
Chapter 3
Relevance Measure of Heterogeneous Objects

Abstract Similarity search is an important function in many applications, which
usually focuses on measuring the similarity between objects with the same type.
However, inmany scenarios,weneed tomeasure the relatedness betweenobjectswith
different types. With the surge of study on heterogeneous networks, the relevance
measure on objects with different types becomes increasingly important. In this
chapter, we study the relevance search problem in heterogeneous networks, where
the task is to measure the relatedness of heterogeneous objects (including objects
with the same type or different types). And then, we introduce a novel measure
HeteSim and its extended version.

3.1 HeteSim: A Uniform and Symmetric Relevance
Measure

3.1.1 Overview

Similarity search is an important task in a wide range of applications, such as Web
search [15] and product recommendations [11]. The key of similarity search is simi-
larity measure, which evaluates the similarity of object pairs. Similarity measure has
been extensively studied for traditional categorical and numerical data types, such as
Jaccard coefficient and cosine similarity. There are also a few studies on leveraging
link information in networks to measure the node similarity, such as Personalized
PageRank [7], SimRank [6], and PathSim [21]. Conventional study on the similarity
measure focuses on objects with the same type. That is, the objects being measured
are of the same type, such as “document-to-document” and “Webpage-to-Webpage.”
There are very few studies on similarity measure on objects with different types. That
is, the objects being measured are of different types, such as “author-to-conference”
and “user-to-movie.” It is reasonable. The similarity of objects with different types is
a little against our common sense. Moreover, different from the similarity of objects
with the same type, which can bemeasured on homogeneous situation (e.g., the same
feature space or homogeneous link structure), it is even harder to define the similarity
of objects with different types.
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However, the similarity of objects with different types is not only meaningful but
also useful in some scenarios. For example, Prof. Jiawei Han is more relevant to
KDD than IJCAI. Moreover, the similarity measure of objects with different types
is needed in many applications. For example, in a recommended system, we need to
know the relatedness between users and items to make accurate recommendations
[5]. In an automatic profile extraction application, we need tomeasure the relatedness
of objects with different types, such as authors and conferences, and conferences and
organizations. Particularly, with the advent of study on heterogeneous information
networks [20, 21], it is not only increasingly important but also feasible to study the
relatedness among objects with different types. Heterogeneous information networks
are the logical networks involving multiple-typed objects and multiple-typed links
denoting different relations [4]. It is clear that heterogeneous information networks
are ubiquitous and form a critical component of modern information infrastructure
[4]. So it is essential to provide a relevance search function on objects with different
types in such networks, which is the base of many applications. Since objects with
different types coexist in the same network, their relevance measure is possible
through link structure.

In this chapter, we study the relevance search problem in heterogeneous informa-
tion networks. The aim of relevance search is to effectively measure the relatedness
of heterogeneous objects (including objects with the same type or different types).
Different from the similarity search which measures only the similarity of objects
with the same type, the relevance search measures the relatedness among hetero-
geneous objects and it is not limited to objects with the same type. Distinct from
relational retrieval [13, 23] in information retrieval domain, here relevance search is
done on heterogeneous networks which can be constructed frommetadata of objects.
Moreover, we think that a desirable relevance measure should satisfy the symmetry
property based on the following reasons: (1) The symmetric measure is more general
and useful in many learning tasks. Although the symmetry property is not necessary
in the query task, it is essential for many important tasks, such as clustering and
collaborative filtering. Moreover, it is the necessary condition for a metric. (2) The
symmetric measure makes more sense in many applications, especially for the relat-
edness of heterogeneous object pairs. For example, in some applications, we need
to answer the question like who has similar importance to the SIGIR conference
as Jiawei Han to KDD. Through comparing the relatedness of object pairs, we can
deduce the information of their relative importance. However, it can only be done by
the symmetric measure, not the asymmetric measure.

Inspired by the intuition that two objects are related if they are referenced by
related objects, we propose a general framework, called HeteSim, to evaluate the
relatedness of heterogeneous objects in heterogeneous networks. HeteSim is a path-
based relevancemeasure,which can effectively capture the subtle semantics of search
paths. Based on pairwise randomwalkmodel,HeteSim treats arbitrary search paths in
a uniform way, which guarantees the symmetric property of HeteSim. An additional
benefit is that HeteSim can evaluate the relatedness of objects with the same- or
different types in the sameway.Moreover,HeteSim is a semi-metricmeasure. In other
words, HeteSim satisfies the properties of nonnegativity, identity of indiscernibles,
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and symmetry. It implies that HeteSim can be used in many learning tasks (e.g.,
clustering and collaborative filtering). We also consider the computation issue of
HeteSim and propose four fast computation strategies.

3.1.2 The HeteSim Measure

In many domains, similar objects are more likely to be related to some other similar
objects. For example, similar researchers usually publish many similar papers, and
similar customers purchase similar commodities. As a consequence, two objects
are similar if they are referenced by similar objects. This intuition is also fit for
heterogeneous objects. For example, a researcher is more relevant to the conferences
that the researcher has published papers in, and a customer is more faithful to the
brands that the customer usually purchases. Although the similar idea has been
applied in SimRank [6], it is limited to homogeneous networks. When we apply the
idea to heterogeneous networks, it faces the following challenges: (1) The relatedness
of heterogeneous objects is path-constrained. The meta path not only captures the
semantics information but also constrains the walk path. So we need to design a path-
based similarity measure. (2) A uniform and symmetric measure should be designed
for arbitrary paths. For a given path (symmetric or asymmetric), the measure can
evaluate the relatedness of heterogeneous object pair (same or different types) with
one single score. In the following section, we will illustrate these challenges and
their solutions in detail.

3.1.2.1 Path-Based Relevance Measure

Different from homogeneous networks, the paths in heterogeneous networks have
semantics, which makes the relatedness of object pair depend on the given meta
path. Following the basic idea that similar objects are related to similar objects, we
propose a path-based relevance measure: HeteSim.

Definition 3.1 (HeteSim) Given a meta path P = R1 ◦ R2 ◦ · · · ◦ Rl, the HeteSim
score between two objects s and t (s ∈ R1.S and t ∈ Rl.T ) is:

HeteSim(s, t|R1 ◦ R2 ◦ · · · ◦ Rl) =
1

|O(s|R1)||I(t|Rl)|
|O(s|R1)|∑

i=1

|I(t|Rl)|∑

j=1

HeteSim(Oi(s|R1), Ij(t|Rl)|R2 ◦ · · · ◦ Rl−1) (3.1)

where O(s|R1) is the out-neighbors of s based on relation R1, and I(t|Rl) is the
in-neighbors of t based on relation Rl.
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When s does not have any out-neighbors (i.e., O(s|R1) = ∅) or t does not have
any in-neighbors (i.e., I(t|Rl) = ∅) following the path, we have no way to infer any
relatedness between s and t in this case, so we define their relevance score to be 0.
Particularly, we consider objects with the same type to have self-relation (denoted
as I relation), and each object only has self-relation with itself. It is obvious that an
object is just similar to itself for I relation. So its relevance measure can be defined
as follows:

Definition 3.2 (HeteSim based on self-relation) The HeteSim score between two
same-typed objects s and t based on the self-relation I is:

HeteSim(s, t|I) = δ(s, t) (3.2)

where δ(s, t) = 1, if s and t are same, or else δ(s, t) = 0.

