
Chapter 11
Platforms and Practice of Heterogeneous Graph
Representation Learning

Abstract It is challenging to build a Heterogeneous Graph (HG) representation
learning model because HG is heterogeneous, irregular, and sparse. An easy-to-use
and friendly framework is important for a beginner to make an understanding and get
deep into this field. In this chapter, we are going to introduce OpenHGNN, a toolkit
that can help to build HG models in a predesigned pipeline. And we will present
the procedures with three well-known HG models that are HAN, the model first
introduces attention mechanism to heterogeneous graph neural networks, RGCN, a
model used tomodel multi-relational graphswith GCN, andHERec, a heterogeneous
graph embedding method for recommendation.

11.1 Introduction

Graph is a kind of irregular structure data. Compared to regular structure data like
images, graph cannot be directly computed by traditional deep learning platforms
(e.g. TensorFlow [1], PyTorch [6], etc.). And graph is usually very large scale
and highly sparse, which also increases the difficulty to apply these frameworks.
To tackle these problems, some libraries (e.g. DGL [9], PyG [3], etc.) have been
developed to support tensor computation over graphs with the principle of message
passing followed by most Graph Neural Network (GNN). These frameworks greatly
facilitate the implementation of GNN for engineers and researchers.

However, because a Heterogeneous Graph (HG) can be more complex than a
homogeneous graph and Heterogeneous Graph Neural Networks (HGNN) are de-
signed with different paradigms, most of the existing graph learning libraries are
not friendly enough to implement a HGNN or even don’t support HG. Here, we
are going to introduce OpenHGNN1, an open-source toolkit for HGNN based on
DGL and PyTorch, developed by BUPT GAMMA Lab2. OpenHGNN is specifically

1 https://github.com/BUPT-GAMMA/OpenHGNN
2 https://github.com/BUPT-GAMMA
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designed for heterogeneous graph representation learning, integrating many popular
models and datasets, and it is easy-to-use, extensible, and efficient.

In this chapter, we will show how to build a HGNN in practice based on Open-
HGNN. We will first give a brief introduction to the mainstream deep learning
platforms and graph leaning libraries. Then we introduce the pipeline of developing
on OpenHGNN, and the following part is three heterogeneous graph neural network
model instances (HAN [10], HERec [8], RGCN [7]) that developed on OpenHGNN.

11.2 Foundation Platforms

The platforms to be introduced below have three types: deep learning platforms,
platforms of graph machine learning, and platforms of heterogeneous graph repre-
sentation learning. These three types of platforms usually have a hierarchical relation,
i.e., platforms of graph machine learning are built upon deep learning platforms and
the platforms of heterogeneous graph representation learning are built upon plat-
forms of graph machine learning. From the first to the third type of platforms,
their application scenarios are more and more focused, and they are more and more
friendly and convenient for developing models of heterogeneous graphs.

11.2.1 Deep Learning Platforms

Deep learning platforms are collections of software which abstracts the underlying
hardware and software stacks to expose simple APIs to deep learning developers.
They usually support GPU devices and have efficiency optimizations on common
computation operations like matrix multiplication, which significantly accelerate
the computation speed of machine learning programs. Platforms of graph machine
learning are also usually built based on these deep learning platforms.

11.2.1.1 TensorFlow

TensorFlow [1] is an end-to-end open-source machine learning platform. It was
originally developed by the Google Brain team in Google’s Machine Intelligence
Research organization to conduct machine learning and deep neural networks re-
search. It is now general enough to be applicable in a wide variety of other domains.
It is one of the earliest platforms and is still thriving nowadays.

TensorFlow has a comprehensive, flexible ecosystem of tools, libraries, and com-
munity resources that lets researchers push the state-of-the-art in ML and developers
easily build and deployML-powered applications. And it provides stable Python and
C++ APIs, as well as non-guaranteed backward compatible API for other languages
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Fig. 11.1 TensorFlow Architecture

like Java and JavaScript. The modules of TensorFlow can be classified into modules
for training and modules for deployment, which can be seen in Fig. 11.1.

Beginners of deep learning platforms may be confused by the concept of the
graph mode in TensorFlow. Actually, many other deep learning platforms also have
similar concepts and hence it is worth elaborating. The graphs, also known as
computational graphs, are kinds of data structure and they can be saved, executed,
and restored without the original Python code. Graph execution enables portability
outside Python and tends to offer better performance, while you can also run a
TensorFlow program eagerly, i.e., operation by operation like a normal python
program. The eager mode has high flexibility and is easy to learn while graph mode
is more efficient.

TensorFlow has the following features:

• Easy Model Building. TensorFlow offers multiple levels of abstraction so you
can choose the right one according to your needs. Building and training models
by using the high-level Keras API can help beginners of TensorFlow and machine
learning. For large ML training tasks, TensorFlow also provides the Distribution
Strategy API for distributed training on different hardware configurations without
changing the model definition.

• Robust ML Production. TensorFlow also provides a direct and robust path to
production. Whether on servers, edge devices, or the web, training and deploying
models using TensorFlow can be easy, no matter what language or platform you
use. If you require a full production ML pipeline, TensorFlow Extended (TFX) is
needed. For running inference on mobile and edge devices, use TensorFlow Lite.
For training and deployingmodels in JavaScript environments, use TensorFlow.js.

