
Chapter 10
Future Research Directions

Abstract Heterogeneous Graph (HG) representation has made great progress in
recent years, which clearly shows that it is a powerful and promising graph analysis
paradigm. However, it is still a young and promising research field. In this chapter,
we first make a summarization of this book and then illustrate some advanced
topics, including challenging research issues, and explore a series of possible future
research directions. One major potential direction is exploring fundamental ways to
keep intrinsic structures or properties in HG. And another direction is to integrate the
techniques widely used or newly emerged in machine learning to further enhance the
applicability of HG on more key fields. We will illustrate more fine-grained potential
works along with these two directions.

10.1 Introduction

Heterogeneous Graph (HG) representation has significantly facilitated the HG anal-
ysis and related applications. This book conducts a comprehensive study of the state-
of-the-art HG representation methods. Thorough discussions and summarization of
the reviewed methods, along with the widely used benchmarks and resources, are
systematically presented. Then, in part one of this book, we present the advanced HG
representation techniques. Particularly, we first introduce several classical structure-
preserved HGmethods. Thesemethods preserve the heterogeneous structure bymost
fundamental elements in HG, including meta-path, relation, and network schema.
Then attribute information is introduced to enrich the characteristics of nodes. Het-
erogeneous Graph Neural Networks (HGNN) naturally provide an alternative way to
integrate attributes with structural information. Besides static heterogeneous graphs,
we introduce dynamic HGNN methods, which mainly focus on updating node rep-
resentation in an efficient way or learning node representations while considering
sequential evolution. In part two, the necessity of HG to fuse abundant heteroge-
neous interactions is comprehensively displayed in several prevalent applications.
The recommendation is one of such prevalent applications, as the interactions of
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users and items can be naturally built as an HG. Particularly, three advanced HG
based recommendation methods are presented to show the effectiveness of inte-
grating heterogeneous information. Another interesting application is using HG to
overcome data sparsity problems in text mining. We summarize the methods, which
utilize the powerful capabilities of HG to integrate extra information, to demonstrate
the superiority of HG representation methods in text mining. More importantly, one
of the unique characteristics of this book is that we not only summarise the methods
invented based on public academic data, but also the methods deployed on real-world
systems. These methods further promote the application of the HG methods towards
industrial production. We hope that this book can provide a clean sketch and key
technique summarization on HG representation, which could help both the interested
readers as well as the researchers that wish to continue working in this area.

In this chapter, we point out some promising research directions on HG repre-
sentation. Preserving HG structures and properties is deemed as one of the most
fundamental ways to encode heterogeneous information. More fundamental but
largely ignored methods are pointed out by us, such as motif/network-schema pre-
served methods, and dynamic and uncertainty properties of HG captured methods,
etc. Besides shallow methods, deep GNN is a developing topic in recent years. Self-
supervised learning and pre-training are emerged topics in GNN. And we point out
that they are also worth exploring in HGNN. Moreover, to further deepen the relia-
bility of HG representation methods in more key fields, it is important to integrate
extra knowledge to make HG representation methods more fair, robust, explainable,
and stable. Last but not least, we believe that exploring more potential industrial
applications of HG representation methods holds great promising in the further.

10.2 Preserving HG Structures

The basic success of HG representation builds on the HG structure preservation. This
also motivates many HG representation methods to exploit different HG structures,
where the most typical one is meta-path [9, 32]. Following this line, meta-graph
structure is naturally considered [43]. However, HG is far more than these structures.
Selecting themost appropriatemeta-path is still very challenging in the realworld.An
impropermeta-pathwill fundamentally hinder the performance of HG representation
method. Whether we can explore other techniques, e.g., motif [44, 16] or network
schema [45] to capture HG structure is worth pursuing. Moreover, if we rethink
the goal of traditional graph representation, i.e., replacing the structure information
with the distance/similarity in a metric space, a research direction to explore is
whether we can design a HG representation method which can naturally learn such
distance/similarity rather than using pre-defined meta-path/meta-graph.
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10.3 Capturing HG Properties