Equation3.1 shows that the computation of HeteSim(s, t|P) needs to iterate over
all pairs (Oi(s|R1), Ij(t|Rl)) of (s, t) along the path (s along the path and t against
path), and sum up the relatedness of these pairs. Then, we normalize it by the total
number of out-neighbors of s and in-neighbors of t. That is, the relatedness between
s and t is the average relatedness between the out-neighbors of s and the in-neighbors
of t. The process continues until s and t meet along the path. Similar to SimRank [6],
HeteSim is also based onpairwise randomwalk,while it considers the path constraint.
As we know, SimRank measures how soon two random surfers are expected to meet
at the same node [6]. By contrast, HeteSim(s, t|P) measures how likely s and t
will meet at the same node when s follows along the path and t goes against the
path.

3.1.2.2 Decomposition of Meta Path

Unfortunately, the source object s and the target object t may not meet along a given
path P. For the similarity measure of same-typed objects, the meta paths are usually
even-length, even symmetric, so the source object and the target object will meet at
the middle objects. However, for the relevance measure of different-typed objects,
the meta paths are usually odd-length. In this condition, the source and target objects
will never meet at the same objects. Taking the APVC path as an example, authors
along the path and conferences against the path will never meet in the same objects.
So the original HeteSim is not suitable for odd-length meta paths. In order to solve
this difficulty, a basic idea is to transform odd-length paths into even-length paths,
and thus, the source and target objects are always able to meet at the same objects.
As a consequence, an arbitrary path can be decomposed as two equal-length paths.

When the length l of a meta path P = (A1A2 · · ·Al+1) is even, the source objects
(along the path) and the target objects (against the path) will meet in the middle
type object M = A l

2 +1 on the middle position mid = l
2 + 1, so the meta path P
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can be divided into two equal-length path PL and PR. That is, P = PLPR, where
PL = A1A2 · · ·Amid−1M and PR = MAmid+1 · · ·Al+1.

When the path length l is odd, the source objects and the target objects will meet at
the relationA l+1

2
A l+1

2 +1. In order to let the source and target objectsmeet at same-typed
objects, we can add a middle type object E between the atomic relation A l+1

2
A l+1

2 +1
and maintain the relation between A l+1

2
and A l+1

2 +1 at the same time. Then, the new
path becomes P′ = (A1 · · ·E · · ·Al+1) whose length is l + 1, an even number. The
source objects and the target objects will meet in the middle type objectM = E on
the middle position mid = l+1

2 + 1. As a consequence, the new relevance path P′
can also be decomposed into two equal-length paths PL and PR.

Definition 3.3 (Decomposition of meta path) An arbitrary meta path P = (A1A2 · · ·
Al+1) can be decomposed into two equal-length path PL and PR (i.e., P = PLPR),
where PL = A1A2 · · ·Amid−1M and PR = MAmid+1 · · ·Al+1. M and mid are
defined as above.

Obviously, for a symmetric path, P = PLPR, P
−1
R is equal to PL. For example, the

meta path P = APCPA can be decomposed as PL = APC and PR = CPA. For the
meta path APSPVC, we can add a middle type object E in SP, and thus, the path
becomes APSEPVC, so PL = APSE and PR = EPVC.

The next question is howwe can add themiddle type objectE in an atomic relation
R between A l+1

2
and A l+1

2 +1. In order to contain original atomic relation, we need to
make the R relation be the composition of two new relations. To do so, for each
instance of relation R, we can add an instance of E to connect the source and target
objects of the relation instance. An example is shown in Fig. 3.1a, where the middle
type object E is added in between the atomic relation AB along each path instance.

Definition 3.4 (Decomposition of atomic relation) For an atomic relation R, we can
add an object type E (called edge object) between the R.S and R.T (R.S and R.T are
the source and target object type of the relation R). And thus the atomic relation R is
decomposed as RO and RI where RO represents the relation between R.S and E and
RI represents that between E and R.T . For each relation instance r ∈ R, an instance
e ∈ E connects r.S and r.T . The paths r.S → e and e → r.T are the instances of RO

and RI , respectively.

It is clear that the relation decomposition has the following property, whose proof
can be found in [18].

Property 3.1 An atomic relation R can be decomposed as RO and RI ,
R = RO ◦ RI , and this decomposition is unique.

Based on this decomposition, the relatedness of two objects with an atomic rela-
tion R can be calculated as follows:

Definition 3.5 (HeteSim based on atomic relation) The HeteSim score between two
different-typed objects s and t based on an atomic relation R (s ∈ R.S and t ∈ R.T ) is:
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Fig. 3.1 Decomposition of
atomic relation and its
HeteSim calculation

(a) Add middle type object

(b) Decomposition of atomic relation

(c) HeteSim scores before normalization

(d) HeteSim scores after normalization

HeteSim(s, t|R) = HeteSim(s, t|RO ◦ RI) =
1

|O(s|RO)||I(t|RI)|
|O(s|RO)|∑

i=1

|I(t|RI )|∑

j=1

δ(Oi(s|RO), Ij(t|RI)) (3.3)

It is easy to find that HeteSim(s, t|I) is a special case of HeteSim(s, t|R), since,
for the self-relation I , I = IO ◦ II and |O(s|IO)| = |I(t|II)| = 1. Definition 3.5 means
that HeteSim can measure the relatedness of two different-typed objects with an
atomic relation R directly through calculating the average of their mutual influence.

Example 3.1 Figure3.1a shows an example of decomposition of atomic relation.
The relation AB is decomposed into the relations AE and EB. Moreover, the relation
AB is the composition of AE and EB as shown in Fig. 3.1b. Two HeteSim examples
are illustrated in Fig. 3.1c. We can find that HeteSim justly reflects relatedness of
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objects. Taking a2 as example, although a2 equally connects with b2, b3, and b4, it
is more close to b3, because b3 only connects with a2. This information is correctly
reflected in the HeteSim score of a2 based on AB path.

We also find that the similarity of an object and itself is not 1 in HeteSim. Taking
the right figure of Fig. 3.1c as example, the relatedness of a2 and itself is 0.33. It
is obviously unreasonable. In the following section, we will normalize the HeteSim
and make the relevance measure more reasonable.

3.1.2.3 Normalization of HeteSim

Firstly, we introduce the calculation of HeteSim between any two objects given an
arbitrary meta path.

Definition 3.6 (Transition probability matrix) For relationA
R−→ B,WAB is an adja-

cent matrix between type A and B. UAB is a normalized matrix ofWAB along the row
vector, which is the transition probability matrix of A−→B based on relation R.
VAB is a normalized matrix of WAB along the column vector, which is the transition
probability matrix of B−→A based on relation R−1.

It is easy to prove that the transition probability matrix has the following property.
The proof can be found in [18].

Property 3.2 UAB = V ′
BA and VAB = U ′

BA, where V
′
BA is the transpose of VBA.

Definition 3.7 (Reachable probability matrix) Given a network G = (V ,E) fol-
lowing a network schema S = (A,R), a reachable probability matrix PM for a path
P = (A1A2 · · ·Al+1) is defined as PMP = UA1A2UA2A3 · · ·UAlAl+1 (PM for simplicity).
PM(i, j) represents the probability of object i ∈ A1 reaching object j ∈ Al+1 under
the path P.

