
Chapter 5
Recommendation with Heterogeneous
Information

Abstract Recently, heterogeneous informationnetwork (HIN) analysis has attracted
a lot of attention, and many data mining tasks have been exploited on HIN. As an
important data mining task, recommender system includes a lot of object types (e.g.,
users, movies, actors, and interest groups in movie recommendation) and the rich
relations among object types, which naturally constitute an HIN. The comprehensive
information integration and rich semantic information of HIN make it promising to
generate better recommendation. In this chapter, we introduce three works on recom-
mendation with HIN. One work recommends items with semantic meta paths, and
the other two works extend traditional matrix factorization with rich heterogeneous
information.

5.1 Recommendation Based on Semantic Path

5.1.1 Overview

In recent years, some works [5, 9, 24] have taken notice of the benefits of HIN
for recommendation, where the objects and their relations in recommended system
constitute a heterogeneous information network (HIN). Figure5.1 shows such an
example. The HIN not only contains different types of objects in movie recommen-
dation (e.g., users andmovies) but also illustrates all kinds of relations among objects,
such as viewing information, social relations, and attribute information. Constructing
heterogeneous networks for recommendation can effectively integrate all kinds of
informations, which can be potentially utilized for recommendation. Moreover, the
objects and relations in the networks have different semantics, which can be explored
to reveal subtle relations among objects. For example, the meta path “User-Movie-
User” in Fig. 5.1 means users viewing the same movies and can be used to find the
similar users according to viewing records. If we recommend movies following this
meta path, it will recommend themovies that are seen by users having the same view-
ing records with the given user. It corresponds to the collaborative filtering model
in essence. Similarly, the “User-Interest Group-User” path can find the similar users
with similar interests. This path corresponds to the member recommendation [25].
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Fig. 5.1 The objects and
relations in movie
recommended system are
organized as a weighted
heterogeneous information
network

So we can directly recommend items based on the similar users generated by differ-
ent meta paths connecting users. Moreover, it can realize different recommendation
models through properly setting meta paths. However, this idea faces the following
two challenges.

Firstly, conventional HIN and meta path cannot be directly applied to recom-
mended system. As we know, conventional HIN and meta path do not consider the
attribute values on links. However, this movie recommendation network can contain
attribute values on links. Concretely, in recommended system, the users can provide
a rating score to each movie viewed. The rating scores usually range from 1 to 5 as
indicated on the link between user and movie in Fig. 5.1, where higher score means
stronger preference. Ignoring the rating scores may result in bad similarity discovery
on users. For example, according to the path “User-Movie-User,” Tom has the same
similarity with Mary and Bob, since they view the same movies. However, they may
have totally different tastes due to different rating scores. In fact, Tom andBob should
be more similar, since they both like the same movies very much with high scores.
Mary may have totally different tastes, because she does not like these movies at
all. The conventional meta path does not allow links to have attribute values (e.g.,
rating scores in the above example) [19, 24], and hence, it cannot reveal this subtle
difference. However, this difference is very important, especially in recommended
system, to more accurately reveal relations of objects. So we need to extend exist-
ing HIN and meta path for considering attribute values on links. Moreover, the new
similarity measures are urgently needed for development.

Secondly, it is difficult to effectively combine information from multiple meta
paths for recommendation. As we have said, different types of similar users will be
generated through different meta paths, and these different types of similar users
will recommend different items. A weight learning method can be designed to com-
bine these recommendations, and each path can be assigned with a learned weight
preference. A good weight learning method should obtain prioritized and person-
alized weights. That is, the learned weights can represent the importance of paths,
and each user should have personalized weights to embody his preferences on paths.
The prioritized and personalized weights are very important for recommendation,
since they can deeply reveal the characteristics of users. Much more than this, it
makes the recommendation more explainable, since meta paths contain semantics.
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For example, if a user has high-weight preference on the “User-Interest Group-User”
path, we can explain that the recommendation results stem from movies viewed by
users in the interest groups he joined in. Unfortunately, the personalized weights
may suffer from the rating sparsity problem, especially for users with little rating
information. The reasons lie in that so many parameters are needed to be learned and
rating information is usually not sufficient.

In this chapter, we extend HIN and meta path for widely existing attribute values
on links in information networks and, firstly, propose theweightedHIN andweighted
meta path concepts to more subtly reveal object relations through distinguishing link
attribute values. Instead of designing an ad hoc similarity measure for weighted
meta paths, we design a novel similarity computation strategy that can make existing
path-based similarity measures still usable. Furthermore, the semantic path-based
personalized recommendation method SemRec is proposed to flexibly integrate het-
erogeneous information through setting meta paths. In SemRec, we design a novel
weight regularization term to obtain personalized weight preferences on paths and
alleviate the rating sparsity through employing the consistency rule of weight pref-
erences of similar users.