• Powerful Experimentation for Research. As a frequently-used platform in the
research field, building and training state-of-the-art models without sacrificing
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speed or performance is a matter of course. TensorFlow provides the flexibility
and control with features like the Keras Functional API and Model Subclassing
API for creation of complex topologies. TensorFlow also supports an ecosystem
of powerful add-on libraries and models to experiment with, including Ragged
Tensors, TensorFlow Probability, Tensor2Tensor, and BERT.

11.2.1.2 PyTorch

PyTorch [6] is an open-source machine learning framework based on the Torch
library, primarily developed by Facebook’s AI Research lab (FAIR). While the
initial release of PyTorch is about one year later than TensorFlow, there is a rapidly
rising trend of its users in recent years.

PyTorch designs tensor computation (like NumPy) with strong GPU acceleration.
Hence it can be utilized as a replacement for NumPy to use the power of GPUs.
Besides, it uses a technique called reverse-mode auto-differentiation, which allows
users to change the way network behaves arbitrarily with zero lag or overhead.
Based on these characteristics, it has grown as a deep learning research platform that
provides both flexibility and speed.

PyTorch and TensorFlow are usually considered the two most famous deep learn-
ing platforms. They may be very different at the beginning while they have similar
features later. For example, in TensorFlow1.x, there was no eager mode which made
debugging on TensorFlow codes very difficult. Nowadays, both PyTorch and Ten-
sorFlow have graph mode and eager mode.

PyTorch has the following features:

• Production Ready. With TorchScript, PyTorch provides ease-of-use and flexibil-
ity in eager mode, while seamlessly transitioning to graph mode for speed, opti-
mization, and functionality in C++ runtime environments. For deploying PyTorch
models at scale, TorchServe is an easy-to-use tool. It is cloud and environment ag-
nostic and supports features such asmulti-model serving, logging, metrics and the
creation of RESTful endpoints for application integration. PyTorch also supports
asynchronous execution of collective operations and peer-to-peer communication
accessible from both Python and C++, which are helpful for distributed training.

• Robust Ecosystem. An active community of researchers and developers have
built a rich ecosystem of tools and libraries, which can extend PyTorch and
support development in nearly all machine learning fields from computer vision to
reinforcement learning. PyTorch also supports exporting models in the standard
ONNX (Open Neural Network Exchange) format for direct access to ONNX-
compatible platforms, runtimes, visualizers, etc. Furthermore, PyTorch is well
supported on mainstream cloud platforms, providing frictionless development
and easy scaling through prebuilt images, large-scale training on GPUs, ability
to run models in a production scale environment, etc.

• C++ Frontend. Except Python, PyTorch also provides a C++ frontend. It is a pure
C++ interface that follows the design and architecture of the Python frontend. It
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is intended to enable research in high performance, low latency, and bare metal
C++ applications.

11.2.1.3 MXNet

Apache MXNet [2] is an open-source deep learning software framework, developed
byApache software foundation.Unlike the rest three deep learning platforms,MXNet
does not have a background of a single company or institution.

MXNet is designed for both efficiency and flexibility, which is similar to the design
philosophy of PyTorch. It allows users to mix symbolic and imperative programming
to maximize both efficiency and productivity. At its core, MXNet contains a dynamic
dependency scheduler that automatically parallelizes both symbolic and imperative
operations on the fly. A graph optimization layer on top of that makes symbolic
execution fast and memory efficient.

MXNet has the following features:

• Hybrid FrontendMXNet provides hybridize functionality to switch to symbolic
mode from imperative mode simply.

• Distributed Training. MXNet supports multi-gpu or multi-host training with
near-linear scaling efficiency. MXNet recently introduced support for Horovod,
the distributed learning framework developed by Uber.

• 8 Language Bindings. MXNet supports 8 languages. It is integrated into Python
deeply and supports Scala, Julia, Clojure, Java, C++, R, and Perl. Combined
with the hybridization feature, this allows a very smooth transition from Python
training to deployment in the language of your choice to shorten the time to
production.

11.2.1.4 PaddlePaddle

PaddlePaddle3 is an open-source deep learning platform which is derived from
industry practice. It is developed by Baidu based on its research and industrial
application experience of deep learning technologies.

A prominent characteristic of PaddlePaddle is that it has a close relation with the
industry field. For example, there are abundant open-source algorithms, especially
pre-trained models integrated into the platform, which can accelerate the application
to industrial scenarios.

PaddlePaddle has the following features:

• Convenient Development. PaddlePaddle also supports both declarative and im-
perative programming. The network structures can be designed automatically to
some degree, and even in some scenarios, the auto-designed model can outper-
form human experts.

3 https://paddlepaddle.org.cn
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• Large-Scale Training. PaddlePaddle supports hundreds of billions of features
and trillions of parameters, which is necessary for industrial development.

• Deployment on Multiple Terminals. PaddlePaddle is compatible with models
trained by multiple open-source frameworks and can be deployed to multiple
kinds of terminals with high inference speed.

11.2.2 Platforms of Graph Machine Learning

In the early years, without platforms of graph machine learning, developers and
researchers had to design graph machine learning models on deep learning platforms
mentioned above. However, there are significant semantic gaps between the tensor-
centric perspective of the platforms above and that of a graph. The performance
gaps between the computation and memory-access patterns, which are induced by
the sparse nature of graphs and the underlying parallel hardware optimized for dense
tensor operations, also exist. Hence platforms of graph machine learning thrives
in recent years to abstract and integrate these to provide a succinct programming
interface.

11.2.2.1 DGL

DGL [9], Deep Graph Library, is an easy-to-use, high-performance, and scalable
Python package for deep learning on graphs. It is built for easy implementation of
graph neural network model family, on the top of existing deep learning frameworks.
The main sponsors of DGL include AWS, NSF, NVIDIA, and Intel.