According to the definition and Property 3.2 of HeteSim, the relevance between
objects in A1 and Al+1 based on the meta path P = A1A2 · · ·Al+1 is

HeteSim(A1,Al+1|P) = HeteSim(A1,Al+1|PLPR)

= UA1A2 · · ·UAmid−1MVMAmid+1 · · ·VAlAl+1

= UA1A2 · · ·UAmid−1MU
′
Amid+1M · · ·U ′

Al+1Al

= UA1A2 · · ·UAmid−1M(UAl+1Al · · ·UAmid+1M)′

= PMPLPM
′
PR

−1

(3.4)

The above equation shows that the relevance of A1 and Al+1 based on the path P
is the inner product of two probability distributions that A1 reaches the middle type
object M along the path and Al+1 reaches M against the path. For two instances a
and b in A1 and Al+1, respectively, their relevance based on path P is
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HeteSim(a, b|P) = PMPL (a, :)PM ′
PR

−1(b, :) (3.5)

where PMP(a, :) means the ath row in PMP.
We have stated that HeteSim needs to be normalized. It is reasonable that the

relatedness of the same objects is 1, so the HeteSim can be normalized as follows:

Definition 3.8 (Normalization of HeteSim) The normalized HeteSim score between
two objects a and b based on the meta path P is:

HeteSim(a, b|P) =
PMPL (a, :)PM ′

PR
−1(b, :)

√
‖PMPL (a, :)‖‖PM ′

PR
−1(b, :)‖

(3.6)

In fact, the normalized HeteSim is the cosine of the probability distributions of
the source object a and target object b reaching the middle type object M. It ranges
from 0 to 1. Figure3.1d shows the normalized HeteSim scores. It is clear that the
normalized HeteSim is more reasonable. The normalization is an important step
for HeteSim with the following advantages. (1) The normalized HeteSim has nice
properties. The following Property 3.4 shows that HeteSim satisfies the identity of
indiscernibles. (2) It has a nice interpretation. The normalized HeteSim is the cosine
of two vectors representing reachable probability. As Fouss et al. pointed out [3], the
angle between the node vectors is a much more predictive measure than the distance
between the nodes. In the following section, the HeteSim means the normalized
HeteSim.

3.1.2.4 Properties of HeteSim

HeteSim has good properties, which make it useful in many applications. The proof
of these properties can be found in [18].

Property 3.3 (Symmetric) HeteSim(a, b|P) = HeteSim(b, a|P−1).

Property 3.3 shows the symmetric property of HeteSim. Although PathSim [21]
also has the similar symmetric property, it holds only when the path is sym-
metric and a and b are with the same type. The HeteSim has the more general
symmetric property not only for symmetric paths (note that P is equal to P−1 for
symmetric paths) but also for asymmetric paths.

Property 3.4 (Self-maximum) HeteSim(a, b|P) ∈ [0, 1]. HeteSim(a, b|P) is
equal to 1 if and only if PMPL (a, :) is equal to PMPR

−1(b, :).
Property 3.4 shows HeteSim is well constrained. For a symmetric path P (i.e.,

PL = PR
−1), PMPL (a, :) is equal to PMPR

−1(a, :), and thus, HeteSim(a, a|P) is equal
to 1. If we define the distance between two objects (i.e., dis(s, t)) as dis(s, t) =
1 − HeteSim(s, t), the distance of the same object is zero (i.e., dis(s, s) = 0). As a
consequence, HeteSim satisfies the identity of indiscernibles. Note that it is a general
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identity of indiscernibles. For two objects with different types, their HeteSim score
is also 1 if they have the same probability distribution on the middle type object. It
is reasonable, since they have the similar structure based on the given path.

Since HeteSim obeys the properties of nonnegativity, identity of indiscernibles,
and symmetry, we can say that HeteSim is a semi-metric measure [22]. Because of
a path-based measure, HeteSim does not obey the triangle inequality. A semi-metric
measure has many good merits and can be widely used in many applications [22].

Property 3.5 (Connection to SimRank) For a bipartite graph G = (V ,E) based on
the schema S = ({A,B}, {R}), suppose the constant C in SimRank is 1,
SimRank(a1, a2) = lim

n�∞
∑n

k=1 HeteSim(a1, a2|(RR−1)
k
),

SimRank(b1, b2) = lim
n�∞

∑n
k=1 HeteSim(b1, b2|(R−1R)

k
).

where a1, a2 ∈ A, b1, b2 ∈ B and A
R−→ B. Here HeteSim is the non-normalized

version.

This property reveals the connection of SimRank andHeteSim. SimRank sums up
themeeting probability of two objects after all possible steps. HeteSim just calculates
the meeting probability along the given meta path. If the meta paths explore all
possible meta paths among the two types of objects, the sum of HeteSim based on
these paths is the SimRank. So we can say that HeteSim is a path-constrained version
of SimRank. Through meta paths, HeteSim can subtly evaluate the similarity of
heterogeneous objects with fine granularity. This property also implies that HeteSim
is more efficient than SimRank, since HeteSim only needs to calculate the meeting
probability along the given relevance path, not all possible meta paths.

Moreover, we compare six well-established similarity measures in Table3.1.
There are three similarity measures for heterogeneous networks (i.e., HeteSim, Path-
Sim, and PCRW) and three measures for homogeneous networks (i.e., P-PageRank,
SimRank, and RoleSim), respectively. Although these similarity measures all eval-
uate the similarity of nodes by utilizing network structure, they have different prop-
erties and features. Three measures for heterogeneous networks all are path-based,
sincemeta paths in heterogeneous networks embody semantics and simplify network
structure. Two RWmodel-based measures (i.e., P-PageRank and PCRW) do not sat-
isfy the symmetric property. Because of satisfying the triangle inequation, RoleSim
is a metric, while HeteSim, PathSim, and SimRank are semi-metric. Different from
PathSim, which can only measure the similarity of objects with the same type under
symmetric paths, the proposed HeteSim can measure the relevance of heterogeneous
(same or different-typed) objects under arbitrary (symmetric or asymmetric) paths.
Although HeteSim can be considered as a path-constrained extension of SimRank,
HeteSim is a general similarity measure in heterogeneous networks with arbitrary
schema, not limited to bipartite or N-partite networks.
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Table 3.1 Comparison of different similarity measures. Here, RW means random walk, and PRW
means pairwise random walk

Symmetry Triangle
inequation

Path
based

Model Features

HeteSim
√ × √

PRW Evaluate relevance of
heterogeneous objects based
on arbitrary path

PathSim [21]
√ × √

Path count Evaluate similarity of
same-typed objects based on
symmetric path

PCRW [13] × × √
RW Measure proximity to the

query nodes based on given
path

SimRank [6]
√ × × PRW Measure similarity of node

pairs based on the similarity
of their neighbors

RoleSim [9]
√ √ × PRW Measure real-valued role

similarity based on
automorphic equivalence

P-PageRank [7] × × × RW Measure personalized views
of importance based on
linkage structure

3.1.3 Experiments

In the experiments, we validate the effectiveness of the HeteSim on three datasets
with three case studies and two learning tasks.

3.1.3.1 Datasets

Three heterogeneous information networks are employed in our experiments.
ACM dataset: The ACM dataset was downloaded from ACM digital library1

in June 2010. The ACM dataset comes from 14 representative computer science
conferences: KDD, SIGMOD, WWW, SIGIR, CIKM, SODA, STOC, SOSP, SPAA,
SIGCOMM, MobiCOMM, ICML, COLT, and VLDB. These conferences include
196 corresponding venue proceedings. The dataset has 12K papers, 17K authors, and
1.8K author affiliations. After removing stop words in the paper titles and abstracts,
we get 1.5K terms that appear in more than 1% of the papers. The network also
includes 73 subjects of these papers in ACM category. The network schema of ACM
dataset is shown in Fig. 3.2a. Furthermore, we label the data with the ACM category
(i.e., subjects) information. That is, with three major subjects (i.e., H.3, H.2, and
C.2), we label 7 conferences, 6772 authors, and 4526 papers.

