
Chapter 2
The State-of-the-art of Heterogeneous Graph
Representation

Abstract In this chapter, we give a comprehensive review of the recent develop-
ment on heterogeneous graph representation (HGR) methods and techniques. In the
method aspect, according to the information used in HGR, existing works are di-
vided into four categories, i.e., structure-preserved HGR, attribute-assisted HGR,
dynamic HGR and application-oriented HGR. In the technique aspect, we summary
five commonly used techniques in HGR and categorize them into shallow model
and deep model. In addition, we also provide some public sources, e.g., benchmark
datasets, source code and available tools.

2.1 Method Taxonomy

Various types of nodes and links in HG bring complex graph structures and rich
attributes, i.e., the heterogeneity of HG. To make the node representation capture
the heterogeneity, we need to consider the information of different aspects, including
graph structures, attributes, specific domain knowledge and so on. In this chapter,
we categorize the existing methods into four categories based on the information
they used in HGR. An overview of existing HGR methods explored in this book is
shown in Fig. 2.1.

2.1.1 Structure-preserved Representation

One basic requirement of graph representation is to preserve the graph structures
properly [7]. For example, in the homogeneous graph representation, existing works
consider a lot of graph structures, e.g., first-order structure [37], second-order struc-
ture [47, 50], high-order structure [1, 71] and community structure [53]. Due to the
heterogeneity of HG, the graph structures become more complex, and even have
semantic information, e.g., the co-author relationship. Therefore, an important di-
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Fig. 2.1 An overview of heterogeneous graph representation methods.

rection of HGR is to learn both the structural and semantic information simulta-
neously. In this chapter, we review the typical structured-preserved HGR methods.
Each of them considers different structures in HG, including link/edge, meta-path,
and subgraph.

A basic requirement of HGR is to preserve the multiple relationships, i.e., links,
in node representations. Different from homogeneous graph, links in HG have dif-
ferent types and semantics. To distinguish various types of links, one classical idea
is to project them into different metric spaces, rather than a unified metric space. A
representative work of this idea is PME [4], which treats each link type as a rela-
tion and uses a relation-specific matrix to transform the nodes into different metric
spaces. In this way, nodes connected by different types of links can be close to each
other in different metric spaces, thus capturing the heterogeneity of the graph. Dif-
ferent from PME, EOE [59] and HeGAN [21] use the relation-specific matrix to
calculate the similarity between two nodes. AspEM [43] and HEER [44] aim to
maximize the probability of existing links. Generally, the key point of designing
link-based methods is to find a proper heterogeneous similarity function to preserve
the proximity between nodes.

Link-based methods can only capture the local structures of HG, i.e., the first-
order information. In fact, the higher-order relation, describing more complex se-
mantic information (e.g., the co-author relationship), is also critical for HGR. Meta-
path is a commonly used tool in modeling the high-order relationship of HG. A
representative work is metapath2vec [8], which uses metapath-guided random walk
to generate heterogeneous node sequences with rich semantics; and then it designs
a heterogeneous skip-gram technique to preserve the proximity between nodes and
their context nodes. Based on metapath2vec, a series of variants have been pro-
posed. For example, Spacey [17] designs a heterogeneous spacey random walk to
unify different meta-paths into a second-order hyper-matrix. JUST [26] proposes a
random walk method with Jump and Stay strategies, which can flexibly choose to
change or maintain the type of the next node in the random walk without meta-path.
BHIN2vec [29] designs an extended skip-gram technique to balance the various
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types of relations. HHNE [57] conducts the metapath-guided random walk in hy-
perbolic spaces [18]. Besides, HEAD [52] separates the node representations into
intrinsic representations and meta-path specific representations, so that the highly
coupled representations can be well disentangled and become more robust.

Subgraph represents a more complex structure of HG. Incorporating subgraphs
into graph representation can significantly improve the ability of capturing com-
plex structural relationship. Zhang et al. propose metagraph2vec [67], which uses
a metagraph-guided random walk to generate heterogeneous node sequence. Then
a heterogeneous skip-gram technique [8] is employed to learn the node representa-
tions. Based on this strategy, metagraph2vec can capture the high-order similarity
and rich semantic information between nodes. DHNE [49] is a hyperedge-based
HGR method. Specifically, it designs a novel deep model to produce a non-linear
tuple-wise similarity function while capturing the local and global structures of a
given HG.