5.1.2 Heterogeneous Network Framework
for Recommendation

In this section, we describe notations used in this chapter and present some prelimi-
nary knowledge.

5.1.2.1 Basic Concepts

An HIN is a special type of information network with the underneath data structure
as a directed graph, which contains either multiple types of objects or multiple types
of links. Traditionally, HIN does not consider the attribute values on links. However,
many real networks contain attribute values on links. For example, users usually rate
movies with a score from 1 to 5 in movie recommended system, and the “author of”
relations between authors and papers in bibliographic networks can take values (e.g.,
1, 2, 3) which means the order of authors in the paper. In this chapter, we formally
propose the weighted heterogeneous information network concept to handle this
condition.

Definition 5.1 (Weighted informationnetwork)Given a schema S = (A,R,W)which
consists of a set of object types A = {A}, a set of relations connecting object pairs
R = {R}, and a set of attribute values on relations W = {W }, a weighted informa-
tion network is defined as a directed graph G = (V, E,W ) with an object type
mapping function ϕ : V → A, a link type mapping function ψ : E → R, and an
attribute value type mapping function θ : W → W. Each object v ∈ V belongs to
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Fig. 5.2 Network schema of weighted heterogeneous information networks constituted by two
datasets

one particular object type ϕ(v) ∈ A, each link e ∈ E belongs to a particular relation
ψ(e) ∈ R, and each attribute valuew ∈ W belongs to a particular attribute value type
θ(w) ∈ W. When the types of objects |A| = 1 and the types of relations |R| = 1, it is
a homogeneous information network. When the types of objects |A| > 1 (or the
types of relations |R| > 1) and the types of attribute values |W| = 0, the network is
called unweighted heterogeneous information network.When the types of objects
|A| > 1 (or the types of relations |R| > 1) and the types of attribute values |W| > 0,
the network is called weighted heterogeneous information network (WHIN).

Conventional HIN is an unweighted HIN, where there are no attribute values on
relations or we do not consider them. For aWHIN, there are attribute values on some
relation types, and these attribute values may be discrete or continuous values.

Example 5.1 Amovie recommended system can be organized as a weighted hetero-
geneous information network, whose network schema is shown in Fig. 5.2a. The net-
work contains objects from six types of entities (e.g., users, movies, groups, actors)
and relations between them. Links between objects represent different relations.
For example, links exist between users and users denoting the friendship relations,
between users and movies denoting rating and rated relations. In addition, the net-
work also contains one type of attribute value on the rating relation between users
and movies, which take values from 1 to 5.

Two objects in an HIN can be connected via different paths, and these paths
have different meanings. As an example shown in Fig. 5.2a, users can be connected
via “User-User” (UU) path, “User-Group-User” (UGU) path, “User-Movie-User”
(UMU), and so on. These paths are called meta paths that are the combination of
a sequence of relations between object types. Although meta path is widely used
to reveal semantics among objects [20], it fails to distinguish the attribute values
between two objects in WHIN. For example, if ignoring the different rating scores
of users on items in above movie recommendation, we may obtain incorrect results.
Consider a scenario that we use the UMU path to find the similar users of Tom
according to their viewing records in Fig. 5.1. We can infer that Tom is very similar
to Mary and Bob, since they have the same viewing records. However, it is obvious
that Tom and Mary have totally different tastes. So the UMU path cannot subtly
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reveal the different ratings of users on the samemovies. In order to effectively exploit
semantics inWHIN,we extend the conventionalmeta path to consider attribute values
on relations. Without loss of generality, we assume the attribute values on relations
in WHIN are discrete. For continuous attribute values on relations, we can convert
the continuous attribute values into discrete ones.

Definition 5.2 (Extended meta path on WHIN) Extended meta path is a meta
path based on a certain attribute value constraint on relations, which is denoted

as A1
δ1(R1)−−−→ A2

δ2(R2)−−−→ δl (Rl )−−−→ Al+1|C (also denoted as A1(δ1(R1))A2(δ2(R2)) · · · · · ·
(δl(Rl))Al+1|C). If the relation R has attribute values on links, the attribute value
function δ(R) is a set of values from the attribute value range of relation R, else

δ(R) is an empty set. Ai
δi (Ri )−−−→ Ai+1 represents the relation Ri between Ai and Ai+1

based on the attribute values δi (Ri ). The constraint C on attribute value functions is
a set of correlation constraints among attribute value functions. If all attribute value
functions in a meta path are empty set (the corresponding constraint C is also an
empty set), the path is called an unweighted meta path, else the path is called a
weighted meta path.

Note that the conventional meta path is an unweighted meta path that can be
considered as the special case of a weighted meta path.