1http://dl.acm.org/.

http://dl.acm.org/
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(a) ACM data (b) DBLP data (c) Movie data

Fig. 3.2 Network schema of heterogeneous informations

DBLP dataset [8]: The DBLP dataset is a subnetwork collected from DBLP
Web site2 involving major conferences in four research areas: database, data mining,
information retrieval, and artificial intelligence, which naturally form four classes.
The dataset contains 14K papers, 20 conferences, 14K authors, and 8.9K terms, with
a total number of 17K links. In the dataset, 4057 authors, all 20 conferences, and
100 papers are labeled with one of the four research areas. The network schema is
shown in Fig. 3.2b.

Movie dataset [17]: The IMDBmovie data comes from the Internet Movie Data-
base,3 which includes movies, actors, directors, and types. A movie heterogeneous
network is constructed from the movie data, and its schema is shown in Fig. 3.2c.
The movie data contains 1.5K movies, 5K actors, 551 directors, and 112 types.

3.1.3.2 Case Study

In this section, we demonstrate the traits of HeteSim through case study in three
tasks: automatic object profiling, expert finding, and relevance search.

Task 1: Automatic Object ProfilingWe first study the effectiveness of HeteSim on
different-typed relevance measurement in the automatic object profiling task. If we
want to know the profile of an object, we can measure the relevance of the object
to objects that we are interested in. For example, the academic profile of Christos
Faloutsos4 can be constructed through measuring the relatedness of Christos Falout-
sos with related objects, e.g., conferences, affiliations, and other authors. Table3.2
shows the lists of top relevant objects with various types onACMdataset.APVC path
shows the conferences he actively participates. Note that KDD and SIGMOD are the
two major conferences Christos Faloutsos participates, which are mentioned in his
home page.5 From the path APT , we can obtain his research interests: data mining,
pattern discovery, scalable graph mining, and social network. Using APS path, we
can discover his research areas represented as ACM subjects: database management

2http://www.informatik.uni-trier.de/~ley/db/.
3www.imdb.com/.
4http://www.cs.cmu.edu/~christos/.
5http://www.cs.cmu.edu/~christos/misc.html.

http://www.informatik.uni-trier.de/~ley/db/
www.imdb.com/
http://www.cs.cmu.edu/~christos/
http://www.cs.cmu.edu/~christos/misc.html
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Table 3.2 Automatic object profiling task on author “Christos Faloutsos” on ACM dataset

Path APVC APT APS APA

Rank Conf. Score Terms Score Subjects Score Authors Score

1 KDD 0.1198 mining 0.0930 H.2 (database
management)

0.1023 Christos
Faloutsos

1

2 SIGMOD 0.0284 patterns 0.0926 E.2 (data
storage
representations)

0.0232 Hanghang
Tong

0.4152

3 VLDB 0.0262 scalable 0.0869 G.3
(probability and
statistics)

0.0175 Agma
Juci M.
Traina

0.3250

4 CIKM 0.0083 graphs 0.0816 H.3
(information
storage and
retrieval)

0.0136 Spiros
Papadim-
itriou

0.2785

5 WWW 0.0060 social 0.0672 H.1 (models
and principles)

0.0135 Caetano
Traina, Jr.

0.2680

(H.2) and data storage (E.2). Based on APA path, HeteSim finds the most important
co-authors, most of which are his Ph.D students.
Task 2:Expert Finding In this case,wewant to validate the effectiveness ofHeteSim
to reflect the relative importance of object pairs through an expert finding task. As we
know, the relative importance of object pairs can be revealed through comparing their
relatedness. Suppose we know the experts in one domain, the expert finding task here
is to find experts in other domains through their relative importance. Table3.3 shows
the relevance scores returned by HeteSim and PCRW on six “conference–author”
pairs on ACM dataset. The relatedness of conferences and authors is defined based
on the APVC and CVPA paths which have the same semantics: authors publishing
papers in conferences.Due to the symmetric property,HeteSim returns the samevalue
for both paths, while PCRW returns different values for these two paths. Suppose
that we are familiar with data mining area and already know that C. Faloutsos is
an influential researcher in KDD. Comparing these HeteSim scores, we can find
influential researchers in other research areas even if we are not quite familiar with
these areas. J.F. Naughton,W.B. Croft, andA.Gupta should be influential researchers
in SIGMOD, SIGIR, and SODA, respectively, since they have very similar HeteSim
scores to C. Faloutsos. Moreover, we can also deduce that Luo Si and Yan Chen
may be active researchers in SIGIR and SIGCOMM, respectively, since they have
moderate HeteSim scores. In fact, C. Faloutsos, J.F. Naughton, W.B. Croft, and
A. Gupta are top-ranked authors in their research communities. Luo Si and Yan
Chen are young professors, and they have done good work in their research areas.
However, if the relevance measure is not symmetric (e.g., PCRW), it is very hard
to tell which authors are more influential when comparing these relevance scores.
For example, the PCRW score of Yan Chen and SIGCOMM is the largest one in the
APVC path. However, the value is the smallest one for the reversed path (i.e., CVPA
path).
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Table 3.3 Relatedness scores of authors and conferences measured by HeteSim and PCRW on
ACM dataset

HeteSim PCRW

APVC and CVPA APVC CVPA

Pair Score Pair Score Pair Score

C. Faloutsos,
KDD

0.1198 C. Faloutsos,
KDD

0.5517 KDD, C.
Faloutsos

0.0087

W.B. Croft,
SIGIR

0.1201 W.B. Croft,
SIGIR

0.6481 SIGIR, W.B.
Croft

0.0098

J.F. Naughton,
SIGMOD

0.1185 J.F. Naughton,
SIGMOD

0.7647 SIGMOD, J.F.
Naughton

0.0062

A. Gupta,
SODA

0.1225 A. Gupta,
SODA

0.7647 SODA, A.
Gupta

0.0090

Luo Si, SIGIR 0.0734 Luo Si, SIGIR 0.7059 SIGIR, Luo Si 0.0030

Yan Chen,
SIGCOMM

0.0786 Yan Chen,
SIGCOMM

1 SIGCOMM,
Yan Chen

0.0013

Fig. 3.3 Probability
distribution of authors’
papers on 14 conferences of
ACM dataset

KDD
SIGMOD

WWW
SIGIR

CIKM
SODA

STOC
SOSP

SPAA

SIGCOMM

MobiCOMM
ICML

COLT
VLDB

C. Faloutsos

P. Yu

J. Han

C.C. Aggarwal

S. Parthasarathy

X.F. Yan

Task 3: Relevance Search based on Path Semantics As we have stated, the path-
based relevance measure can capture the semantics of paths. In this relevance search
task, we will observe the importance of paths and the effectiveness of semantics
capture through the comparison of three path-based measures (i.e., HeteSim, PCRW,
and PathSim) and SimRank. This task is to find the top 10 related authors to Christos
Faloutsos based on the APVCVPA path which means authors publishing papers in
same conferences. By ignoring the heterogeneity of objects, we directly run Sim-
Rank on whole network and select top ten authors from the rank results which mix
different-typed objects together. The comparison results are shown in Table3.4. At
the first sight, we can find that three path-based measures all return researchers hav-
ing the similar reputation with C. Faloutsos in slightly different orders. However, the
results of SimRank are totally against our common sense. We think the reason of
bad performances is that SimRank only considers link structure but ignores the link
semantics.

