
Chapter 1
Introduction

Abstract Networks (or graphs) are ubiquitous in the real-world, such as social net-
works, academic networks, biological networks and so on. Heterogeneous infor-
mation network (HIN), a.k.a., heterogeneous graph (HG), is an important type of
network, which contains multiple types of nodes and edges. To date, the research
of HG has attracted extensive attentions, the most important of which is the het-
erogeneous graph representation (HGR), a.k.a., heterogeneous network embedding.
In this chapter, we first introduce some basic concepts and definitions in HG and
emphasize the importance of graph representation learning in the field of data min-
ing. Then, we analyse the unique challenges of HGR compared with homogeneous
network. In the end, we briefly introduce the organization of this book.

1.1 Basic Concepts and Definitions

Before introducing HGR, we first give some basic definitions in HG. The first is
information network, which is a template of the real-world networks. Specially, both
homogeneous network and heterogeneous network can be seen as special cases of
information network. We formally define them as follows:

Definition 1. Information Network [15]. An information network is defined as a
graph G = {V,E}, in which V and E represent the node set and the link set, respec-
tively. Each node v ∈ V and link e ∈ E is associated with their mapping functions
φ(v) : V → A and ϕ(e) : E → R, where A and R denote the node types and link
types, respectively. Homogeneous Network (or Homogeneous Graph) is an in-
stance of the information network, with |A| = |R| = 1. Heterogeneous Network
(or Heterogeneous Graph) requires |A|+ |R| > 2, i.e., it contains different types
of nodes and links.

Compared with homogeneous graph, heterogeneous graph has stronger expres-
sive power, but also more complex. An example of heterogeneous academic graph
is illustrated in Fig. 1.1a, which consists of four node types (Author, Paper, Venue,
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(a) An example of HIN (c) Meta-path

(b) Network Schema (d) Meta-graph
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Fig. 1.1 A heterogeneous academic graph, including (a) four types of nodes (i.e. Author, Paper,
Venue, Term) and three types of link (i.e., Publish, Contain, Write), (b) network schema, (c) meta-
paths (i.e. Author-Paper-Author and Paper-Term-Paper), and (d) meta-graph.

and Term) and three link types (Author-Write-Paper, Paper-Contain-Term, and
Conference-Publish-Paper). In the next, we will introduce some unique definitions
in HG, including network schema (Fig. 1.1b), meta-paths (Fig. 1.1c) and meta-graph
(Fig. 1.1d). Finally, we will give the definition of graph representation learning.

Since an HG contains multiple node types and link types, to understand the whole
structure of it, it is necessary to provide a meta-level (or schema-level) description
of the graph. Therefore, as the blueprint of HG, network schema is proposed to give
an abstraction of the graph:

Definition 2. Network Schema of G is a directed graph S = (A,R), which can be
seen as a meta template of an HG with the node type mapping function φ(v) :V →A
and the link type mapping function ϕ(e) : E →R. Fig. 1.1b illustrates the network
schema of the academic graph.

Network schema describes the associations between different types of nodes.
Based on it, we can further mine the higher-level semantics of the data. Therefore,
meta-path [16] is further proposed to capture the higher-order relationships, i.e.,
semantics, between nodes. The definition of meta-path is given below:

Definition 3. Meta-path [16]. A meta-path m is based on a network schema S ,

which is denoted as m = A1
R1−→ A2

R2−→ ·· · Rl−→ Al+1 (simplified to A1A2 · · ·Al+1)
with node types A1,A2, · · · ,Al+1 ∈ A and link types R1,R2, · · ·Rl ∈R.

Different meta-paths capture the semantic relationships from different views. For
example, the meta-path of “APA” indicates the co-author relationship and “APCPA”
represents the co-conference relation. Both of them can be used to formulate the
proximity over authors. Although meta-path can be used to depict the connections
over nodes, it fails to capture a more complex relationship, such as motifs [10]. To
address this challenge, meta-graph [6] is proposed to use a directed acyclic graph of
node and link types to capture more complex relationship between two HG nodes.
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Fig. 1.2 A toy example of graph representation. Left: the input Karate graph. Right: the output
node representations. Image is extracted from DeepWalk [11].

Definition 4. Meta-graph [6]. A meta-graph T can be seen as a directed acyclic
graph (DAG) composed of multiple meta-paths with common nodes. Formally,
meta-graph is defined as T = (VT ,ET ), where VT is a set of nodes and ET is a
set of links. For any node v ∈VT ,φ(v) ∈ A; for any link e ∈ ET ,ϕ(e) ∈R.

An example of meta-graph is shown in Fig. 1.1d, which can be regarded as the
combination of meta-path “APA” and “APCPA”, reflecting a high-order similarity of
two nodes. Note that a meta-graph can be symmetric or asymmetric [28].

The research of graph is always an important topic in machine learning. How-
ever, due to the non-Euclidean property, traditional heuristic methods suffer from
high computational cost and low parallelizability [2], which cannot be used for real
applications. Therefore, a critical challenge for this field is to find effective data
representation. Through graph representation learning, the nodes are projected into
vectors and can be incorporated with the advanced machine learning technologies
and tasks. We formalize the problem of graph representation learning as follow.

Definition 5. Graph Representation Learning [2], also known as network embed-
ding, aims to learn a function Φ : V → Rd that embeds the nodes v ∈ V in a graph
into a low-dimensional Euclidean space where d� |V|.

A toy example of graph representation learning is shown in Fig. 1.2. Through
graph representation learning, the complex network in the non-Euclidean space is
projected into a low-dimensional Euclidean space. Therefore, the high computa-
tional cost and low parallelizability issues are well solved. In the next, we will give
a brief review of the recent development of graph representation learning.