Example 5.2 Taking Fig. 5.2a as an example, the rating relation between users U

and movies M can take scores from 1 to 5. The weighted meta path U
1−→ M (i.e.,

U (1)M) means movies rated by users with score 1, which implies that users dislike

themovies. Theweightedmeta pathU
1,2−→ M

1,2−→ U (i.e.,U (1, 2)M(1, 2)U ) means
users disliking the same movies as the target user, while the unweighted meta path
UMU can only reflect that users have the same viewing records. Furthermore, we
can flexibly set the correlation constraints of attribute value functions on different
relations in weighted meta paths. For example, the path U (i)M( j)U |i = j means
users having exactly the same ratings on some movies as the target user. Under this
path, we can easily find that, in Fig. 5.1, Tom is very similar to Bob, while they are
totally dissimilar to Mary.

5.1.2.2 Recommendation on Heterogeneous Networks

For a target user, recommended systems usually recommend items according to his
similar users. In HIN, there are a number of meta paths connecting users, such as
“User-User” and “User-Movie-User”. Based on these paths, users have different
similarities. Here, we define the path-based similarity as follows.

Definition 5.3 (Path-based similarity) In HIN, the path-based similarity of two
objects is the similarity evaluation based on the given meta path connecting these
two objects.
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Table 5.1 The meanings and corresponding recommendation models of meta paths

No. Meta path Semantic meaning Recommendation
model

1 UU Friends of the target
user

Social
recommendation

2 UGU Users in the same
group of the target user

Member
recommendation

3 UMU Users who view the
same movies with the
target user

Collaborative
recommendation

4 UMTMU Users who view the
movies having the
same types with that
of the target user

Content
recommendation

After obtaining the path-based similarity of users, we can recommend items
according to the similar users of the target user. More importantly, the meta paths
connecting users have different semantics, which can represent different recommen-
dation models. As an example shown in Fig. 5.2a, “User-User” (UU) means friends
of the target user. If we recommend movies according to the similarity of users gen-
erated by that path, it will recommend the movies viewed by friends of the target
user. Indeed, it is the social recommendation. Another example is that “User-Movie-
User” (UMU)means users who view the samemovies with the target user. Following
that path, it will recommend the movies viewed by users having the similar viewing
records with the target user. It is collaborative recommendation in essential. Table5.1
shows the other representative paths and the corresponding recommendationmodels.
Based on the HIN framework, we can flexibly represent different recommendation
models through properly setting meta paths.

5.1.2.3 Similarity Measure Based on Weighted Meta Path

Similarity measure on meta paths have been well studied, and several path-based
similarity measures have been proposed on HIN, such as PathSim [19], PCRW [6],
and HeteSim [16]. However, these similarity measures cannot be directly applied
to weighted meta path, because they do not consider the attribute value constraint
on relations. As we know, the essential of the path-based similarity measure is to
evaluate the proportion of the number of paths connecting two objects on all possible
paths along the meta path [19], so the paths along a weighted meta path must satisfy
the attribute value constraint. Moreover, the attribute value on relations may be a
variable, even correlated. Taking the U (i)M( j)U |i = j path as an example, the
attribute values i and j are variables from 1 to 5, and they satisfy constraint i = j .
For this kind of paths, existing path-based similarity measures cannot handle it.
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In order to address the variable, even correlated, attribute value constraints in a
weighted meta path, we extend the meta path concept and propose a general strategy
to make existing path-based similarity measure still usable, instead of proposing an
ad hoc similarity measure. Specifically, we can decompose the weighted meta path
into a group of atomic meta paths with fixed attribute value constraint. For an atomic
meta path, the existing path-based similarity measures can be used directly.

Definition 5.4 (Atomic meta path) If all attribute value functions δ(R) in a weighted
meta path take a specific value, the path is called an atomic meta path. A weighted
meta path is a group of atomic meta pathswhich contain all atomic meta paths that
satisfy the constraint C.

Example 5.3 Taking Fig. 5.2a as an example, U (1)M(1)U and U (1)M(2)U both
are atomic meta paths. The weighted meta pathU (i)M( j)U |i = j is a group of five
atomic meta paths (e.g., U (1)M(1)U and U (2)M(2)U ).

Since a weighted meta path is a group of corresponding atomic meta paths, the
similarity measure based on a weighted meta path can be considered as the sum
of the similarity measure based on the corresponding atomic meta paths. So the
similarity measure based on a weighted meta path can be evaluated based on the
following two steps: (1) Evaluate the similarity based on each atomic meta path with
existing path-based measures; (2) sum up the similarities on all atomic meta paths
in the weighted meta path. Note that the similarity measure needs to consider the
effect of the normalized term existing in some path-based similarity measures, such
as PathSim [19] and HeteSim [16]. Taking PathSim as an example, we illustrate its
calculation process along conventional and weighted meta path in Fig. 5.3, where the
rating matrix between 3 users and 2 movies is from Fig. 5.1. We know that PathSim
counts the number of path instances connecting two objects along conventional meta
path with a normalized term (shown in the upper half of Fig. 5.3), and thus, it regards
that the users all are the same. As shown in the lower half of Fig. 5.3, PathSim along
weighted meta path firstly counts the number of path instances along each atomic
meta path and then sums up the number of path instances along all atomic meta paths
before normalization. And thus, it can more accurately discover that only u1 and u3
are similar, since they have the same tastes in movies.