In addition, let us analyze the subtle differences of results returned by three path-
based measures. The PathSim finds the similar peer authors, such as P. Yu and J. Han.
They have the same reputation in data mining field. It is strange for PCRW that the
most similar author to C. Faloutsos is not himself, but C. Aggarwal and J. Han. It is
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obviously not reasonable. Our conjecture is that C. Aggarwal and J. Han published
many papers in the conferences that C. Faloutsos participated in, so C. Faloutsos
has more reachable probability on C. Aggarwal and J. Han than himself along the
APVCVPA path. HeteSim’s results are a little different. The most similar authors are
S. Parthasarathy and X. Yan, instead of P. Yu and J. Han. Let us revisit the semantics
of the path APVCVPA: authors publishing papers in the same conferences. Figure3.3
shows the reachable probability distribution from authors to conferences along the
path APVC. It is clear that the probability distribution of papers of S. Parthasarathy
and X. Yan on conferences is more close to that of C. Faloutsos, so they should be
more similar to C. Faloutsos based on the same conference publication. Although
P. Yu and J. Han have the same reputation with C. Faloutsos, their papers are more
broadly published in different conferences. So they are not the most similar authors
to C. Faloutsos based on the APVCVPA path. As a consequence, the HeteSim more
accurately captures the semantics of the path.

Since meta path can embody semantics, we can apply HeteSim to do semantic
recommendation based on paths given by users. Following this idea, a semantic-based
recommended system HeteRecom [17] has been designed.

3.1.3.3 Performance on Query Task

The query task will validate the effectiveness of HeteSim on query search of hetero-
geneous objects. Since PathSim cannot measure the relatedness of different-typed
objects, we only compareHeteSimwith PCRW in this experiment. OnDBLP dataset,
we measure the proximity of conferences and authors based on the CPA and CPAPA
paths. For each conference, we rank its related authors according to their measure
scores. Then, we draw the ROC curve of top 100 authors according to the labels of
authors (when the labels of author and conference are the same, it is true, else it is
false). After that, we calculate the AUC (Area Under ROC Curve) score to evaluate
the performances of the ranked results. Note that all conferences and some authors
on the DBLP dataset are labeled with one of the four research areas. The larger score
means the better performance. We evaluate the performances on 9 representative
conferences, and their AUC scores are shown in Table3.5. We can find that HeteSim
consistently outperforms PCRW inmost conferences under these two paths. It shows
that the proposed HeteSim method can work better than the asymmetric similarity
measure PCRW on proximity query task.

3.1.3.4 Performance on Clustering Task

Due to the symmetric property, HeteSim can be applied to clustering tasks directly.
In order to evaluate its performance, we compare HeteSim with five well-established
similarity measures, including two path-based measures (i.e., PathSim and PCRW)
and three homogeneous measures (i.e., SimRank, RoleSim, and P-PageRank). These
measures use the same information to determine the pairwise similarity between
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objects. We evaluate the clustering performances on DBLP and ACM datasets.
There are three tasks: conference clustering based on CPAPC path, author clustering
based on APCPA path, and paper clustering based on PAPCPAP path. For asym-
metric measures (i.e., PCRW and P-PageRank), the symmetric similarity matrix can
be obtained through the average of similarity matrices based on paths P and P−1.
For RoleSim, it is applied in the network constructed by path P. For SimRank and
P-PageRank, they are applied in the subnetwork constructed by path PL (note that
the three paths in the experiments are symmetric). Then, we apply normalized cut
[16] to perform clustering based on the similarity matrices obtained by different
measures. The number of clusters are set as 4 and 3 for DBLP and ACM datasets,
respectively. The NMI criterion (Normalized Mutual Information) [19] is used to
evaluate the clustering performances on conferences, authors, and papers. NMI is
between 0 and 1 and prothe higher the better. In experiments, the damping factors
for P-PageRank, SimRank, and RoleSim are set as 0.9, 0.8, and 0.1, respectively.

The average clustering accuracy results of 100 runs are summarized in Table3.6.
We can find that, on all six tasks, HeteSim achieves best performances on four
of them as well as good performances on other two tasks. The mediocre results
of PCRW and P-PageRank illustrate that, although symmetric similarity measures
can be constructed by the combination of two random walk processes, the simple
combination cannot generate good similarity measures. RoleSim aims to detect role
similarity, a little bit different from structure similarity, so it has bad performances
in these clustering tasks. The experiments show that HeteSim not only does well on
similarity measure of same-typed objects but also has the potential as the similarity
measure in clustering.

3.1.4 Quick Computation Strategies and Experiments

HeteSim has a high-computation demand for time and space. It is not affordable for
online query in large-scale information networks. So a primary strategy is to compute
relevance matrix off-line and do online queries with these matrices. For frequently
used meta paths, the relatedness matrix HeteSim(A,B|P) can be materialized ahead
of time. The online query on HeteSim(a,B|P) will be very fast, since it only needs
to locate the row and column in the matrix. However, it also costs much time and
space to materialize all frequently used paths. As a consequence, we propose four
strategies to fast compute the relevance matrix. Moreover, experiments validate the
effectiveness of these strategies.

3.1.4.1 Quick Computation Strategies

The computation of HeteSim includes two phases: matrix multiplication (denoted as
MUL, i.e., the computationofPMPL andPMPR

−1 ) and relevance computation (denoted
as REL, i.e., the computation of PMPL ∗ PMPR

−1 and normalization). Through
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analyzing the running time of HeteSim on different phases and paths (the details can
be seen in [18]), we find two characteristics of HeteSim computation. (1) The rele-
vance computation is the main time-consuming phase. It implies that the speedup of
matrix multiplicationmay not significantly reduce HeteSim’s running time, although
this kind of strategies is widely used in accelerating SimRank [6] and PCRW [12].
(2) The dimension and sparsity of matrix greatly affect the efficiency of HeteSim.
Althoughwe cannot reduce the running time of relevance computation phase directly,
we can accelerate the computation of HeteSim through adjusting matrix dimension
and keeping matrix sparse. Based on above idea, we design the following four quick
computation strategies.

Dynamic Programming Strategy The matrix multiplication obeys the associative
property. Moreover, different computation sequences have different time
complexities. The dynamic programming strategy (DP) changes the sequence of
matrix multiplication with the associative property. The basic idea of DP is to
assign low-dimensioned matrix with the high-computation priority. For a path
P = R1 ◦ R2 ◦ · · · ◦ Rl, the expected minimal computation complexity of HeteSim
can be calculated by the following equation and the computation sequence is recorded
by i.

Com(R1 · · ·Rl) =
⎧
⎪⎨

⎪⎩

0 l = 1
|R1.S| × |R1.T | × |R2.T | l = 2
argmin

i
{Com(R1 · · ·Ri) + Com(Ri+1 · · ·Rl) + |R1.S| × |Ri.T | × |Rl.T |} l > 2

(3.7)

The above equation can be easily solved by dynamic programming method with the
O(l2) complexity. The running time can be omitted, since l is much smaller than
the matrix dimension. Note that the DP strategy only accelerates the MUL phase
(i.e., matrix multiplication) and it does not change relevance result, so the DP is an
information-lossless strategy.