Compared with link and meta-path, subgraph usually contains more higher-order
structural and semantic information. However, one obstacle of subgraph-based HGR
methods is the high complexity of subgraph. Therefore, how to balance the effec-
tiveness and efficiency is required for a practical subgraph-based HGR methods,
which is worthy of further exploration.

2.1.2 Attribute-assisted Representation

In addition to the graph structures, another important component of HGR is the rich
attributes. Attribute-assisted HGR methods, i.e., heterogeneous graph neural net-
works (HGNNs), aim to encode the complex structures and rich attributes together
to learn node representations. Different from graph neural networks (GNNs) that
can directly fuse the attributes of neighbors to update node representations, HGNNs
need to overcome the heterogeneity of node/edge attributes and design effective
fusion mechanisms to utilize the neighborhood information, which is more chal-
lenging. In this chapter, we divide HGNNs into unsupervised and semi-supervised
settings, and discuss their own pros and cons.

The goal of unsupervised HGNNs is to learn node representations that benefit
downstream tasks in an unsupervised manner. To this end, they usually utilize the
interactions between different types of nodes/edges to capture the potential proxim-
ity, so that the learned representation can have good generalization.

HetGNN [65] is the representative work of unsupervised HGNNs. It consists of
three parts: content aggregation, neighbor aggregation and type aggregation. Con-
tent aggregation is designed to fuse the multiple attributes in a node, e.g., a film can
have image and text attributes simultaneously. Neighbor aggregation aims to aggre-
gate the nodes with same type. And type aggregation uses an attention mechanism
to mix the representations of different types and produces the final node representa-
tions. Through these three components, HetGNN can preserve the heterogeneity of
both graph structures and node attributes. Some other unsupervised methods can be
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regarded as special cases of HetGNN because they either capture the heterogeneity
of node attributes or the heterogeneity of graph structures. HNE [3] is proposed to
learn representations for the cross-model data in HG, but it ignores the various types
of links. SHNE [66] focuses on capturing the semantic information of nodes by de-
signing a deep semantic encoder with gated recurrent units (GRU) [6]. Although
it uses heterogeneous skip-gram to preserve the heterogeneity of graph, SHNE is
designed only for text data.

Besides, GATNE [2] aims to learn node representations in multiplex graph, i.e.,
a heterogeneous graph with different types of edges. Therefore, it pays more at-
tention to distinguish different link relationships. HeCo [55] uses self-supervised
learning, i.e., contrastive learning, to generate supervised signals. It designs a novel
co-contrastive mechanism to capture the meta-path information and network schema
information simultaneously.

It can be seen that the purpose of unsupervised HGNNs is to save as much in-
formation as possible. For example, HetGNN uses three types of aggregation func-
tions to learn the information of content, neighbor and node type separately. HeCo
captures the information of meta-path and network schema. The reason is that the
representations learned by unsupervised HGNNs need to be used for downstream
tasks, so that it should cover the information of different aspects.

Different from unsupervised HGNNs, semi-supervised HGNNs aim to learn
task-specific node representations. Therefore, they prefer to use attention mecha-
nism to capture the most relevant structural and attribute information. Wang et al.
[54] propose heterogeneous graph attention network (HAN), which uses a hierar-
chical attention mechanism to capture both node and semantic importance. Then
a series of attention-based HGNNs were proposed [12, 19, 25, 13]. MAGNN [12]
designs intra-metapath aggregation and inter-metapath aggregation. HetSANN [19]
and HGT [25] use self-attention mechanism, which treats one type of node as query
to calculate the importance of other types of nodes around it. [13] uses meta-paths
as virtual edges to enhance the performance of graph attention operator.

Compared with structure-preserved HGR methods, HGNNs have an obvious ad-
vantage that they have the ability of inductive learning, i.e., learning representations
for the out-of-sample nodes [20]. Besides, HGNNs need less memory space because
they only need to store model parameters. These two reasons are important for the
real-world applications. However, they still suffer from the huge time costing in
inference and retraining.