5.1.3 The SemRec Solution

In this section, we proposed a Semantic path-based personalized Recommendation
method (SemRec) to predict the scores of items. Specifically, SemRec first evaluates
the similarity of users based on weighted or unweighted meta paths and then infers
the predicted scores on items according to the rating scores of similar users. Under
different meta paths, the users can obtain different recommendation results. How
to effectively combine these recommendations generated by different meta paths is
challenging. We need to put different preferences on the various meta paths. This
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results in assigning preferenceweight to eachmeta path.Weabbreviate the preference
weight as weight when the context is clear without confusion with the link weight in
the weighted meta path. There are two aspects of difficulties in learning the weights.
(1) Prioritized weights: That is, the weights learned should embody the importance
of paths and reflect users’ preferences. However, the similarity evaluations based on
different paths have significant bias, which makes path preference hard to reflect the
path importances. For example, the similarity evaluations may all be high based on
a path with dense relations, while the similarity evaluations may all be low based on
another path with sparse relations. So the similarity evaluations based on different
paths cannot reflect the similarity of two objects. SemRec designs a normalized
rating intensity operation to eliminate the similarity bias, which makes the weight
better reflect path importances. (2) Personalized weights: That is, it is better to learn
weight preferences for each user. However, personalized weight learning may suffer
from the rating sparsity problem, since many users have little rating informations.
In order to alleviate the rating sparsity problem for personalized weight learning,
we propose the consistency rule of weight preferences of similar users. That is, we
assume that two similar users have consistent weight preferences on meta paths.
While it is reasonable, it is seldom used before. Two users are similar based on a
path, which implies the path has similar impacts on these two users. That is to say,
these users have the consistent preferences on the path. Following this principle, we
design a novel weight regularization term, which effectively alleviates rating sparsity
in personalized weight learning.

In the following sections, we firstly design the basic recommendation method
based on a single path. And then, we propose three levels of personalized recommen-
dation methods based on multiple paths: unified weights for all users, personalized
weights for each user, and personalized weights with weight regularization.

5.1.3.1 Recommendation with Single Path

Based on the path-based similarity of users, we can find the similar users of a target
user under a given path, and then, the rating score of the target user on an item can
be inferred according to the rating scores of his similar users on the item. Assume
that the range of rating scores are from 1 to N (e.g., 5); P is a set of unweighted
or weighted meta paths; R ∈ R|U |×|I | is the rating matrix, where Ru,i denotes the
rating score of user u on item i ; and S ∈ R|U |×|U | is the path-based similarity matrix
of users, where S(l)

u,v is the similarity of users u and v under path Pl . Here, we define

the rating intensity Q ∈ R|U |×|I |×N , where Q(l)
u,i,r represents the intensity of user u

rating item i with score r given path Pl . Q
(l)
u,i,r is determined by two aspects: the

number of similar users rating the item i with score r and the similarity of users. So
we calculate Q(l)

u,i,r as the sum of similarity of users rating i with r .
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Q(l)
u,i,r = ∑

v S
(l)
u,v × Ev,i,r

Ev,i,r =
{
1 Rv,i = r
0 others

(5.1)

where Ev,i,r indicates whether user v rates item i with score r .
Under a meta path Pl , the rating of a user u on an item i ranges from 1 to N with

different rating intensities Q(l)
u,i,r . So the predicted rating score, denoted as R̂(l)

u,i , of
user u on item i under the path Pl can be the average of rating scores weighted by
corresponding normalized intensity.

R̂(l)
u,i =

N∑

r=1

r × Q(l)
u,i,r

∑N
k=1 Q

(l)
u,i,k

(5.2)

and R̂(l) ∈ R|U |×|I | means the predicted rating matrix under path Pl .
According to Eq.5.2, we can predict the rating score of a user on an item under

a given path and then recommend the item with the high score for a target user.
Moreover, Eq. 5.2 has an additional advantage that it eliminates the similarity bias
existing in different meta paths. As we know, the similarity of users under different
meta paths has different scales,whichmakes similarity evaluation and rating intensity
incomparable amongdifferent paths. The normalized rating intensity inEq. 5.2 is able
to eliminate those scale differences.