Truncation Strategy The truncation strategy is based on the hypothesis that remov-
ing the probability on those less important nodes would not significantly degrade the
performance, which has been proved by many researches [12]. One advantage of this
strategy is to keep matrix sparse. The sparse matrix greatly reduces the amount of
space and time consumption. The basic idea of truncation strategy is to add a trun-
cation step at each step of random walk. In the truncation step, the relevance value
is set with 0 for those nodes when their relevance values are smaller than a threshold
ε. A static threshold is usually used in many methods (e.g., Ref. [12]). However, it
has the following disadvantage: It may truncate nothing for matrix whose elements
all have high probability, and it may truncate most nodes for matrix whose elements
all have low probability. Since we usually pay close attention to the top k objects in
query task, the threshold ε can be set as the top k relevance value for each search
object. For a similarity matrix with size M × L, the k can be dynamically adjusted
as follows.
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k =
{
L if L ≤ W
�(L − W)β + W(β ∈ [0, 1]) others

where W is the number of top objects, decided by users. The basic idea of dynamic
adjustment is that the k slowly increases for super object type (i.e., L is large). The
W and β determine the truncation level. The larger W or β will cause the larger k,
which means a denser matrix. It is expensive to determine the top k relevance value
for each object, so we can estimate the value by the top kM value for the whole
matrix. Furtherly, the top kM value can be approximated by the sample data with
ratio γ from the raw matrix. The larger γ leads to more accurate approximation
with longer running time. In summary, the truncation strategy is an information-loss
strategy, which keeps matrix sparse with small sacrifice on accuracy. In addition, it
needs additional time to estimate the threshold ε.

Hybrid StrategyAs discussed above, the DP strategy can accelerate theMUL phase
and the truncation strategy can indirectly speed up the REL phase by keeping sparse
matrix. So a hybrid strategy can be designed to combine these two strategies. For
the MUL phase, the DP strategy is applied. After obtaining the PMPL and PMPR

−1 ,
the truncation strategy is added. Different from the above truncation strategy, the
hybrid strategy only truncates the PMPL and PMPR

−1 . The hybrid strategy utilizes the
benefits of DP and truncation strategies. It is also an information-loss strategy, since
the truncation strategy is employed.

Monte Carlo StrategyMonte Carlo method (MC) is a class of computational algo-
rithms that estimate results through repeating random sampling. It has been applied
to compute approximate values of matrix multiplication [2, 12]. In this study, we
applied the MC strategy to estimate the value of PMPL and PMPR

−1 . The value of
PMP(a, b) can be approximated by the normalized count of the number of times that
the walkers visit the node b from a along the path P.

PMP(a, b) = #times the walkers visit b along P

#walkers from a

The number of walkers from a (i.e., K) controls the accuracy and amount of compu-
tation. The larger K will achieve more accurate estimation with more time cost. An
advantage of the MC strategy is that its running time is not affected by the dimension
and sparsity of matrix. However, the high-dimension matrix needs larger K for high
accuracy. As a sampling method, the MC is also an information-loss strategy.

3.1.4.2 Quick Computation Experiments

We validate the efficiency and effectiveness of quick computation strategies on the
ACM dataset. The four paths are used: (APA)l, (APCPA)l, (APSPA)l, and (TPT)l.
l means times of path repetition and ranges from 1 to 5. Four quick computation
strategies and the original method (i.e., baseline) are employed. The parameters in



3.1 HeteSim: A Uniform and Symmetric Relevance Measure 51

Fig. 3.4 Running time and
accuracy of computing
HeteSim based on different
strategies and paths
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(c) Time on (APSPA)l
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truncation process are set as follows: the number of top objectsW is 200, β is 0.5, and
γ is 0.005. The number of walkers (i.e., K) in MC strategy is 500. The running time
and accuracy of all strategies are recorded. In the accuracy evaluation, the relevance
matrices obtained by the originalmethod are regarded as the baseline. The accuracy is
the recall criterion on the top 100 objects obtained by each strategy. All experiments
are conducted on machines with Intel Xeon 8-Core CPUs of 2.13GHz and 64 GB
RAM.

Figure3.4 shows the running time and accuracy of four strategies on different
paths. The running timeof these strategies is illustrated in Fig. 3.4a–d.Wecan observe
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that the DP strategy almost has the same running time with the baseline. It only
speeds up the HeteSim computation when the MUL phase dominates the whole
running time (e.g., (APCPA)5 and (APSPA)5). It is not the case for the truncation and
hybrid strategies, which significantly accelerate the HeteSim computation and have
a close speedup ratio on most conditions. Except the APA path, the MC strategy has
the highest speedup ratio among all four strategies on most conditions. Then, let us
observe their accuracy from Fig. 3.4e–h. The accuracy of the DP strategy is always
close to 1. The hybrid strategy achieves the second performances for most paths.
The accuracy of the MC strategy is also high for most paths, while it fluctuates on
different paths. Obviously, the truncation strategy has the lowest accuracy on most
conditions.

As we have noted, the DP, as an information-lossless strategy, only speeds up the
MUL phase which is not the main time-consuming part for most paths. So the DP
strategy trivially accelerates HeteSim with the accuracy close to 1. The truncation
strategy is an information-loss strategy to keep matrix sparse, so it can effectively
accelerate HeteSim. That is the reason why the truncation strategy has the high
speedup ratio but low accuracy. Because the hybrid strategy combines the benefits
of DP and truncation strategy, it has a close speedup ratio to the truncation strategy
with higher accuracy. In order to achieve high accuracy, more walkers in the MC
strategy are needed for high-dimension or sparse matrix, while the fixed walkers
in experiments (i.e., K is 500) make the MC strategy the poor accuracy on some
conditions.

According to the analysis above, these strategies are suitable for different paths
and scenarios. For very sparse matrix (e.g., (APA)l) and low-dimension matrix (e.g.,
(APCPA)3), all strategies cannot significantly improve efficiency. However, in these
conditions, the HeteSim can be quickly computed without any strategies. For those
dense (e.g., (APCPA)4) and high-dimension matrix (e.g., (APSPA)4) which have
huge computation overhead, the truncation, hybrid, andMC strategies can effectively
improve the HeteSim’s efficiency. Particularly, the speedup of the hybrid and MC
strategies are up to 100 with little loss in accuracy. If the MUL phase is the main
time-consuming part for a path, the DP strategy can also speed up HeteSim greatly
without loss in accuracy. The MC strategy has very high efficiency, but its accuracy
may degrade for high-dimensionmatrix. So the appropriateK needs to be set through
balancing the efficiency and effectiveness.

3.2 Extension of HeteSim

3.2.1 Overview

Many data mining tasks have been exploited in heterogeneous information network,
such as clustering [19] and classification [10]. Among these data mining tasks, sim-
ilarity measure is a basic and important function, which evaluates the similarity
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of object pairs on networks. Although similarity measure on homogeneous net-
works have been extensively studied in the past decades, such as PageRank [15] and
SimRank [6], the similarity measure in heterogeneous network is just beginning
now and several measures have been proposed including PathSim [21], PCRW [13],
and HeteSim [18]. All the three methods are based on meta path [18]. Specially,
HeteSim, proposed by Shi et al., has the ability to measure relatedness of objects
with the same or different types in a uniform framework. HeteSim has some good
properties (e.g., self-maximum and symmetric) and has shown its potential in sev-
eral data mining tasks. However, we can also find that it has several disadvantages.
(1) HeteSim has relatively high computational complexity. Particularly, the adop-
tion of path decomposition approach when it measures the relevance on odd-length
path further increases the calculation complexity. (2) Besides, HeteSim cannot be
extended to large-scale network with massive data, since its calculation process is
based on memory computing. Therefore, it is desired to design a new similarity mea-
sure, which not only contains some good properties as HeteSim but also overcomes
the disadvantages on computation.