2.1.3 Dynamic Representation

The real-world graphs are constantly changing over time. For example, in the social
platform, people follow and unfollow others daily. Therefore, capturing the temporal
information of HG is an important research direction. In this chapter, we introduce
the typical dynamic HGR methods, which can be divided into two categories: incre-
mental update and retrained update methods. The former learns the representation
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of new node in the next timestamp by utilize existing node representations, while
the latter retrains the models in each timestamp.

DyHNE [56] is an incremental update method based on the theory of matrix per-
turbation, which aims to learn node representations, and considers both the hetero-
geneity and evolution of HG at the same time. DyHNE first preserves the meta-path
based first- and second-order proximity. Then it uses the perturbation of meta-path
augmented adjacency matrices to capture the changes of graph. Besides, some meth-
ods try to use GNNs to learn node or edge representations in each timestamp and
then design some advanced neural network, e.g., RNN or attention mechanism, to
capture the temporal information of HG. DyHATR [61] aims to capture the temporal
information through the changes of nodes representations in different timestamps.
To this end, it first designs a hierarchical attention mechanism (HAT), which con-
tains a node- and edge-level attention, to learn node representations by fusing the
attributes of neighbors.

It can be seen that the incremental update methods are efficient, but they can only
capture the short-term temporal information, i.e., the last timestamp [61]. Besides,
incremental update methods focus on utilizing non-linear model, and lack expres-
sive power. On the contrary, the retrained update methods employ neural networks
to capture the long-term temporal information. However, they suffer from the high
computational cost. Therefore, how to combine the advantages of these two kinds
of models is an important problem.

2.1.4 Application-oriented Representation

HGR can be integrated with some specific applications. In this situation, one usually
needs to consider two factors: one is how to construct an HG for a specific applica-
tion, another is what information, i.e., domain knowledge, should be incorporated
into HGR. Here, we discuss three common types of applications: recommendation,
classification and proximity search.

Recommendation can be naturally modeled as a link prediction task on HG,
where there are at least two types of nodes to represent users and items separately,
and links represent the interaction between them. Therefore, HGR is widely used in
the recommendation scenario [41]. Besides, other types of information, such as the
social relationships, can be easily applied to HG [42], so applying HGR to recom-
mendation application is an important research field.

HERec [39] aims to learn the representations of users and items under differ-
ent meta-paths and fuse them for recommendation. It first finds the co-occurrence
of users and items based on the metapath-guided random walks on user-item HG.
Then it uses node2vec [14] to learn preliminary representation from node sequences
of users and items. Because the representations under different meta-paths contain
different semantic information, for better recommendation performance, HERec de-
signs a fusion function to unify the multiple representations. Apart from random
walk, some methods try to use matrix factorization to learn user and item represen-
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tations. HeteRec [62] considers the implicit user feedback in HG. HeteroMF [27]
designs a heterogeneous matrix factorization technique to consider the context de-
pendence of different types of nodes. FMG [72] incorporates meta-graph into HGR,
which can capture some special patterns between users and items.

Previous methods mainly use non-linear model to learn the representations of
users and items, which cannot fully capture users’ preferences. Therefore, some neu-
ral network-based methods are proposed. One of the most important techniques is
attention mechanism. MCRec [22] designs a neural co-attention mechanism to cap-
ture the relationship between user, item and meta-path. NeuACF [16] and HueRec
[58] first calculate multiple metapath-based user-item proximity matrices. Then an
attention mechanism is designed to learn the importance of different proximity ma-
trices, which learns the importance of users’ preferences.

Another type of methods is to apply HGNNs to recommendation. PGCN [60]
converts the user-item interaction sequences into item-item graph, user-item graph
and user-sequence graph. Then it designs an HGNN to aggregate the information of
user and item in the three graphs, thus capturing the collaborative filtering signals.
SHCF [30] uses HGNNs to capture both the high-order heterogeneous collaborative
signals and sequential information simultaneously. GNewsRec [23] and GNUD [24]
are designed for news recommendation. They consider both the content information
of news and the collaborative information between users and news.

Classification is a fundamental task in machine learning. Here we mainly intro-
duce two types of classification tasks that require models to capture the heterogene-
ity of HG: author identification [5, 64, 36] and user identification [70, 10, 69].