DGL is framework agnostic, meaning if a deep graph model is a component of
an end-to-end application, the rest of the logics can be implemented in any major
frameworks, such as PyTorch, ApacheMXNet or TensorFlow. DGL offers a versatile
control of message passing, speed optimization via auto-batching and highly tuned
sparse matrix kernels, and multi-GPU/CPU training to scale to graphs of hundreds
of millions of nodes and edges.

DGL has the following features:

• Framework Agnostic. The backend platform of DGL can be anyone of PyTorch,
TensorFlow, and MXNet. Users can choose their familiar deep learning platforms
and get used to DGL in a short time.

• Supporting GPU Well DGL provides a powerful graph class that can reside on
either CPU or GPU. It bundles structural data as well as features for a better
control. DGL provides a variety of functions for computing with graph objects
including efficient and customizable message passing primitives for graph neural
networks.

• Models, Modules, and Benchmarks DGL collects a rich set of example imple-
mentations of popular GNN models of a wide range of topics. Researchers can
search for related models to innovate new ideas from or use them as baselines
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for experiments. Moreover, DGL provides many state-of-the-art GNN layers and
modules for users to build new model architectures based on them.

• Scalable and Efficient DGL distills the computational patterns of GNNs into a
few generalized sparse tensor operations suitable for extensive parallelization. It
also extensively optimizes the whole stack to reduce the overhead in communica-
tion, memory consumption, and synchronization. As a result, it is convenient to
train models using DGL on large-scale graphs across multiple GPUs or multiple
machines and relatively easy to scale to billion-sized graphs.

11.2.2.2 PyG

PyG [3], PyTorch Geometric, is a library for deep learning on irregularly structured
input data such as graphs, point clouds, and manifolds built upon PyTorch.

PyG contains various methods for deep learning on graphs and other irregular
structures, also known as geometric deep learning, from a variety of published
papers. It also contains easy-to-use mini-batch loaders for operating on many small
and single giant graphs, multi-GPU support, a large number of common benchmark
datasets, the GraphGym experiment manager, and helpful transforms for learning
on arbitrary graphs, 3D meshes, or point clouds. Unlike DGL, PyG can only use
PyTorch as its backend.

PyG has the following features:

• Friendly to PyTorchUsers PyG is especially friendly to PyTorch users. It utilizes
a tensor-centric API and keeps design principles close to vanilla PyTorch.

• Comprehensive and Well-maintained GNN Models PyG also contains Com-
prehensive and well-maintained GNN models. Most of the state-of-the-art Graph
Neural Network architectures have been implemented by library developers or
authors of research papers.

• High Flexibility Existing PyGmodels can easily be extended for conducting your
own research with GNNs. Making modifications to existing models or creating
new architectures is simple, thanks to its easy-to-use message passing API, and a
variety of operators and utility functions.

• GraphGym Integration GraphGym lets users easily reproduce GNN experi-
ments, and is able to launch and analyze thousands of different GNN configu-
rations. It is also customizable by registering new modules to a GNN learning
pipeline.

11.2.3 Platforms of Heterogeneous Graph Representation Learning

It may seem that platforms of graph machine learning are strong enough after having
a tour on them, while heterogeneous graph representation learning has its unique
characteristics. To handle heterogeneous node types and relation types and mine the



8

abundant semantic information behind them, heterogeneous graphmodels are usually
more complicated than usual graph models, while many mainstream heterogeneous
models are not integrated into the platforms of graph machine learning mentioned
above. Furthermore, the training procedures of heterogeneousmodels are also usually
more complicated, which may be an obstacle for beginners to comprehend.

Fig. 11.2 OpenHGNN Architecture

OpenHGNN4 is an open-source toolkit for heterogeneous graph neural networks
based on DGL and PyTorch, developed by BUPT GAMMA Lab.

The main modules of OpenHGNN are dataset, model, sampler, layer and task,
which are shown in Fig. 11.2. The functions and relations of these modules will be
elaborated on in the next section.

OpenHGNN is helpful to its users in every aspect in the field of heterogeneous
graphmodels. Reading thewell-organizedmodel codes provided by the librarymakes
users more clear to details of models, comprehending the trainerflow architectures
makes users more familiar with heterogeneous graph tasks and modifying on these
models makes users build their new models conveniently and flexibly. OpenHGNN
is also convenient for researchers to test model performances as baselines in one
command. Here is an example:

python main.py -m GTN -d imdb4GTN -t node_classification -g 0

OpenHGNN has the following features:

• Various Models OpenHGNN provides many open-source mainstream heteroge-
neous models, such as HAN, HetGNN [12] and GTN [11]. It is more convenient
to learn heterogeneous models by virtue of well-organized and well-commented
model codes. Modification on these existing models are also easy.

4 https://github.com/BUPT-GAMMA/OpenHGNN
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• High Extensibility OpenHGNN is highly extensible. It unifies all these models
into a single framework composed of tasks and models, which will be elaborated
on later. Datasets, trainerflows andmodels are decoupled well, and therefore users
can customize one of them without affecting others. For example, if a user wants
to implement his own model, he does not have to implement the trainer flow and
only needs to implement the bare model class.

• High Efficiency The efficiency of OpenHGNN is guaranteed by the efficient APIs
of the backend DGL.