5.1.3.2 Recommendation with Multiple Paths

Under different meta paths, there are different predicted rating scores. In order to
calculate the compositive score, we propose three different weight learning methods
corresponding to different levels of personalized weights of users.

Unified weight learning for all users For all users, we assign each meta path with
a unified weight, which means the user preference on the path. This weight vector
is denoted as w ∈ R1×|P|, and w(l) means the weight on path Pl . The final predicted
rating score under all meta paths, denoted as R̂u,i , can be the weighted sum of
predicted rating score under each meta path.

R̂u,i =
|P|∑

l=1

w(l) × R̂(l)
u,i (5.3)

Hopefully, the predicted rating matrix R̂ ∈ R|U |×|I | should be as close as to the
real rating matrix R. So a direct optimization objective can be defined as the square
error between the real scores and the predicted scores.
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min
w

L1(w) = 1
2 ||Y � (R −

|P|∑

l=1
w(l) R̂(l))||22 + λ0

2 ||w||22
s.t. w ≥ 0

(5.4)

where the notation � is the Hadamard product (also know as the entrywise product)
between matrices, and || · ||p is the matrix L p-norm. Y is an indicator matrix with
Yu,i = 1 if user u rated item i , and otherwise, Yu,i = 0.

Personalizedweight learning for individual user The above optimization objective
has a basic assumption: All users have the same path preferences. However, in many
real applications, each user has his personal interest preferences. Unified weights
cannot provide personalized recommendations for users. To realize personalized
recommendation, each user is assignedwith weight vector onmeta paths. The weight
matrix is denoted as W ∈ R|U |×|P|, in which each entry, denoted as W (l)

u , means the
preference weight of user u on path Pl . The column vector W (l) ∈ R|U |×1 means the
weight vector of all users on path Pl . So the predicted rating R̂u,i of user u rating
item i under all paths is as follows:

R̂u,i =
|P|∑

l=1

W (l)
u × R̂(l)

u,i (5.5)

Similarly, we can define the optimization objective as follows:

min
W

L2(W ) = 1
2 ||Y � (R −

|P|∑

l=1
diag(W (l))R̂(l))||22 + λ0

2 ||W ||22

s.t. W ≥ 0

(5.6)

where diag(W (l)) means the diagonal matrix transformed from a vector W (l).

Personalized weight learning with weight regularization Although Eq.5.6 con-
sider user’s personalized weights, it may be hard to effectively learn weights for
those users that have little rating information. There are |U | × |P| weight parame-
ters to learn, while the training samples are usually much smaller than |U | × |I |. The
training samples are usually not sufficient for the weight learning, specially for those
cold-start users and items. According to the consistency rule of weight preferences
of similar users mentioned above, the path weights of a user should be consistent to
that of his similar users. For users with little rating information, their path weights
can be learnt from the weights of their similar users, since the similarity information
of users are more available through meta paths. So we design a weight regularization
term as follows, which compels the weights of a user consistent to the average of
weights of his similar users.

|U |∑

u=1

|P|∑

l=1

(W (l)
u −

|U |∑

v=1

S̄(l)
u,vW

(l)
v )2 (5.7)
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where S̄(l)
u,v = S(l)

u,v
∑

v S
(l)
u,v

is the normalized user similarity based on path Pl . For conve-

nience, the weight regularization term can be written as the following matrix format:

|P|∑

l=1

||W (l) − S̄(l)W (l)||22 (5.8)

And thus, the optimization objective is defined as follows:

min
W

L3(W ) = 1
2 ||Y � (R −

|P|∑

l=1
diag(W (l))R̂(l))||22

+ λ1
2

|P|∑

l=1
||W (l) − S̄(l)W (l)||22 + λ0

2 ||W ||22
s.t. W ≥ 0

(5.9)

The above optimization objective is a nonnegative quadratic programming prob-
lem, a simple special case of nonnegative matrix factorization. Projected gradient
method for nonnegative bound-constrained optimization [7] can be applied to solve
this problem. The gradient of Eq.5.9with respect toW (l)

u can be calculated as follows:

∂L3(W )

∂W (l)
u

= −(Yu � (Ru −
|P|∑

l=1
W (l)

u R̂(l)
u ))T R̂(l)

u + λ0W (l)
u

+ λ1(W (l)
u − S̄(l)

u W (l)) − λ1 S̄(l)T
u (W (l) − S̄(l)W (l))

(5.10)

W (l)
u can be updated as follows:

W (l)
u = max(0,W (l)

u − α
∂L3(W )

∂W (l)
u

) (5.11)

where α is the step size and can be set according to [7]. Algorithm 1 shows the
framework of this version of SemRec.

