hu = σ(Wu[xu ⊕ h(S)
u ⊕ h(L)

u ] + bu), (9)

where hu ∈ Rd will be used for next-item prediction, and Wu ∈ Rd×3d and bu
are learnable parameters.

4.5 Preference modeling of items

The temporal interactions of an item is significantly different from those of a
user. In practice, on a mass e-commerce platform, it is typical that many users
interact with the same item around the same time constantly, without a mean-
ingful sequential effect among different users. In other words, it is more reason-
able to only model the general, long-term popularity of items. Thus, we model

item representation h
(L)
v similar to the long-term preference modeling of users

in Eq. (8) with heterogeneous multi-head self-attention, and encode the item
representation as follows:

hv = σ(Wv[xv ⊕ h(L)
v ] + bv), (10)

where hv ∈ Rd is the final representation of item v for next-item prediction, and
Wv and bv are learnable parameters and xv is the attribute vector of item v.

4.6 Optimization objective

To deal with next-item recommendation, we predict ŷu,v between user u and
item v, indicating whether u will interact with v (under a given type) at the
next time. Here we utilize a Multi-Layer Perception (MLP) [12]:

ŷu,v = sigmoid(MLP(hu ⊕ hv)), (11)
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Table 1. Description of datasets.

Dataset Yelp CloudTheme UserBehavior

# User 103,569 144,197 533,974
# Item/Business 133,502 272,334 4,152,242
# Interaction 1,889,132 1,143,567 122,451,055
# Interaction type 2 2 4

# Training instance 611,568 865,182 3,203,844
(Training time span) 5 years 2 weeks 1 weeks

# Test instance 108,408 216,295 800,961
(Test time span) next one quarter next day next day

where hu and hv are the final representation of user u and item v, respectively.
Model parameters can be optimized with the following cross-entropy loss:

L = −
∑
〈u,v〉

(1− yu,v) log(1− ŷu,v) + yu,v log(ŷu,v), (12)

where 〈u, v〉 is a sample of user u and item v, and yu,v ∈ {0, 1} is the ground
truth of the sample. We also optimize the L2 regularization of latent parameters
to ensure the robustness.

5 Experiments

In this section, we showcase the performances of our proposed THIGE5 for next
item-recommendation, and discuss the effectiveness of our design choices and
key factors.

5.1 Datasets

We evaluate the empirical performance of THIGE for next-item recommendation
on three real-world datasets including Yelp, CloudTheme and UserBehavior. The
statistics are summarized in Table 1 and the details are introduced as follows.

– Yelp6: A public business dataset with two types of temporal interactions,
namely, “review” and “tip” between users and businesses. Both users and
businesses contain continuous and discrete features. We select interactions
that happened before 14 Aug. 2019 as training data and the remaining as
test data. For both training and test data, the last interacted business is
labeled as positive instance, while five never interacted businesses of the
same category are randomly sampled as negative instances.

– CloudTheme7: A public e-commerce dataset that records the click and
purchase logs. Users and items are associated with embedding vectors given

5 The source is available at https://github.com/yuduo93/THIGE
6 https://www.yelp.com/dataset/documentation/main
7 https://tianchi.aliyun.com/dataset/dataDetail?dataId=9716
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by the dataset. We select interactions happened before the last day as train-
ing data and the remaining as test data. For both training and test data, we
treat the last interacted item as the positive instance and randomly sample
five other items of the same theme as negative instances.

– UserBehavior: An industrial dataset extracted from Taobao website, con-
sisting of “click”, “favorite”, “cart” and “buy” interactions between users
and items. For both training and test data, we utilize the actual feedback
of users as labels—among the candidates displayed to users, we take the
clicked item as the positive instance, and sample five other items from the
remaining candidates as negative instances.

5.2 Baselines and experimental settings

We compare THIGE with six representative models and showcase the effective-
ness of next-item recommendation and evaluate the effectiveness of our design
choices. The baselines are listed as follows:

– DIEN [25] and STAMP [9] are two sequential models where the former is a
hierarchical GRU to encode evolving interests and the latter is a short-term
memory priority model to extract session-based interests;

– SHAN [23] and M3R [18] focus on modeling long-term interactions to en-
hance preference learning. SHAN adopts hierarchical attention mechanisms
to fuse historical and recent interactions, while M3R models long- and short-
term interests with GRUs and attention mechanisms respectively. The two
methods treat short- and long-term preferences independently and combine
their embeddings näıvely via concatenation or addition.