11.3 Practice of Heterogeneous Graph Representation Learning

Fig. 11.3 Pipline of OpenHGNN

In this part, wewill showhow to build a heterogeneous graph learningmodel based
on OpenHGNN in practice. OpenHGNN mainly contains three parts, trainerflow,
model and task. The relations between them are shown in Fig 11.3. The trainerflow,
containing the model and the task, is an abstraction of a predesigned workflow that
trains and evaluates a model on a given dataset for a specific use case. The model
plays the role of an encoder and it will output the node embedding for a given
heterogeneous graph. The task makes a connection between the embeddings and
downstream tasks.

In the next part of the section, wewill show how to build a newmodel from scratch
with source codes. The rest of this section is organized in the following order:

• Construct a dataset. This part will introduce how to construct a new dataset
OpenHGNN not integrated.Wewill first introduce how to create a dgl.heter-
ograph object and then how to integrate it to OpenHGNN.
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• Build a trainerflow. Not all the models follow a universal training procedure,
especially for HGNN. In this part, we will show how to implement a model and
how to build a new trainerflow for it if needed.

• Examples in practice. The last part is the implementation of three models (i.e.
HAN [10], RGCN [7], HERec [8]).

11.3.1 Build a New Dataset

In order to better introduce the pipeline and practice of OpenHGNN, we first in-
troduce the data structure and data processing in OpenHGNN. We have processed
a number of heterogeneous graph dataset in advance and integrated into the Open-
HGNN. Several types of datasets including academic networks (e.g., ACM, DBLP,
Aminer), information networks (e.g., IMDB, LastFM), and recommendation graphs
(e.g., Amazon, MovieLens, Yelp) are the most wildly-used datasets which could be
specified directly when running experiments with the command line.

Before implementing a model or testing an existing model performance, we need
to check if the dataset is supported by OpenHGNN. If not, what we should do first
is to construct a new dataset. In this section, we use the ACM dataset [10] for node
classification as an example to show the procedures.

First we will show an example about how to build a node classification dataset.
In DGL, a HG is specified with a series of relation subgraphs as below. Each rela-
tion name is a string (source node type, edge type, destination
node type) associated with a relation subgraph. The following code snippet is
an example of creating a heterogeneous graph in DGL.

>>> import dgl

>>> import torch as th

>>> # Create a heterograph with 3 node types and 3 edge types.

>>> graph_data = {

... ('drug','interacts','drug'): (th.tensor([0,1]), th.tensor([1,2])),

... ('drug','interacts','gene'): (th.tensor([0,1]), th.tensor([2,3])),

... ('drug','treats','disease'): (th.tensor([1]), th.tensor([2]))

... }

>>> g = dgl.heterograph(graph_data)

>>> g.ntypes

['disease', 'drug', 'gene']

>>> g.etypes

['interacts', 'interacts', 'treats']

>>> g.canonical_etypes

[('drug', 'interacts', 'drug'),

('drug', 'interacts', 'gene'),

('drug', 'treats', 'disease')]
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We recommend to set the feature name as ’h’.

>>> g.nodes['drug'].data['h'] = th.ones(3, 1)

DGL provides dgl.save_graphs and dgl.load_graphs respectively
for saving and loading heterogeneous graphs in binary format. So we can use
dgl.save_graphs to store graphs into the disk.

>>> dgl.save_graphs("demo_graph.bin", g)

Now a binary file containing the dataset has been created, and we should move
it to the directory openhgnn/dataset/. In NodeClassificationDataset.py, the dataset
will be loaded and some extra information will also be needed. For example, the
category, num_classes and multi_label (if necessary) should be set with
"drug", 3, True, representing the node type to predict, the number of classes, and
whether the task is multi-label classification respectively.

>>> if name_dataset == 'demo_graph':

... data_path = './openhgnn/dataset/demo_graph.bin'

... g, _ = load_graphs(data_path)

... g = g[0].long()

... self.category = 'drug'

... self.num_classes = 3

... self.multi_label = False

We have described how to construct a heterogeneous graph in DGL. In the
following part, we will introduce how to build the ACM dataset. We will first provide
the description of the dataset and then we will show how to process the original file
to DGL heterogeneous graph data structure.

The ACM dataset is a citation network that is commonly used on HGNN. There
are four node types and eight link types in the original ACM dataset. Node types
contain paper, author, subject and term. Each node has a unique ID and a type ID
used to identify the node type. Taking paper as an example, it contains a unique ID,
the type ID of the node(e.g. 0 for paper) and the feature of this node. In the original
txt file, each row represents a node and its format is as follows:

0 ’Influence and correlation...’ 0 "1,1,1..."
1 ’Efficient semi-streaming...’ 0 "0,1,0..."
...
3025 ’IMohammad Mahdian’ 1 "1,1,1..."
3026 ’Ravi Kumar’ 1 "1,1,1..."
...
The first column is node ID, the second column is node name, the third column

is node type ID and the last column is node feature and the feature dimensions of
nodes with the same type are consistent. The meta information of node type are as
follows:
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{

"node type":

{

"0": "paper",

"1": "author",

"2": "subject",

"3": "term"

}

}

Note that node IDs are continuous. Taking paper-cite-paper as an edge example,
it contains the source node ID, the target node ID, the edge type ID (e.g. 0 for
paper-cite-paper and 7 for term-paper) and the weight of each edge (In ACM dataset,
all weights are 1.0). In the original file, each row represents an edge and its format
is as follows:

0 179 0 1.0
0 2697 0 1.0
1 2523 0 1.0
1 2589 0 1.0
...
For example, the first column means an edge from node 0 to node 179, the edge

type ID is 0 and the edge weight is 1.0. The meta information of edge type are as
follows:

{

"link type": {

"0": {

"start": 0,

"end": 0,

"meaning": "paper-cite-paper"

},

...