5.1.4 Experiments

In this section, extensive experiments on two real datasets illustrate the traits of
SemRec. We first validate the effectiveness of SemRec, especially for cold-start
problem. Then, we thoroughly explore the meanings of weights learned and validate
the benefits of the proposed weighted meta path.
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Algorithm 1 Framework of SemRec
Require:

G: weighted heterogeneous information network
P: meta paths connecting users
λ0 and λ1: controlling parameter
α: step size for updating parameters
ε: convergence tolerance

Ensure:
W : the weight matrix of all users on all paths.

1: for Pl ∈ P do
2: Evaluate user similarity S(l)

3: Calculate rating intensity Q(l) with Eq.5.1
4: Calculate predicted rating score R̂(l) with Eq.5.2
5: end for
6: Initialize W > 0
7: repeat
8: Wold := W
9: Calculate ∂L3(W )

∂W with Eq.5.10

10: W := max(0,W − α
∂L3(W )

∂W )

11: until |W − Wold | < ε

5.1.4.1 Experiment Settings

In order to get more comprehensive heterogeneous information, we crawled a new
dataset from Douban,1 a well-known social media network in China. The dataset
includes 13,367 users and 12,677 movies with 1,068,278 movie ratings ranging
from 1 to 5. The dataset includes the social relation among users and the attribute
information of users and movies. Another dataset is the Yelp challenge dataset.2

This dataset contains user ratings on local business and attribute information of
users and businesses. The dataset includes 16,239 users and 14,284 local businesses
with 198,397 ratings from 1 to 5. The detailed description of these two datasets can
be seen in Table5.2, and their network schemas are shown in Fig. 5.2. We can find
that these two datasets have different properties. TheDouban dataset has dense rating
relations but sparse social relations, while the Yelp dataset has sparse rating relations
but dense social relations.

We use two widely used metrics, Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE), to measure the rating prediction quantity.

RMSE =
√∑

(u,i)∈Rtest
(Ru,i − R̂u,i )2

|Rtest | (5.12)

MAE =
∑

(u,i)∈Rtest
|Ru,i − R̂u,i |

|Rtest | (5.13)

1http://movie.douban.com/.
2http://www.yelp.com/dataset_challenge/.

http://movie.douban.com/
http://www.yelp.com/dataset_challenge/
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Table 5.2 Statistics of Douban and Yelp datasets

Dataset Relations
(A-B)

Number of A Number of B Number (A-B) Ave. degrees
of A/B

Douban User–Movie 13367 12677 1068278 79.9/84.3

User–User 2440 2294 4085 1.7/1.8

User–Group 13337 2753 570047 42.7/207.1

Movie–
Director

10179 2449 11276 1.1/4.6

Movie–Actor 11718 6311 33587 2.9/5.3

Movie–Type 12676 38 27668 2.2/728.1

Yelp User–
Business

16239 14284 198397 12.2/13.9

User–User 10580 10580 158590 15.0/15.0

User–
Compliment

14411 11 76875 5.3/6988.6

Business–City 14267 47 14267 1.0/303.6

Business–
Category

14180 511 40009 2.8/78.3

where Ru,i denotes the real rating user u gave to item i and R̂u,i denotes the pre-
dicted rating. Rtest denotes whole test set. A smaller MAE or RMSE means a better
performance.

In order to show the effectiveness of the proposed SemRec, we compare four vari-
ations of SemRec with the state of the arts. Besides the personalized weight learning
methodwithweight regularization (calledSemRecReg),we include three special cases
of SemRec: single path-based method (called SemRecSgl), unified weight learning
method for all users (called SemRecAll), and personalized weight learning method
for individual user (called SemRecInd). As the baselines, four representative rating
predication methods are illustrated as follows. Note that the top k recommendation
methods [5, 24] are not included here, since they solve different problems.

• PMF [14]: It is the basic matrix factorization method using only user–item matrix
for recommendations.

• SMF [13]: It adds the social regularization term into PMF, which aims at getting
the users’ latent factor closer to their friends’ latent factors.

• CMF [8]: A collective matrix factorization method, which factorizes all relations
in HIN and shares the latent factor of same object types in different relations.

• HeteMF [22]: A matrix factorization method with entity similarity regularization,
which also utilizes the relations in HIN.

We employ 5 meaningful meta paths whose lengths are not longer than 4 for both
datasets, since the longer meta paths are not meaningful and they fail to produce good
similaritymeasures [19]. Table5.3 shows those pathswhich include theweighted and
unweighted meta paths. For SemRec, we use PathSim [19] as the similarity measure
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Table 5.3 Meta paths used in experiments

Douban Yelp

UGU UU

U(i)M(j)U |i = j UCoU

U(i)MDM(j)U |i = j U(i)B(j)U |i = j

U(i)MAM(j)U |i = j U(i)BCaB(j)U |i = j

U(i)MTM(j)U |i = j U(i)BCiB(j)U |i = j

to calculate the similarity between users. The parameter λ0 in SemRec is 0.01, and
λ1 is 103 for the best performance. The parameters in other methods are set with the
best performances on these datasets.