Author identification aims to find the potential authors for an anonymous paper
in the academic network. Camel [64] is designed to consider both the content infor-
mation, e.g., the text of papers, and context information, e.g., the co-occurrence of
paper, author and conference. PAHNE [5] uses meta-paths to augment the pair-wise
relations between paper and author. TaPEm [36] further maximizes the proximity
between the paper-author pair and the context path around them.

User identification requires the model to make use of the heterogeneity of HG
to learn discriminating user representations with weak supervision information.
Player2vec [70], AHIN2vec [10] and Vendor2vec [69] are the principal methods.
They can be summarized as a general framework: first, some advanced neural net-
works are used to learn preliminary node representations from the input features.
Then the representations will be propagated on the constructed HG to capture the
heterogeneity of HG. Finally, a semi-supervised loss function is used to make the
node representations contain application-specific information. Under the guidance
of partially labeled nodes, the node representations can distinguish special users
from the ordinary users in the graph, which can be used for user identification.

Proximity search aims to find the nodes that are closest to the target node by
using structural and semantic information of HG. Some earlier studies have deal
with this problem in homogeneous graphs, for example, web search [28]. Recently,
some methods try to utilize HG in proximity search [45, 40]. However, these meth-
ods only use some statistical information, e.g., the number of connected meta-paths,
to measure the similarity of two nodes in HG, which lack flexibility. With the de-
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velopment of deep learning, some graph representation methods are proposed. IPE
[31] considers the interactions among different meta-path instances and proposes an
interactive-paths structure to improve the performance of HGR. SPE [32] proposes
a subgraph-augmented HGR method, which uses a stacked autoencoder to learn the
subgraph representation so as to enhance the effect of semantic proximity search.
D2AGE [33] explores the directed acyclic graph (DAG) structure for better mea-
suring the similarity between two nodes and designs a DAG-LSTM to learn node
representations.

In summary, incorporating HGR into specific applications usually needs to con-
sider the domain knowledge. For example, in recommendation, meta-path “user-
item-user” can be used to capture the user-based collaborative filtering, while “item-
user-item” represents the item-based collaborative filtering; in proximity search,
the methods use meta-paths to capture the semantic relationships between nodes,
thus enhancing the performance. Therefore, utilizing HG to capture the application-
specific domain knowledge is essential for application-oriented HGR.

2.2 Technique Summary

In this chapter, from the technical perspective, we summarize the widely used tech-
niques (or models) in HGR, which can be generally divided into two categories:
shallow model and deep model.

2.2.1 Shallow Model

Early HGR methods focus on employing shallow model. They first initialize the
node representations randomly, and then learn the node representations through op-
timizing some well-designed objective functions. We divide the shallow model into
two categories: random walk-based and decomposition-based.

Random walk-based. In homogeneous graph, random walk, which generates
some node sequences in a graph, is usually used to capture the local structure of
a graph [14]. While in heterogeneous graph, the node sequence should contain
not only the structural information, but also the semantic information. Therefore,
a series of semantic-aware random walk techniques are proposed [68, 8, 17, 26,
29, 57, 39]. For example, metapath2vec [8] uses meta-path-guided random walk
to capture the semantic information of two nodes, e.g., the co-author relationship
in academic graph. Spacey [17] and metagraph2vec [67] design metagraph-guided
random walks, which preserve a more complex similarity between two nodes.

Decomposition-based. Decomposition-based techniques aim to decompose HG
into several sub-graphs and preserve the proximity of nodes in each sub-graph [4,
59, 43, 44, 35, 46, 15]. PME [4] decomposes the heterogeneous graph into some
bipartite graphs according to the types of links and projects each bipartite graph
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into a relation-specific semantic space. PTE [46] divides the documents into word-
word graph, word-document graph and word-label graph. Then it uses LINE [47]
to learn the shared node representations for each sub-graph. HEBE [15] samples
a series of subgraphs from an HG and preserves the proximity between the center
node and its subgraph.

2.2.2 Deep Model

Deep model aims to use advanced neural networks to learn representation from the
node attributes or the interactions among nodes, which can be roughly divided into
three categories: message passing-based, encoder-decoder-based and adversarial-
based.