In this chapter, we introduce a new relevance measure method, AvgSim, which
is a symmetric measure and uniform measure to evaluate the relevance of same- or
different-typed objects. The AvgSim value of two objects is the average of reachable
probability under the given path and the reverse path. It guarantees that AvgSim can
measure relevance of same or different-typed objects and it has symmetric property.
In addition, compared with HeteSim which takes a pairwise random walk, AvgSim
does not need to consider the length of path and there is no path decomposition
involved. Thus, it is more simple and efficient. Furthermore, we take parallelization
of this new algorithm onMapReduce in order to eliminate restriction of memory size
and deal with massive data more efficiently in practical applications.

3.2.2 AvgSim: A New Relevance Measure

In this section, we will introduce the new meta path-based relevance measure which
is called AvgSim and its definition is as follows.

Definition 3.9 (AvgSim) Given a meta path P which is defined on the composite
relation R = R1 ◦ R2 ◦ . . . ◦ Rl, AvgSim between two objects s and t (s is the source
object and t is the target object) is:

AvgSim(s, t|P) = 1

2
[RW(s, t|P) + RW(t, s|P−1)] (3.8)

RW(s, t|R1 ◦ R2 ◦ . . . ◦ Rl) = 1

|O(s|R1)|
|O(s|R1)|∑

i=1

RW(Oi(s|R1), t|R2 ◦ . . . ◦ Rl)

(3.9)
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Equation3.8 shows the relevance of source object and target object based on
meta path P is the arithmetic mean value of random walk result from s to t along
P and reversed random walk result from t to s along P−1. Equation3.9 shows the
decomposed step of AvgSim, namely the measure of random walk. The measure
takes a random walk step by step from the starting point s to the end point t along
path P using an iterative method, where |O(s|R1)| is the out-neighbors of s based on
relation R1. If there is no out-neighbors of s on R1, then the relevance value of s and t
is 0 because s cannot reach t. We need to calculate the random walk probabilities for
each out-neighbor of s to t iteratively, and then, sum them up. Finally, the summation
should be normalized by the number of out-neighbors to get the average relatedness.

Then, we will study on how to calculate AvgSim generally with matrix. Given a

simple directed meta path A
R−→ B, where objects A and B are linked though relation

R. The relationship between A and B can be expressed by adjacent matrix, denoted
as MAB. Two normalized matrices RAB and CAB are generated by normalizing MAB

according to row vector and column vector, respectively. RAB and CAB are transition

probability matrix which represent A
R−→ B and B

R−1−−→ A, respectively. According
to properties of matrix, we can derive relations RAB = C

′
BA and CAB = R

′
BA, where

R
′
AB is the transpose of RAB.

If we extend the simple meta path to P = A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1 where R is a

composite relation R = R1 ◦ R2 ◦ . . . ◦ Rl, then the relationship between A1 and Al+1

is expressed as reachable probability matrix which is obtained by multiplying
the transition probability matrices along the meta path. The reachable probability
matrix of P is defined as RWP = RA1A2RA2A3 . . .RAlAl+1 , where RW suggests RWP is
the random walk relatedness matrix from object A1 to Al+1 along path P.

Then, we can rewrite AvgSim using the reachable probability matrix according
to Eqs. 3.8 and 3.9 as follows.

AvgSim(A1,Al+1|P)

= 1

2
[RW(A1,Al+1|P) + RW(Al+1,A1|P−1)] = 1

2
[RWP + RW

′
P−1]

(3.10)

According to CAB = R
′
BA, Eq. 3.11 is derived below. We notice that the calcula-

tion of AvgSim is unified as two-chain matrix multiplication of transition probability
matrices. The only difference between two chains is the normalization form of orig-
inal adjacent matrix.

AvgSim(A1,Al+1|P) = 1

2
[RA1A2RA2A3 . . .RAlAl+1 + (RAl+1AlRAlAl−1 . . .RA2A1)

′ ]

= 1

2
[RA1A2RA2A3 . . .RAlAl+1 + CA1A2CA2A3 . . .CAlAl+1]

(3.11)
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AvgSim can measure the relevance of any heterogeneous or homogeneous object
pair based on symmetrical path (e.g., APCPA) or asymmetrical path (e.g., APS).
Besides, the method has a symmetric property, which can be verified easily from the
definition equation of AvgSim. However, the calculation of AvgSim mainly lies in
the chain matrix multiplication which is time-consuming and restricted of memory
size. In order to apply the algorithm in real large-scale heterogeneous information
network, we have to consider how to improve the efficiency of AvgSim.

3.2.3 Parallelization of AvgSim

Parallelism [1] is an effective method for processing massive data and improv-
ing algorithm’s efficiency. According to the features and application scenarios of
AvgSim, we parallelize it as the following steps.

1. Since the core calculation of AvgSim is the chain matrix multiplication, we firstly
change the order of matrix multiplication operations applying dynamic program-
ming strategy.

2. After Step 1, we turn to focus on large-scale matrix multiplication and it can
be parallelized on Hadoop distributed system using MapReduce programming
model.

As we know, different orders of operations in chain matrix multiplication leads to
different computation time. There exists an optimal order of chain matrix multipli-
cation using dynamic programming, which consumes the shortest computation time.
Thus, we can apply dynamic programming to improve the efficiency of parallelized
AvgSim.

Parallelization of AvgSim is mainly the parallelization of matrix multiplication
after the dynamic programming process. Here, we use the “block matrix multipli-
cation” method on MapReduce to transform multiplication of two large matrices
into several multiplications of smaller matrices. This method is flexible for selecting
dimensions of block matrix according to the configuration of Hadoop cluster, and it
avoids exceeding thememory size. The parallelization of blockmatrixmultiplication
is implemented by two-round MapReduce computing. The detailed algorithms can
be found in [14].
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Applying two-round MapReduce algorithm above iteratively to the chain matrix
multiplication which is reordered by dynamic programming, we can obtain one of
the two reachable probability matrices of AvgSim (e.g., RWP, which is measured in
the given meta path P), and the other probability matrix (RW

′
P−1 ) can be obtained in

the same procedure. Finally, the relevance matrix is derived by taking the arithmetic
mean of these two reachable probability matrices.

3.2.4 Experiments

Three datasets, ACM dataset, DBLP dataset, and Matrix dataset, are used in experi-
ments. In detail, theACMdataset contains 17K authors, 1.8K author affiliations, 12K
papers, and14 computer science conferences including196 correspondingvenuepro-
ceedings. We also extract 1.5K terms and 73 subjects from these papers. The DBLP
dataset contains 14K papers, 14K authors, 20 conferences, and 8.9K terms. And we
label 20 conferences, 100 papers, and 4057 authors in the dataset with four research
areas including database, data mining, information retrieval, and artificial intelli-
gence for experiment use. And the matrix dataset (40 matrices in total) contains sev-
eral artificially generated large-scale sparse square matrices, whose dimensions are
1000 × 1000, 5000 × 5000, 10,000 × 10,000, 20,000 × 20,000, 40,000 × 40,000,
80,000 × 80,000, 100,000 × 100,000, and 150,000 × 150,000, respectively. And
the sparsity of each matrix is 0.0001, 0.0003, 0.0005, 0.0007, and 0.001.