5.1.4.2 Effectiveness Experiments

For Douban dataset, we use different training data settings (20%, 40%, 60%, 80%)
to show the comparison results in different data sparseness. Training data 20%, for
example, means that 20% of the ratings from user–item rating matrix is randomly
selected as the training data to predict the remaining 80%. From Table5.2, we can
find that the Douban dataset has dense rating relations, while Yelp has very sparse
rating relations. So we utilize more training data (60%, 70%, 80%, 90%) on Yelp.
The random selection was repeated 10 times independently, and the average results
are reported in Table5.4. Note that SemRecSgl reports the best performances on these
five paths.

From the results, we can observe that all versions of SemRec outperform other
approaches inmost conditions. Particularly, SemRecReg always achieves the best per-
formances on all conditions. For example, on 20% training set ofDouban, SemRecReg
outperforms PMF up to 19.55% on RSME and 15.89% on MAE. As compared to
PMF, CMF improves the recommendation performances through integrating hetero-
geneous information with matrix factorization. However, its performances are much
worse than the proposed SemRec on all conditions, especially on less training set.
As the most similar method to SemRec, HeteMF also has good performances, while
its performances are still worse than the proposed SemRecReg. These all imply that
the proposed SemRec has better mechanism to integrate heterogeneous information.

In addition, different versions of SemRec have different performances. Generally,
SemRec with multiple paths (e.g., SemRecAll and SemRecReg) have better perfor-
mances than SemRec with single path (i.e., SemRecSgl) except SemRecInd, which
indicates that the weight learning of SemRec can effectively integrate the similarity
information generated by different paths. Because of rating sparsity, SemRecInd has
worse performances than SemRecAll on most conditions. In addition, the better per-
formances of SemRecRec over SemRecInd confirm the benefit of the weight regular-
ization term. In all, SemRecReg always achieves best performances in all conditions.
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The reason lies in that SemRecReg not only realizes personalized weight learning for
all users but also avoids the rating sparsity through the weight regularization in it.

Furthermore, we record the average running time of thesemethods on the learning
process. For two similarity based methods (e.g., SemRec and HeteMF), we do not
consider the running time on similarity evaluation, since it can be done off-line
beforehand. For the four versions of SemRec, their running times increase when the
weight learning tasks become more complex. Both SemRecSgl and SemRecAll are
very fast, which can be applied for online learning. The running times of SemRecInd
and SemRecReg are still acceptable when compared to CMF and HeteMF. We can
select a proper model through balancing the efficiency and effectiveness of SemRec
in real applications.

5.1.4.3 Study on Cold-Start Problem

The above results also show that SemRec has more obvious superiority with less
training set, which implies that SemRec has the potential to alleviate the cold-start
problem. In this section, we will exploit the ability of SemRec on alleviating the
cold-start problem through observing its performances on different levels of cold-
start users and items. We run PMF, CMF, HeteMF, SemRecInd, and SemRecReg on
Douban dataset with users having the different numbers of rated movies. We select
four types of users: three types of cold-start users with different numbers of rated
movies (e.g., users with the number of rated movies no more than 5, denoted as ≤5
in Fig. 5.4) and all users (called ALL in Fig. 5.4). In addition, we also do the similar
experiments on cold-start items and users&items (contain both cold-start users and
items). We record the RMSE performance improvement of other four algorithms
against PMF in Fig. 5.4.

It is clear that SemRecReg always achieves the best performance improvements
on almost all conditions, and its superiority is more significant for less rating infor-
mation. On the contrary, CMF only achieves improvements on cold-start users and
HeteMF’s improvements are only on items. We think the reason lies in that the col-
lective matrix factorization of all relations in CMFmay introduce much noises, espe-
cially for items. HeteMF only utilizes the similarity information of items, ignoring
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Fig. 5.4 Performance improvements of three HIN methods against PMF on different levels and
types of cold-start problems
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that of users. Generally, integrating heterogeneous information is helpful in allevi-
ating cold-start problem (see Fig. 5.4c), while the integrating mechanisms may have
different impacts on cold-start items and users. The overall performance improve-
ments of SemRecReg are attributed to multiple meta paths that not only contain rich
attribute information but also provide comprehensive and complementary similarity
evaluation of users and items. In addition, the better performances of SemRecReg
over SemRecInd further validate that the weight regularization term employed in
SemRecReg is really helpful for the weight learning of cold-start users from similar
users.

5.1.4.4 Study of Weight Preferences

In this section, we illustrate the meanings of weights learned by SemRec through a
case study. Based on the results of SemRecReg on Douban dataset with 60% training
data in the above experiments, we cluster users’ weight vectors into 5 groups using
K -means and then show the statistics information of users in five clusters in Fig. 5.5a.
Moreover, the weight preferences of the five cluster centers on 5 meta paths are also
shown in Fig. 5.5b.