As mentioned before, many current HG representation methods mainly take the
structures into account. However, some properties, which usually provide additional
useful information tomodelHG, have not been fully considered.One typical property
is the dynamics of HG, i.e., a real world HG always evolves over time. Despite that the
incremental learning on dynamic HG is proposed [39], dynamic HG representation
is still facing big challenges. For example, [2] is only proposed with a shallow
model, which greatly limits its representation ability. How can we learn dynamic HG
representation in deep learning framework is worth pursuing. The other property is
the uncertainty of HG, i.e., the generation of HG is usuallymulti-faceted and the node
in a HG contains different semantics. Traditionally, learning a vector representation
usually cannot well capture such uncertainty. Gaussian distribution may innately
represent the uncertainty property [18, 47], which is largely ignored by current HG
representation methods. This suggests a huge potential direction for improving HG
representation.

10.4 Deep Graph Learning on HG Data

We have witnessed the great success and large impact of GNNs, where most of the
existing GNNs are proposed for homogeneous graph [19, 35]. Recently, HGNNs
have attracted considerable attention [38, 42, 11, 7].

One natural question may arise that what is the essential difference between
GNNs and HGNNs. More theoretical analysis on HGNNs are seriously lacking. For
example, it is well accepted that the GNNs suffer from over-smoothing problem
[20], so will heterogeneous GNNs also have such problem? If the answer is yes,
what factor causes the over-smoothing problem in HGNNs since they usually contain
multiple aggregation strategies [38, 42]. Moreover, some researchers have derived
the generalization bounds for GNNs [31, 30] and analyzed the key factors dominating
the generalization error. Hence, a natural question is arisen. What is the key factors
influencing the generalization ability of HG representation methods? Metapath or
the aggregation function?

In addition to theoretical analysis, new technique design is also important. One of
the most important directions is the self-supervised learning. It uses the pretext tasks
to train the neural networks, thus reducing the dependence on manual labels. [22].
Considering the actual demand that label is insufficient, self-supervised learning
can greatly benefit the unsupervised and semi-supervised learning, and has shown
remarkable performance on homogeneous graph representation [36, 33, 26, 41].
Therefore, exploring self-supervised learning on HG representation is expected to
further facilitate the development of this area.

Another important direction is the pre-training of HGNNs [15, 28]. Nowadays,
HGNNs are designed independently, i.e., the proposed method usually works well
for some certain tasks, but the transfer ability across different tasks is ill-considered.
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When dealing with a new HG or task, we have to train a HG representation method
from scratch, which is time-consuming and requires large amounts of labels. In this
situation, if there is a well pre-trained HGNN with strong generalization that can be
fine-tuned with few labels, the time and label consumption can be reduced.

10.5 Making HG Representation Reliable

Except from the properties and techniques in HG, we are also concerned about the
ethical issues in HG representation, such as fairness, robustness and interpretability.
Considering that most methods are black boxes, making HG representation reliable
is an important future work.

Fair HG Representation.The representations learned bymethods are sometimes
highly related to certain attributes, e.g., age or gender, whichmay amplify the societal
stereotypes in the prediction results [4, 10]. Therefore, learning fair or de-biased
representations is an important research direction. There are some researches on the
fairness of homogeneous graph representation [4, 29]. However, the fairness of HG
is still an unsolved problem, which is an important research direction in the further.

Robust HG Representation. Also, the robustness of HG representation, espe-
cially the adversarial attacking, is always an important problem [24]. Since many
real world applications are built based on HG, the robustness of HG representation
becomes an urgent yet unsolved problem.What is the weakness of HG representation
and how to enhance it to improve the robustness need to be further studied.