"7": {

"start": 3,

"end": 0,

"meaning": "term-paper"

}

}

}

Finally, there is a file about node label. Each row represents the target node ID,
the node type and its category, and the format is as follows:

622 0 2
1923 0 0
951 0 0
1957 0 1
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Note that only the target node has category (paper is the target node type here),
so each element in the second column has the same value 0. The meta information
of node category are as follows:

{

"node type": {

"0": {

"0": "database",

"1": "wireless communication",

"2": "data mining"

}

}

}

For example, the paper node 622 belongs to the data mining field and the paper
node 1923 is published in the database field.

In the next part, we first show how to generate a dictionary which can be trans-
formed into DGL heterogeneous graph data structure. This can be done by the
following code:

>>> meta_graphs = {}

>>> for i in range(8):

... edge = edges[edges[2] == i]

... source_node = edge.iloc[:,0].values -

... np.min(edge.iloc[:,0].values)

... target_node = edge.iloc[:,1].values -

... np.min(edge.iloc[:,1].values)

... meta_graphs[(node_info[str(link_info[str(i)]['start'])],

... link_info[str(i)]['meaning'],

... node_info[str(link_info[str(i)]['end'])])]

... = (torch.tensor(source_node), torch.tensor(target_node))

Then a heterogeneous graph object can be constructedwith functiondgl.hete-
rograph:

>>> g = dgl.heterograph(meta_graphs)

The following code can store node features directly on the graph:

>>> g.nodes['paper'].data['h'] = torch.FloatTensor(paper_feature)

>>> g.nodes['author'].data['h'] = torch.FloatTensor(author_feature)

>>> g.nodes['subject'].data['h'] = torch.FloatTensor(subject_feature)

>>> dgl.save_graphs("acm.bin", g)

In the end, we can output the specific details of the processed graph through the
following code:
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>>> import dgl

>>> g = dgl.load_graphs('acm.bin')

>>> print(g)

Graph(num_nodes={'author':5959, 'paper':3025, 'subject':56, 'term':1902},

num_edges={('author', 'author-paper', 'paper'): 9949,

('paper', 'paper-author', 'author'): 9949,

('paper', 'paper-cite-paper', 'paper'): 5343,

('paper', 'paper-ref-paper', 'paper'): 5343,

('paper', 'paper-subject', 'subject'): 3025,

('paper', 'paper-term', 'term'): 255619,

('subject', 'subject-paper', 'paper'): 3025,

('term', 'term-paper', 'paper'): 255619},

metagraph=[('author', 'paper', 'author-paper'),

('paper', 'author', 'paper-author'),

('paper', 'paper', 'paper-cite-paper'),

('paper', 'paper', 'paper-ref-paper'),

('paper', 'subject', 'paper-subject'),

('paper', 'term', 'paper-term'),

('subject', 'paper', 'subject-paper'),

('term', 'paper', 'term-paper')])

By now, the binary graph file you stored can be used directly by OpenHGNN to train
your model.

11.3.2 Build a New Model

11.3.2.1 Model

The model acts as a graph encoder. Given a heterogeneous graph and node features,
the model will return a dictionary of node embeddings. It also allows to output the
embedding of target nodes which are participated in loss calculation.

TheModelmainly consists of two parts, amodel builder and a forward propagator.
Each model inherits the BaseModel class, and must implement the classmethod
build_model_from_args. With that, two parameters named args and hg can
be used to build up a custom model with model-specific hyper-parameters. So it is
necessary to implement the function build_model_from_args in the model.
Here is an example:

class RGAT(BaseModel):

@classmethod def build_model_from_args(cls, args, hg):

return cls(in_dim=args.hidden_dim,

out_dim=args.hidden_dim,

h_dim=args.out_dim,
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etypes=hg.etypes,

num_heads=args.num_heads,

dropout=args.dropout)

The function forward is the core of the model. It is noted that in OpenHGNN,
we prepossess the feature of dataset outside of model. Specifically, we use a linear
layer with a bias for each node type to map all node features to a shared feature space.
So the parameter h_dict of forward in model is not original, and the model need
not feature prepossessing.

11.3.2.2 Trainerflow

The trainerflow, containing themodel and the task, is an abstraction of a predesigned-
workflow that trains and evaluates a model on a given dataset for specific utilization.

As shown in Fig. 11.3, the trainerflow contains the whole training process. A
Trainerflow object includes task, model, optimizer and dataloader in order to
execute the training process. The main training process is done by function train
and the single training step is done by _full_train_step and its mini-batch
version _mini_train_step. After one or several training steps, the function
_test_step can be applied to test the validation performance of model to select
the best model parameters.

There are three main trainers named node_classification_flow which is designed
for a semi-supervised node classification model, link_prediction which is designed
link-prediction task and recommendation for recommendation scenario.

Some models (e.g. HetGNN [12], HeGAN [4] etc.) demanding special training
processes has their own trainerflow. Generally, if the paper has a fancy loss function
or an accelerated sampling method, it needs a customized trainerflow.