Message passing-based. The idea of message passing is to send the node rep-
resentation to its neighbors, which is always used in GNNs. The key component
of message passing-based techniques is to design a suitable aggregation function,
which can capture the semantic information of HG [54, 12, 19, 65, 2, 74, 63, 77, 38].
For example, HAN [54] designs a hierarchical attention mechanism to learn the im-
portance of different nodes and meta-paths, which captures both structural infor-
mation and semantic information of HG. HetGNN [65] uses bi-LSTM to aggregate
the representation of neighbors so as to learn the deep interactions among heteroge-
neous nodes. GTN [63] designs an aggregation function, which can find the suitable
meta-paths automatically during the process of message passing.

Encoder-decoder-based. Encoder-decoder-based techniques aim to employ some
neural networks as encoder to learn representation from node attributes and design
a decoder to preserve some properties of the graphs [49, 3, 66, 5, 64, 36]. For ex-
ample, HNE [3] focuses on multi-modal heterogeneous graph. It uses CNN and au-
toencoder to learn representation from images and texts, respectively. Then it uses
the representation to predict whether there is a link between the images and texts.
Camel [64] uses GRU as encoder to learn paper representation from the abstracts. A
skip-gram objective function is used to preserve the local structures of the graphs.
DHNE [49] uses autoencoder to learn representation for the nodes in a hyperedge.
Then it designs a binary classification loss to preserve the indecomposability of the
hyper-graph.

Adversarial-based. Adversarial-based techniques utilize the game between gen-
erator and discriminator to learn robust node representation. In homogeneous graph,
the adversarial-based techniques only consider the structural information, for exam-
ple, GraphGAN [51] uses Breadth First Search when generating virtual nodes. In
a heterogeneous graph, the discriminator and generator are designed to be relation-
aware, which captures the rich semantics on HGs. HeGAN [22] is the first to use
GAN in HGR. It incorporates the multiple relations into the generator and discrim-
inator, so that the heterogeneity of a given graph can be considered. MV-ACM [76]
uses GAN to generate the complementary views by computing the similarity of
nodes in different views.
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2.3 Open Sources

In this chapter, we summarize the commonly used datasets of HGR. In addition, we
will introduce some useful resources and open-source tools about HGR.

2.3.1 Benchmark Datasets

High-quality datasets are essential for academic research. Here, we introduce some
popular real-world HG datasets, which can be divided into three categories: aca-
demic networks, business networks and film networks.

• DBLP2 This is a network that reflects the relationship between authors and pa-
pers. There are four types of nodes: author, paper, term and venue.

• Aminer3 This academic network is similar to DBLP, but with two additional
node types: keyword and conference.

• Yelp4 This is a social media network, including five types of nodes: user, busi-
ness, compliment, city and category.

• Amazon5 This is an E-commercial network, which records the interactive infor-
mation between users and products, including co-viewing, co-purchasing, etc.

• IMDB6 This is a film rating network, recording the preferences of users on dif-
ferent films. Each film contains its directors, actors and genre.

• Douban7 This network is similar to IMDB, but it contains more user information,
such as the group and location of the users.

2.3.2 Open-source Code

Source code is important for researchers to reproduce the corresponding method. In
Table 2.1, we refer to the related papers of the datasets. Furthermore, we collect the
source code of the related papers and list them in Table 2.1. Besides, we provide
some commonly used website about graph representation.

• Stanford Network Analysis Project (SNAP). It is a network analysis and graph
mining library, which contains different types of networks and multiple network
analysis tools. The address is http://snap.stanford.edu/.

2 http://dblp.uni-trier.de
3 https://www.aminer.cn
4 http://www.yelp.com/dataset challenge/
5 http://jmcauley.ucsd.edu/data/amazon
6 https://grouplens.org/datasets/movielens/100k/
7 http://movie.douban.com/



10

Table 2.1 Source code of related papers.