– MEIRec [5] and GATNE [1] are two heterogeneous GNN-based models.
MEIRec focuses on aggregating information based on different meta-paths
without paying attention to the relevance of meta-paths, while GATNE inte-
grates multiple types of interactions with the attention mechanism but fails
to model the dynamic.

For all baselines and our method, we set embedding size d = 128, da = 128,
dT = 16, heads h = 8, the maximum iterations as 100, batch size as 128,
learning rate as 0.001 and weight of regularization as 0.001 on all three datasets.
The number of temporal buckets B is set as 60, 14, and 7 on the three datasets,
respectively. For DIEN, MEIRec and our THIGE, we set three-layers MLP with
dimensions 64, 32 and 1. For our THIGE and all baselines learning long- or short-
term preferences, we consider the last 10, 10 and 50 interactions as the short
term, and sample up to 50, 50 and 200 historical interactions as the long term
for Yelp, CloudTheme and UserBehavior respectively. We will further analyze
the impact of the length of the short term in Sect. 5.5.

We evaluate the performance of next-item recommendation with the metrics
of F1, PR-AUC and ROC-AUC.
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Table 2. Performance of next-item recommendation (with standard deviation). The
best result is in bold while the second best is underlined. PR. denotes PR-AUC and
ROC. denotes ROC-AUC.

Dataset Metric DIEN STAMP SHAN M3R MEIRec GATNE THIGE

Yelp
F1 39.52 (1.31) 40.37 (0.94) 40.17 (1.10) 33.49 (1.04) 42.86 (0.44) 42.21 (0.96) 43.77 (0.66)
PR. 30.04 (0.37) 31.36 (1.23) 32.35 (1.10) 26.40 (0.92) 32.69 (0.54) 33.39 (1.42) 36.45 (1.66)

ROC. 74.69 (0.57) 73.74 (1.15) 70.91 (1.14) 72.03 (1.33) 74.65 (0.23) 76.15 (0.64) 79.23 (0.80)

CT.
F1 25.70 (1.25) 21.42 (0.91) 26.25 (1.09) 33.54 (1.67) 25.02 (0.98) 27.33 (0.50) 37.17 (1.36)
PR. 41.16 (0.22) 25.65 (0.44) 40.92 (1.09) 34.23 (0.95) 43.86 (0.42) 44.74 (0.20) 51.94 (0.43)

ROC. 68.41 (0.34) 52.97 (0.52) 67.48 (1.06) 62.92 (0.89) 69.98 (0.35) 71.22 (0.11) 75.38 (0.33)

UB.
F1 67.32 (3.45) 63.06 (1.51) 58.84 (7.83) 61.37 (2.20) 66.48 (1.16) 67.81 (1.14) 67.19 (0.98)
PR. 63.38 (0.19) 59.09 (0.22) 63.86 (4.76) 57.68 (0.03) 64.94 (0.15) 65.42 (0.05) 65.71 (0.09)

ROC. 62.90 (0.23) 58.29 (0.40) 55.45 (3.98) 57.82 (0.09) 64.82 (0.16) 65.06 (0.08) 65.39 (0.06)

5.3 Comparison with baselines

We report the results of different methods for next-item recommendation in
Table 2. In general, THIGE achieves the best performance on the three datasets,
outperform the second best method by 4.04% on Yelp, 5.84% on CloudTheme
and 0.51% on UserBehavior.

Compared with sequential models (DIEN, STAMP, SHAN and M3R), the
reason that THIGE is superior is twofold. First, THIGE designs a more effective
way to integrate long- and short-term preferences, such that the current demands
are explicitly guided by historical habits. Second, it also considers different types
of interactions between users and items, leading to better performance.

Compared with GNN-based models (MEIRec and GATNE), the main im-
provement of THIGE comes from jointly modeling historical habits and evolving
demands. Moreover, MEIRec models heterogeneous interactions in an entirely
decoupled manner, whereas GATNE and THIGE achieves better performance
by modeling their latent relevance. It is also not surprising that heterogeneous
GNN-based methods typically outperform sequential models, as the former ac-
counts for multi-typed interactions whereas the latter only models single-typed
interactions.