The following demo may give a sight of how a trainerflow organized and worked
in OpenHGNN.

class Trainerflow(BaseFlow):

def train():

# _full_train_step()

# _test_step()

def _full_train_step():

# output = model(input)

# loss = loss_fn(output, label)

# loss.backward()

# optimizer.step()

def _test_step():

# task.evaluate()
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11.3.2.3 Task

The Task module encapsulates several objects related to the task, includingDataset,
Evaluator, Labels and dataset_split. The dataset contains the heterogeneous graph
as DGLGraph, as well as node/edge features and additional dataset-specific infor-
mation. The evaluator takes the predictions of the model and the labels to give the
evaluation results and this can be done by the function evaluate. The function
get_graphwill return the DGLGraph, and the function get_labelswill return
the ground truth labels. There are three kinds of supported tasks in the OpenHGNN,
including Node classification, Link prediction and Recommendation.

11.3.2.4 Register in OpenHGNN

Before training the model in OpenHGNN, what we should do first is to register the
model with @register_model(New_model). Here is an example:

from openhgnn.models import BaseModel, register_model

@register_model('New_model')

class New_model(BaseModel):

# Implementation details

The training process of models differs from each other, which needs a model
trainer that can be applied. Similar to the implementation of a model, we need
to register the model trainer with @register_trainer("New_trainer").
Here is an example:

from openhgnn.trainerflow import BaseFlow, register_flow

@register_flow('New_trainer')

class New_trainer(BaseFlow):

# Implementation details

For more details about the developing process based on OpenHGNN, please refer
to the official documents5. In the following of the section, we will introduce several
examples on how to implement a model based on OpenHGNN.

11.3.3 Practice of HAN

HAN [10] firstly proposes a heterogeneous graph neural network based on the
hierarchical attention, including node-level and semantic-level attentions. It enables
the graph neural network to be directly applied to the heterogeneous graph, and
further facilitates the heterogeneous graph based applications.

5 https://openhgnn.readthedocs.io/en/latest/
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The node-level attention aims to learn the importance between a node and its
meta-path based neighbors. The mathematical formulas are as follows:
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The semantic-level attention is able to learn the importance of different meta-
paths. The mathematical formula is as follows:

/ = F0CC (/Φ1 , /Φ2 , ..., /Φ? ).

With the importance score learned from both node-level and semantic-level,
the proposed model can generate node embedding by aggregating features from
neighbors based on meta-path in a hierarchical manner. In the following part, we
will show how to use OpenHGNN to implement it.

11.3.3.1 HAN basemodel

To create a model HAN, we could imitate the case of 11.3.2. In this section, we will
show each functional part of the HAN source code and explain the message passing
process over HG and its mathematical definition. We implement the class method
build_model_from_args, other functions like __init__. Here is our code.

@register_model('HAN')

class HAN(BaseModel):

@classmethod

def build_model_from_args(cls, args, hg):

if args.meta_paths is None:

meta_paths = extract_metapaths(args.category,

hg.canonical_etypes)

else:

meta_paths = args.meta_paths

return cls(meta_paths=meta_paths,

category=args.category,

in_size=args.hidden_dim,

hidden_size=args.hidden_dim,

out_size=args.out_dim,

num_heads=args.num_heads,

dropout=args.dropout)
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def __init__(self, meta_paths, category, in_size, hidden_size,

out_size, num_heads, dropout):

super(HAN, self).__init__()

self.category = category

self.layers = nn.ModuleList()

self.layers.append(HANLayer(meta_paths, in_size, hidden_size,

num_heads[0], dropout))

for l in range(1, len(num_heads)):

self.layers.append(

HANLayer(meta_paths, hidden_size * num_heads[l-1],

hidden_size, num_heads[l], dropout)

)

self.linear = nn.Linear(hidden_size * num_heads[-1], out_size)

def forward(self, g, h_dict):

h = h_dict[self.category]

for gnn in self.layers:

h = gnn(g, h)

return {self.category: self.linear(h)}

This piece of code is the overall structure aboutHANmodel. Function__init__
will initialize the model and the function forward will encoder original features
into new features. In general, the model should output all the node embeddings in
a form of dictionary. It is allowed to output only the embedding of the target node
participating in the loss calculation.

11.3.3.2 HANlayer

HAN is mainly composed of two parts, Node-level Attention and Semantic-level
Attention. The model which we implement in OpenHGNN incorporates these two
parts in HANLayer.

class HANLayer(nn.Module):

def __init__(self, meta_paths, in_size, out_size,

layer_num_heads, dropout):

super(HANLayer, self).__init__()

self.meta_paths = meta_paths

# One GAT layer for each meta path based adjacency matrix

self.gat_layers = nn.ModuleList()

semantic_attention = SemanticAttention(in_size=out_size

* layer_num_heads)

self.model = MetapathConv(

meta_paths,
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[GATConv(in_size, out_size, layer_num_heads, dropout,

activation=F.elu, allow_zero_in_degree=True)

for _ in meta_paths],

semantic_attention

)

self._cached_graph = None

self._cached_coalesced_graph = {}

def forward(self, g, h):

if self._cached_graph is None or self._cached_graph is not g:

self._cached_graph = g

self._cached_coalesced_graph.clear()

for meta_path in self.meta_paths:

self._cached_coalesced_graph[meta_path] =

dgl.metapath_reachable_graph(g, meta_path)

h = self.model(self._cached_coalesced_graph, h)

return h

Metapath Subgraph Extraction

We use dgl.metapath_reachable_graph(g,meta_path) API encapsu-
lated by DGL to extract homogeneous graph from heterogeneous graph according
to meta-path. For example:

g = dgl.heterograph({

('A', 'AB', 'B'): ([0, 1, 2], [1, 2, 3]),

('B', 'BA', 'A'): ([1, 2, 3], [0, 1, 2])})

new_g = dgl.metapath_reachable_graph(g, ['AB', 'BA'])

new_g.edges(order='eid')

# (tensor([0, 1, 2]), tensor([0, 1, 2]))

This part of code is the core component of HAN. HANLayer is inherited from
nn.Module and acts as a complete aggregation of HAN. We use GATConv,
which is implemented by DGL, to implement the node-level attention mechanism.
And semantic-level attention is implemented by MetapathConv, which we will
introduce later.