Method Source code Programing platform
metapath2vec [8] https://github.com/apple2373/metapath2vec Tensorflow
metagraph2vec [67] https://github.com/daokunzhang/MetaGraph2Vec C++
AspEM [43] https://github.com/ysyushi/aspem Python
HEER [44] https://github.com/GentleZhu/HEER Python
HEBE [15] https://github.com/olittle/Hebe C++
JUST [26] https://github.com/eXascaleInfolab/JUST Python
HIN2vec [11] https://github.com/csiesheep/hin2vec Python & C++
BHIN2vec [29] https://github.com/sh0416/BHIN2VEC Pytorch
HHNE [57] https://github.com/ydzhang-stormstout/HHNE C++
HeRec [39] https://github.com/librahu/HERec Python
MNE [68] https://github.com/HKUST-KnowComp/MNE Python
PTE [46] https://github.com/mnqu/PTE C++
RHINE [34] https://github.com/rootlu/RHINE Pytorch
HAN [54] https://github.com/Jhy1993/HAN Tensorflow
MAGNN [12] https://github.com/cynricfu/MAGNN Pytorch
HetSANN [19] https://github.com/didi/hetsann Tensorflow
HGT [25] https://github.com/acbull/pyHGT Pytorch
HetGNN [65] https://github.com/chuxuzhang/KDD2019 HetGNN Pytorch
GATNE [2] https://github.com/THUDM/GATNE Pytorch
RSHN [77] https://github.com/CheriseZhu/RSHN Pytorch
RGCN [38] https://github.com/tkipf/relational-gcn Tensorflow
IntentGC [75] https://github.com/peter14121/intentgc-models Python
MEIRec [9] https://github.com/googlebaba/KDD2019-MEIRec Tensorflow
GNUD [24] https://github.com/siyongxu/GNUD Tensorflow
FMG [73] https://github.com/HKUST-KnowComp/FMG Python & C++
HeteRec [62] https://github.com/mukulg17/HeteRec R
DHNE [49] https://github.com/tadpole/DHNE Tensorflow
SHNE [66] https://github.com/chuxuzhang/WSDM2019SHNE Pytorch
NSHE [74] https://github.com/Andy-Border/NSHE Pytorch
PAHNE [5] https://github.com/chentingpc/GuidedHeteEmbedding C++
Camel [64] https://github.com/chuxuzhang/WWW2018Camel Tensorflow
TaPEm [36] https://github.com/pcy1302/TapEM Python
HeGAN [21] https://github.com/librahu/HeGAN Tensorflow
DyHNE [56] https://github.com/rootlu/DyHNE Python & Matlab

• ArnetMiner (AMiner) [48]. In the early days, it was an academic network used
for data mining. Now it becomes to a comprehensive academic system that pro-
vides a variety of academic resources. The address is https://www.aminer.cn/.

• Open Academic Society (OAS). It is an open and expanding knowledge graph for
research and education, contributed by Microsoft Research and AMiner. It pub-
lishes Open Academic Graph (OAG), which unifies two billion-scale academic
graphs. The address is https://www.openacademic.ai/.

• HG Resources. It is a website focusing on heterogeneous graphs, which collects
a series of papers on HG and divides them into different categories, including
classficiation, clustering and embedding. Code and datasets of the popular meth-
ods are also provided. The address is http://shichuan.org/.
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2.3.3 Available Tools

Open-source platforms and toolkits can help researchers build the workflow of graph
representation quickly and easily. Generally, there are many toolkits designed for
homogeneous graph. For example, OpenNE8 and CogDL9. However, the toolkits
and platforms for heterogeneous graph are rarely mentioned. To bring this gap,
we summary the popular toolkits and platforms that are suitable for heterogeneous
graph.

• AliGraph. It is an industrial-grade machine learning platform for graph data, sup-
porting the calculation of hundreds of millions of nodes and edges. Besides, it
considers the characteristics of real-world industrial graph data, i.e., large-scale,
heterogeneous, attributed and dynamic, and makes special optimizations. One
instance can be found in https://www.aliyun.com/product/bigdata/product.

• Deep Graph Library (DGL). It is an open-source deep learning platform for graph
data, which designs its own data structures and implements many popular meth-
ods. Specifically, it provides independent Application Programming Interfaces
(APIs) for homogeneous graph, heterogeneous graph and knowledge graph. One
instance can be found in https://www.dgl.ai/.

• Pytorch Geometric. It is a geometric deep learning extension library for pytorch.
Specifically, it focuses on the methods for deep learning on graphs and other ir-
regular structures. Same as DGL, it also has its own data structures and operators.
One instance can be found in https://pytorch-geometric.readthedocs.io/en/latest/.

• OpenHINE. It is an open-source toolkit for HGR, which implements many pop-
ular HGR methods with a unified data interface. One instance can be found in
https://github.com/BUPT-GAMMA/OpenHINE.
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