5.4 Comparison of model variants

In this section, we analyze three categories of THIGE variants to evaluate the
effectiveness of our design choices, as follows.

– Attention effect: THIGE(hm) only uses the heterogeneous multi-head self-
attention, without the habit-guided attention; THIGE(hb) is the opposite,
using only the habit-guided attention.

– Range of preferences: THIGE(L) models long range only while THIGE(S)
models short rane only;

– Temporal effect: HIGE removes the temporal dimension from THIGE, treat-
ing the graph as static.
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Fig. 3. Performance comparison of THIGE and its variants.
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Fig. 4. Analyzing the length of short-term interactions in THIGE.

5.5 Analysis of key factors in THIGE

As shown in Fig. 3, our THIGE outperforms all three categories of variants. We
make the following observations. (1) Compared with THIGE(hb) and THIGE(hm),
THIGE models the latent relevance of heterogeneous preferences in a fine-grained
manner, and model the impact of historical habits on current demands, leading
to better performance. (2) Compared with THIGE(S) and THIGE(L), the joint
modeling of short- and long-term preferences can improve performance, which
also validates the assumption that the immediate decision of users is guided by
their historical habits. (3) Compared with HIGE, the improvement in THIGE
demonstrates the effectiveness of temporal embedding.

In THIGE, there are four key factors that may significantly affect the model
performance: the length of short-term interactions, the samples of long-term in-
teractions, the types of interactions and the number of latent preferences (i.e.,
the number of heads). In Fig. 4, we investigate how the length of the short term
would impact the model. We respectively fix the samples of long-term interac-
tions as 50, 50 and 200 for the three datasets, and then adjust the length of
short-term interactions. Taking Fig. 4(c) as an example, we vary the length be-
tween 10 and 75 (i.e., treat the last 10–75 actions as the short term). When the
length initially increases, the performance of THIGE is continuously improved,
until reaching a saturation at about 40 or 50. Further treating more interac-
tions as short-term has no additional benefit, which is expected as they can no
longer be considered as current demands. This also justifies that the long-term,
historical actions must be modeled differently to capture the user habit; simply
extending the length of the short term does not work.
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Fig. 5. Analyzing the samples of long-term interactions in THIGE.
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Fig. 6. Analyzing the types of interactions in THIGE.

Next, in Fig. 5, we focus on detecting the influence of the length of long-
term interactions. We respectively fix the length of short-term interactions as
10, 10 and 50 for the three datasets, and then vary the corresponding samples
of long-term interactions. It is obvious that all improvements in performance
are continuous but gradually weakened. There are two main reasons resulting
in such phenomenons. On the one hand, with the length increases, the whole
historical interactions of more and more users are captured and modeled. On
the other hand, users who contain too many interactions may be abnormal and
introduce noise that limits performance.

Furthermore, in Fig. 6, we demonstrate the contribution from different types
of interactions. Taking UserBehavior as an example, we progressively include
the interactions of “click”, “favorite”, “cart” and “buy”, one at a time. As an
example, the performance in Fig 6(c) gradually improves, implying the effective-
ness to integrate heterogeneous interactions. Moreover, comparing “favorite” and
“cart”, the “favorite” action has a smaller marginal return than “cart”, which
is not surprising given that “favorite” only have a weak tendency to induce fu-
ture “cart”, whereas “cart” actions are more likely to lead to purchases. That
also means different types of interactions cannot be treated independently. Thus,
modeling the relevance of different-typed interactions plays an important role.

Moreover, since the number of heads h in heterogeneous multi-head self-
attention mechanism reflects the number of latent preferences like categories and
brands, we also vary the number of heads from 1 to 16 on the three datasets to
analyze the influence of h in THIGE. The experimental results in Fig 7 indicate
that h = 8 is a generally suitable and robust choice.
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Fig. 7. Analyzing the number of heads in THIGE.

6 Conclusion

In this paper, we study the problem of representation learning on THIGs for
next-item recommendation. To make full use of dynamic and heterogeneous in-
formation, and propose the THIGE to model short- and long-term preferences
through habit-guided and heterogeneous self-attention mechanisms. The exten-
sive experimental results on three real-world datasets demonstrate the effective-
ness of our proposed model.
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