Explainable HG Representation. Moreover, in some risk aware scenarios, e.g.,
fraud detection [14] and bio-medicine [6] , the explanation of models or representa-
tions is important. A significant advantage of HG is that it contains rich semantics,
which may provide eminent insight to promote the explanation of heterogeneous
GNNs. Besides, the emerging disentangled learning [25, 23], which divides the
representation into different latent spaces to improve the interpretability, can also
be considered. Learning post-explanation model for GNNs has attracted attention
in recent years [27]. Then it is necessary to develop a post-explanation model for
HGNNs to explain the prediction mechanism of these methods.

Stable HG Representation. Furthermore, most HG representation methods as-
sume the training graph and testing graph are drawn from same distribution.However,
this assumption is easily to be violated, as distribution shifts may arise from different
environments that are common in real-world data collections pipelines, such as lo-
cations, times, experimental conditions, etc [13]. For considering the generalization
ability of HG representation methods, it is necessary to improve the stability of HG
representation methods under unknown testing environments. Causal variables and
relations are deemed to be invariant across environments. Recently, some literatures
aimed to discovery such variables in representation learning [1]. It will be a promis-
ing direction to marry causal learning with HG representation methods to enhance
the stability of HG representation methods on agnostic environments.
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10.6 Technique Deployment in Real-world Applications

Many HG-based applications have stepped into the era of graph representation. This
survey has demonstrated the strong performance of HG representationmethods on E-
commerce and cybersecurity. Exploringmore capacity of HG representation on other
areas holds great potential in the future. For example, in software engineering area,
there are complex relations among test sample, requisition form, and problem form,
which can be naturally modeled as HG. Therefore, HG representation is expected
to open up broad prospects for these new areas and become promising analytical
tool. Another area is the biological systems, which can also be naturally modeled
as a HG. A typical biological system contains many types of objects, e.g., gene
expression, chemical, phenotype, and microbe. There are also multiple relations
between gene expression and phenotype [34]. HG structure has been applied to
biological system as an analytical tool, implying that HG representation is expected
to provide more promising results. For another area, transportation prediction, the
data usually consists of heterogeneous objects, such car, traffic light, etc, and exists
in a spatiotemporal format, so it is natural to model such complex data with HG
while considering the spatiotemporal information.

In addition, since the complexity of HGNNs are relatively large and the techniques
are difficult to parallelize, it is difficult to apply the existing HGNNs to large-scale
industrial scenarios. For example, the number of nodes in E-commerce recommen-
dation may reach one billion [46]. Therefore, successful technique deployment in
various applications while resolving the scalability and efficiency challenges will be
very promising.

10.7 Others

Last but not least, there are also some important future work that cannot be summa-
rized in the previous sections. Therefore, we carefully discuss them in this section.

Hyperbolic Heterogeneous Graph Representation. Some recent researches
point out that the underlying latent space of graph may be non-Euclidean, but
in hyperbolic space [5]. Some attempts have been made towards hyperbolic
graph/heterogeneous graph representation, and the results are rather promising
[8, 21, 40]. However, how to design an effective hyperbolic heterogeneous GNNs is
still challenging, which can be another research direction.

Heterogeneous Graph Structure Learning. Under the current HG representa-
tion framework, HG is usually constructed beforehand, which is independent on the
HG representation. This may result in that the input HG is not suitable for the final
task. HG structure learning can be further integrated with HG representation, so that
they can promote each other.

Heterophily Heterogeneous Graph Representation.Current HG representation
methods focus on the leverage of network homophily. Due to recent research on
homogeneous networks that study learning network representation on Heterophily



6

network [3, 48], it would be interesting to find heterophily HG and explore how
to generalize design principles and paradigms used in heterophily homogeneous
network representation to HG representation.

Connections with Knowledge Graph.Knowledge graph representation has great
potential on knowledge reasoning [17]. However, knowledge graph representation
andHG representation are usually investigated separately. Recently, knowledge graph
representation has been successfully applied to other areas, e.g., recommender system
[12, 37]. It is worth studying that how to combine knowledge graph representation
with HG representation, and incorporate knowledge into HG representation.
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