1.2 Graph Representation Learning

In the aforementioned chapter, we refer that the analysis of graphs suffers from the
high computational complexity and low parallelizability issues. To deal with these
problems, graph representation learning is proposed and rapidly becomes the major
tool in network analysis [2, 23].
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Previous graph representation learning methods focus on preserving the struc-
tural information of the graph. For example, Deepwalk [11] uses random walk to
generate node sequences and then employs the skip-gram model to lean the co-
occurrence of nodes within a window, thus capturing the local structures. LINE [17]
preserves both the first- and second-order structure similarities, node2vec [5] ex-
tends Deepwalk to global structures with a Depth-first Sampling (DFS) and Breadth-
first Sampling (BFS), M-NMF [19] learns the community structures and AROPE
[29] preserves arbitrary order proximity through Singular Value Decomposition
(SVD). In particular, Qiu et al. [12] proves that most existing graph representation
learning methods can be unified into a matrix factorization framework.

Further, some methods begin to incorporate the rich node/edge attributes in node
representation. TADW [24] jointly factorizes the adjacency matrix and text matrix
to fuse the structural and attribute information. DANE [4] enforces the structural
representations and attribute representations to be consistent, so that the learned
representations can capture these two kinds of information at the same time. ANRL
[30] designs a neighbor enhancement autoencoder. It aims to reconstruct the target
neighbors and attributes to model the structural and attribute information.

With the development of deep learning, the emerging graph neural networks
(GNNs) show powerful capability in combining the network structures and node
attributes. Graph convolutional networks (GCNs) [7] is one of the most represen-
tative work, which designs a convolutional operator in spatial domain to filter the
node attributes by network structures. Graph Attention Networks (GAT) [18] uses
self-attention to learn the important of nodes in fusing the attributes of neighbors.
Klicpera et al. propose Predict then Propagate (PPNP) [8], which incorporates per-
sonalized Pagerank into GNNs and alleviates the over-smoothing problem. SGC
[22] simplifies the design of GCN through decoupling the transformation step and
aggregation step, which not only reduces the parameters of GNNs but also acceler-
ates the training process.

In addition to the structural and attribute information, recently, some researchers
tend to explore the semantic information from the multiple node/edge types in
graphs [14], leading to the research of HGR.

1.3 Heterogeneous Graph Representation Learning and
Challenges

Different from homogeneous graph representation learning that mainly needs to pre-
serve the structural information, heterogeneous graph representation learning aims
to preserver the structural and semantic information simultaneously. However, due
to the heterogeneity of HG, HGR imposes more challenges to this problem, which
are illustrated below.

• Complex structure (the complex HG structure caused by multiple types of
nodes and edges). In a homogeneous graph, the fundamental structure can be
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considered as the so-called first-order, second-order, and even higher-order struc-
ture [11, 17, 19]. All these structures are well defined and have good intuition.
However, the structure in HG will dramatically change depending on the selected
relations. Let’s still take the bibliographic network in Fig. 1.1a as an example,
the neighbors of one paper will be authors with the “write” relation, while with
“contain” relation, the neighbors become terms. Complicating things further, the
combination of these relations, which can be considered as a higher-order struc-
ture in HG, will result in different and more complicated structures. How to ef-
ficiently and effectively preserve these complex structures is thereby an urgent
need but it is still a significant challenge in HGR, and current efforts have been
made towards the meta-path structure [3] and meta-graph structure [27], etc.

• Heterogeneous attributes (the fusion problem caused by the heterogeneity of
attributes). Since the nodes and edges in a homogeneous graph have the same
type, each dimension of the node or edge attributes has the same meaning. In
this situation, node can directly fuse the attributes of its neighbors. However, in
heterogeneous graph, the attributes of different types of nodes and edges may
have different meanings [26, 20]. For example, the attributes of author can be
the research fields, while paper may use keywords as attributes. Therefore, how
to overcome the heterogeneity of attributes and effectively fuse the attributes of
neighbors is an important challenge in HGR.

• Application dependent (the domain knowledge hidden in HG structures and
attributes). HG is closely related to the real-world applications, while many
practical problems remain unsolved. For example, constructing an appropriate
HG may require sufficient domain knowledge in a real-world application. Also,
meta-path and/or meta-graph are widely used to capture the structure of HG.
However, unlike homogeneous graph, where the structure, e.g., the first-order
and second-order structure is well defined, meta-path selection may also need
prior knowledge. Furthermore, to better facilitate the real-world applications,
we usually need to elaborately encode the side information, e.g., node attributes
[20, 26, 21, 25] or more advanced domain knowledge [13, 1, 9] to the HGR
process.

1.4 Organization of the Book

This book is written to comprehensively review the development of HGR and in-
troduce the state-of-the-art methods. We first summarize existing works from two
perspectives: method and technique, and introduce some open sources of this field.
Then we introduce the state-of-the-arts models of each category in detail. Part one
focuses on the four main HGR models. Part two introduces the development of HGR
on real-world industrial scene. Finally, we discuss the future research direction of
HGR and summarize the content of this book.

The remainder of this book is organized as follows. In Chapter 2, we summa-
rize the developments of HGR, including taxonomy, technique and open sources. In
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Chapter 3-6, we categorize existing HGR methods into four categories, including
structured-preserved HGR, attribute-assisted HGR, dynamic HGR and some other
emerging topics. In each chapter, we will introduce their unique challenges and de-
signs in detail. In Chapter 7-9, we further explore the transformativeness of existing
HGR methods that have been successfully deployed in real-world applications, e.g.,
recommendation, text mining, cash-out user detection, etc. In Chapter 10, we fore-
cast the future research directions in this field.
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