After the aggregation of node-level attention mechanism, we will get node em-
beddings based on different meta-paths, as much as the predetermined meta-paths.
At the same time, we extend node-level attention to multi-head attention and con-
catenate the learned embeddings to enhance the representation power of the model.
Then based on different meta-paths we perform semantic-level attention fusion to
learn different importance weights of each meta-path. The code of MetapathConv
is as follows:
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class MetapathConv(nn.Module):

def __init__(self, meta_paths, mods, macro_func, **kargs):

super(MetapathConv, self).__init__()

# One GAT layer for each meta path based adjacency matrix

self.mods = nn.ModuleList(mods)

self.meta_paths = meta_paths

self.SemanticConv = macro_func

def forward(self, g_list, h):

for i, meta_path in enumerate(self.meta_paths):

new_g = g_list[meta_path]

semantic_embeddings.append(self.mods[i](new_g, h).flatten(1))

return self.SemanticConv(semantic_embeddings)

self.SemanticConv is an aggregation function fusing meta-paths and we
could get the final embeddings by it.

The code of SemanticConv is as follows:

class SemanticAttention(nn.Module):

def __init__(self, in_size, hidden_size=128):

super(SemanticAttention, self).__init__()

self.project = nn.Sequential(

nn.Linear(in_size, hidden_size),

nn.Tanh(),

nn.Linear(hidden_size, 1, bias=False)

)

def forward(self, z, nty=None):

if len(z) == 0:

return None

z = torch.stack(z, dim=1)

w = self.project(z).mean(0) # (M, 1)

beta = torch.softmax(w, dim=0) # (M, 1)

beta = beta.expand((z.shape[0],) + beta.shape) # (N, M, 1)

return (beta * z).sum(1) # (N, D * K)

After that, we will get the final embedding which aggregates all meta-paths
information by Attention mechanism.
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11.3.4 Practice of RGCN

RGCN [7] is the first to show that the GCN [5] framework can be applied to
modeling relational data, which contributes to the application of neural network
in heterogeneous graph. In RGCN, we execute graph convolution on subgraph of
every relation to produce subrelation representations. Then we can weight the sum
of these subrelation representations include a self-loop representation. The weight is
the normalized in-degree of every relation. This is the key of RGCN. We summarize
the above as the following formula.
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OpenHGNN also uses DGL method which is based on message passing mecha-

nism to implement RGCN layer. In this part, we focus on describing the interface of
RGCN and the code of convolution.

Here is the interface of RGCN model in OpenHGNN:

def __init__(self, in_dim, h_dim, out_dim, etypes, num_bases,

num_hidden_layers=1, dropout=0, use_self_loop=False)

Next is the code of RelGraphConvLayer:

self.conv = dglnn.HeteroGraphConv({

rel: dglnn.GraphConv(in_feat, out_feat, norm='right',

weight=False, bias=False)for rel in rel_names

})

The function HeteroGraphConv receives a dictionary containing all the sub-
graph convolution models as a parameter. DGL gives a pseudo-code for implemen-
tation of HeteroGraphConv:

outputs = {nty : [] for nty in g.dsttypes}

# Apply submodules on their associating relation graphs in parallel

for relation in g.canonical_etypes:

stype, etype, dtype = relation

dstdata = relation_submodule(g[relation], ...)

outputs[dtype].append(dstdata)

# Aggregate the results for each destination node type

rsts = {}

for ntype, ntype_outputs in outputs.items():

if len(ntype_outputs) != 0:

rsts[ntype] = aggregate(ntype_outputs)

return rsts
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The code of self.conv used in forward function:

def forward(self, g, inputs):

g = g.local_var()

if self.use_weight:

weight = self.basis() if self.use_basis else self.weight

wdict = {self.rel_names[i]: {'weight': w.squeeze(0)}

for i, w in enumerate(th.split(weight, 1, dim=0))}

else:

wdict = {}

if g.is_block:

inputs_src = inputs

inputs_dst = {k: v[:g.number_of_dst_nodes(k)]

for k, v in inputs.items()}

else:

inputs_src = inputs_dst = inputs

hs = self.conv(g, inputs_src, mod_kwargs=wdict)

The function forward receives a parameter inputs which contains the input
of function HeteroGraphConv. The dict inputs_src contains node features
for each node type and the dict wdict is the weight dict of every subrelation which
is used in a linear or non-linear transformation.

11.3.5 Practice of HERec

HERec [8] is the first attempt which adopts the network embedding approach to
extract useful information from heterogeneous information network and leverage
such information for rating prediction. HERec mainly contains two key components:
metapath-based random walk and Skip-Gram model. As a practice of HERec, we
will focus on the former component metapath-based random walk. As the earliest
model, HERec utilizes a similar random walk with meatapth2vec model. And we
will introduce how to implement the two ways of random walk.

11.3.5.1 HERec random walk

Asmentioned in 11.3.3.2, we use thedgl.metapath_reachable_graph(g,
meta_path) API to extract metapth subgraph which is a homogeneous graph.

For a homogeneous graph, we can use the random walk applied in the homo-
geneous graph. dgl.sampling.random_walk provides an API to generate
random walk traces.