3.2.4.1 Effectiveness of AvgSim

In this section, we design experiments to validate the effectiveness and efficiency of
AvgSim.We design two tasks to verify the effectiveness of AvgSim, which are query
task and clustering task, respectively.

In the query task, we compare the performance of AvgSimwith both HeteSim and
PCRW though measuring the relevance of heterogeneous objects on DBLP dataset.
Based on labels of the dataset, we calculate the AUC score to evaluate the per-
formances of different methods, where the query task is to find authors for each
conference based on the path CPA. We evaluated 9 out of 20 marked conferences,
whose AUC values are shown in Table3.7. We notice that AvgSim gets the high-
est value on 8 conferences, which means AvgSim performs better than other two
methods in this query task.

In the clustering task, we compare the performance of AvgSim with both
HeteSim and PathSim through measuring the similarity of homogeneous objects
on DBLP dataset. We firstly apply three algorithms, respectively, to derive the sim-
ilarity matrices on three meta paths including CPAPC, APCPA, and PAPCPAP. We
perform clustering task based on the similarity matrices with normalized cut and
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Table 3.7 AUC values for relevance search of conferences and authors based on CPA path on
DBLP dataset

KDD ICDM SDM SIGMOD VLDB ICDE AAAI IJCAI SIGIR

HeteSim 0.8111 0.6752 0.6132 0.7662 0.8262 0.7322 0.8110 0.8754 0.9504

PCRW 0.8030 0.6731 0.6068 0.7588 0.8200 0.7263 0.8067 0.8712 0.9390

AvgSim 0.8117 0.6753 0.6072 0.7668 0.8274 0.7286 0.8114 0.8764 0.9525

Table 3.8 Clustering accuracy results for path-based relevance measures on DBLP dataset

Venue NMI Author NMI Paper NMI

PathSim 0.8162 0.6725 0.3833

HeteSim 0.7683 0.7288 0.4989

AvgSim 0.8977 0.7556 0.5101

then evaluate the performances on conferences, authors, and papers using NMI cri-
terion (Normalized Mutual Information). The clustering accuracy result is shown in
Table3.8, and AvgSim obtains the highest NMI value in all the three tasks. In all,
the results of query task and clustering task suggest that AvgSim performs well in
effectiveness.

3.2.4.2 Efficiency of AvgSim

In this section, we will verify the efficiency of AvgSim on ACM dataset. We take
relevance measure experiments of AvgSim andHeteSim, respectively, based onmeta
paths including (APCPA)l and (TPT)l, where l is the number of path repetitions with
a range from 1 to 5.

Figure3.5a, b shows the relationship between running time and different meta
paths for each method. We notice that the running time of HeteSim exhibits great
fluctuations with the change of path length, while AvgSim is much stable. According
to the definition of AvgSim, the longer paths (i.e., l) it measures, the more matrices
need to bemultiplied, and thus, the running time increases persistently. In contrast, the
calculation ofHeteSimneeds two steps includingmatrixmultiplication and relevance
computation. In the matrix multiplication step, HeteSim calculates the reachable
probability matrices from source and target nodes to the middle node, respectively.
The longer paths it measures, the more time it needs. In relevance computation step,
the relevance matrix is the multiplication of two probability matrices in previous
step. The time for the second step is determined by the scale of middle node. In
all, the relevance computation of HeteSim affects its performance to a great extent
and it will be relatively poor for large-scale matrices. Conversely, AvgSim performs
much more stable, and its efficiency is only related to the matrix dimension and
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Fig. 3.5 Running time of AvgSim and HeteSim based on different meta paths and factors affecting
parallelized block matrix multiplication: a Running time on (APCPA)l; b Running time on (TPT)l;
c Matrix dimension and sparsity factors; d Partition strategy factor

meta path length, which can be improved by the parallelized matrix multiplication
on MapReduce.

All parallelizedmatrixmultiplication experiments are conducted in a cluster com-
posed of 7 machines with 4-cores E3-1220 V2 CPUs of 3.10GHz and 32 GB RAM
running on RedHat 4 operating system. The experiments will study several factors
affecting block matrix multiplication, including matrix, matrix sparsity, and parti-
tion strategy (i.e., dimensions of blocks). Results will reflect the performance of
parallelized AvgSim algorithm.

Figure3.5c shows the effect of matrix dimensions and matrix sparsity on the run-
ning time of parallelized block matrix multiplication. All the matrix multiplications
are done on the Matrix dataset, and it applies the partition strategy of 1000 × 1000
block matrix. We notice from Fig. 3.5c that the larger dimensions or more density of
matrix are, the more time in matrix multiplication is required. And the comparison
results between stand-alone and parallelized matrix multiplication with the sparsity
of 0.001 shows that the stand-alone algorithm costs shorter time for a quite small
matrix dimension because the parallelized algorithm spends lots of time in the start-
ing task nodes of Hadoop cluster and resources of cluster are not fully utilized for
a small amount of calculations. However, the efficiency of parallelized algorithm is
much better as the matrix dimension increases. Besides, the stand-alone algorithm is
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restricted of memory size, so there are no results derived in the last three large-scale
matrix multiplications shown in Fig. 3.5c.

Figure3.5d shows the effect of intermediate data amount and partition strategy
of block matrix multiplication. There are 11 kinds of partition strategies with the
square block matrix dimensions from 300 × 300 to 6000 × 6000, where the square
matrix is with the dimension of 100,000 × 100,000 and the sparsity of 0.0001 in the
experiment. We notice from Fig. 3.5d that the intermediate data amount of matrix
multiplication decreases gradually with the increase of block dimension. In contrast,
the running time reaches its minimum value at 5th data point. Smaller intermediate
data amount results in less disk IO operations and data amount transmitted by shuffle,
which also leads to shorter time and better performance to a certain extent as the data
points before 1000 near 1000 reflected.However, the excessive large block dimension
will reduce the concurrent granularity and increase the amount of calculations for
single node, which conversely results in longer time of computation as the data points
after 1000 reflected.

In all, the appropriate partition strategy and sufficient sizes of cluster greatly affect
the efficiency in parallelized block matrix multiplications. Applying parallelization
method, AvgSim gains the ability to measure relevance in larger-scale networks with
massive data efficiently.

3.3 Conclusion

In this chapter, we study the relevance search problem which measures the related-
ness of heterogeneous objects in heterogeneous networks. We introduce a general
relevance measure, called HeteSim. As a path-constraint and semi-metric measure,
HeteSim can measure the relatedness of same-typed or different-typed objects in a
uniform framework. In addition, we also present a modification of HeteSim. Exten-
sive experiments validate the effectiveness and efficiency of the proposed measures
on evaluating the relatedness of heterogeneous objects.

The similarity measure of objects in heterogeneous networks is an important
and basic task, which can be used in many applications. There are some interesting
directions for future work. Similarity measures are designed for more complex HIN,
such as hybrid network integrating heterogeneous features and text information, and
multiple or weighted meta paths. In addition, similarity measures are widely used in
real applications where the network scales are usually huge. We need to design the
efficient and parallelized computation methods.
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