23

Example of normal random walk, g1 will generate four traces from the source
nodes [0, 1, 2, 0] and each trace has five nodes.

>>> g1 = dgl.graph(([0, 1, 1, 2, 3], [1, 2, 3, 0, 0]))

>>> dgl.sampling.random_walk(g1, [0, 1, 2, 0], length=4)

(tensor([[0, 1, 2, 0, 1],

[1, 3, 0, 1, 3],

[2, 0, 1, 3, 0],

[0, 1, 2, 0, 1]]), tensor([0, 0, 0, 0, 0]))

Taking ACM as an example, we extract two metapath subgraphs with metapath
PAP and PSP. PAP-subgraph can generate traces by random walk.

>>> PAP = ['paper-author', 'author-paper']

>>> PSP = ['paper-subject', 'subject-paper']

>>> pap_subgraph = dgl.metapath_reachable_graph(hg, PAP)

Graph(num_nodes=3025, num_edges=29767,

ndata_schemes={'test_mask': Scheme(shape=(), dtype=torch.uint8),

'train_mask': Scheme(shape=(), dtype=torch.uint8),

'label': Scheme(shape=(), dtype=torch.float32),

'h': Scheme(shape=(1902,), dtype=torch.float32)}

edata_schemes={})

>>> psp_subgraph = dgl.metapath_reachable_graph(hg, PSP)

Graph(num_nodes=3025, num_edges=2217089,

ndata_schemes={'test_mask': Scheme(shape=(), dtype=torch.uint8),

'train_mask': Scheme(shape=(), dtype=torch.uint8),

'label': Scheme(shape=(), dtype=torch.float32),

'h': Scheme(shape=(1902,), dtype=torch.float32)}

edata_schemes={})

>>> pap_traces = dgl.sampling.random_walk(pap_subgraph,

... torch.arange(pap_subgraph.num_nodes()), length=4)

(tensor([[ 0, 0, 20, 1807, 734],

[ 1, 773, 5, 1, 2576],

[ 2, 2519, 2701, 616, 616],

...,

[3022, 1678, 3022, 275, 275],

[3023, 3023, 3023, 3023, 3023],

[3024, 3024, 3024, 3024, 3024]]), tensor([0, 0, 0, 0, 0]))

>>> psp_traces = dgl.sampling.random_walk(psp_subgraph,

... torch.arange(psp_subgraph.num_nodes()), length=4)

(tensor([[ 0, 75, 75, 586, 716],

[ 1, 1764, 2512, 1468, 1641],

[ 2, 189, 2786, 737, 2743],

...,

[3022, 2641, 347, 684, 2923],
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[3023, 722, 2707, 2394, 1380],

[3024, 1450, 235, 803, 1884]]), tensor([0, 0, 0, 0, 0]))

And traces could generate embedding through skipgram model. Finally, we can
get the final embedding by fusing the twometapath-types embedding of paper nodes.

11.3.5.2 Metapath random walk

We also generate random walk traces from an array of starting nodes directly based
on the given metapath.

>>> g2 = dgl.heterograph({

... ('user','follow','user'): ([0, 1, 1, 2, 3], [1, 2, 3, 0, 0]),

... ('user','view','item'): ([0, 0, 1, 2, 3, 3], [0, 1, 1, 2, 2, 1]),

... ('item','viewed-by','user'): ([0, 1, 1, 2, 2, 1],

... [0, 0, 1, 2, 3, 3])

... })

>>> dgl.sampling.random_walk(g2, [0, 1, 2, 0],

... metapath=['follow', 'view', 'viewed-by'] * 2)

(tensor([[0, 1, 1, 1, 2, 2, 3],

[1, 3, 1, 1, 2, 2, 2],

[2, 0, 1, 1, 3, 1, 1],

[0, 1, 1, 0, 1, 1, 3]]), tensor([0, 0, 1, 0, 0, 1, 0]))

Taking ACM as an example too, we will generate traces throughmetapath PAPAP.

>>> dgl.sampling.random_walk(

... hg, torch.arange(hg.num_nodes('paper')),

... metapath=['paper-author', 'author-paper']*2)

(tensor([[ 0, 1, 731, 1, 20],

[ 1, 3, 1, 5, 1],

[ 2, 7, 229, 12, 4],

...,

[3022, 3774, 1678, 3775, 1678],

[3023, 5915, 2998, 5915, 2998],

[3024, 5956, 3024, 5955, 3024]]), tensor([1, 0, 1, 0, 1]))

11.4 Conclusion

The implementation of HGNN is a major obstacle for a beginner getting started.
Although the source codes of some models are released, it is not easy to understand
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and apply to new tasks.With the help of OpenHGNN, we can easily implement a new
model and test the performance among various datasets. This chapter introduces the
HGNN toolkit OpenHGNN and the pipeline of implementing a new model on it. We
also provide three classical model implementation instances. The first model is HAN,
which is the first model to introduce attention mechanism to HGNN. The second is
RGCN, the first model to use graph convolution network to model multi-relational
graph. The last one is HERec, which applies heterogeneous graph embedding to
recommendation scenarios. These models are the most representative for learning
on heterogeneous graphs. For the built-in models and datasets, we can run the
model in just one command. For non-built-in models or datasets, implementation
and testing are also very simple. OpenHGNN is under developing and more features
and more models (including graph embedding methods) will be incorporated in
the future version. For more details about OpenHGNN, please visit the website
https://github.com/BUPT-GAMMA/OpenHGNN.
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