Let us observe the relationship of the statistics information of users in different
clusters and their weight preferences on paths from Fig. 5.5a, b. As we know, Douban
is a unique social media platform in China, in which the major active users are young
people who love culture and arts. As the typical and major users in Douban, the users
in C3 view a good number of movies, give relatively good rating scores, and have a
moderate number of friends. So they also have close weight preferences on all paths.
As the top movie fans, the users in C4 view a great many movies, tend to give lower
rating scores due to critical attitude, and have many friends. And they obviously like
to get recommendation from viewing records of other users (i.e., UMU) and interest
group (i.e., UGU), but less paying attentions to movies’ content (e.g., UMTMU and
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Fig. 5.5 Analysis of clusters’ characteristics and path preferences of results returned by SemRecReg
on Douban dataset. C1–C5 represents the index of five clusters
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UMAMU). In addition, the users in C1 and C2 are two types of inactive users, and
they view few movies and have few friends. Because of not being fond of movies,
these users tend to give much high or low rating scores. These users comparatively
prefer to follow movie content (e.g., UMTMU and UMAMU). The picky users in
C1 is more likely to get recommendation from interest group (i.e., UGU), while the
idealess users in C2 give more preferences to viewing records of other users (i.e.,
UMU).

In all, the weights of paths learned by SemRec can reflect the users’ path pref-
erences, and these path preferences are able to reveal the users’ characteristics to a
large extent. More importantly, the meaningful weight preferences are very useful
for recommendation explanation. We know that the meta path has semantics, so we
can tell users the recommendation reason according to the path semantics of the
high-weight path. Although some weight learning methods on paths have been pro-
posed [9, 24], their weights fail to reflect users’ preferences on paths. We think two
strategies adopted in RecSem contribute to its good properties. (1) We design the
predicted rating score in Eq.5.2, which can eliminate the similarity bias on different
meta paths by the adoption of normalized rating intensity. (2) We employ the weight
regularization term in Eq.5.9 according to the consistency rule of weight prefer-
ences of similar users. The consistency rule makes similar users have similar weight
preferences. In other words, weights also reveal users’ similarity and preferences.

5.1.4.5 Study on Weighted Meta Path

In this section, we study the effectiveness of weighted meta path on improving
the performances of SemRec through more accurately revealing relations among
objects. For the meta path UMU, we design two weighted paths U (i)M( j)U |i = j
and U (i)M( j)U ||i − j | ≤ 1. U (i)M( j)U |i = j means users rating the exact same
scores on the same movies, while U (i)M( j)U ||i − j | ≤ 1 means users rating
close scores. Similarly, we design two corresponding weighted paths for UMDMU,
UMAMU, and UMTMU. Based on the similarity generated by these meta paths,
we employ SemRecSgl to make recommendations. We compare the performances of
SemRecSgl with different paths and record the results in Fig. 5.6.

The experimental results on all four paths clearly show that SemRecwithweighted
meta paths (e.g.,U (i)M( j)U |i = j andU (i)M( j)U ||i − j | ≤ 1) significantly out-
perform SemRec with unweighted meta paths (e.g., UMU). Let us take the UMU
path as an example to analyze the reasons. Failing to distinguish the different rating
scores of users on the samemovies, UMU cannot accurately reveal user similarity, so
it has bad performances. The path U (i)M( j)U |i = j and U (i)M( j)U ||i − j | ≤ 1
not only considers the differences of rating scores but also keeps dense relations, so
they can achieve better performances than UMU. Compared to U (i)M( j)U |i = j ,
the relatively bad performances of U (i)M( j)U ||i − j | ≤ 1 may be attributed to
the noise introduced by some improper relation constraints (e.g., U(3)M(4)U, and
U(4)M(3)U). The experiments illustrate that the weighted meta paths are really
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Fig. 5.6 Performances of SemRec with different weighted meta paths

helpful to improve recommendation performances by more accurately revealing
object relations.

5.2 Recommendation Based on Matrix Factorization

5.2.1 Overview

With the increasing popularity of social media, there is a surge of social recommen-
dation techniques [4, 12] in recent years, which leverage rich social relations among
users, such as friendships in Facebook, following relations in Twitter. However, the
emerging social recommendation usually faces the problem of relation sparsity. On
the one hand, dense social relations can improve the recommendation performance.
However, social relations are very sparse or absent in many real applications. For
example, there are no social relations in Amazon, and 80% users in Yelp have less
than 3 following relations. On the other hand, users and items in many applications
have rich attribute information, which are seldom exploited. These information may
be very useful to reveal users’ tastes and items’ properties. For example, the group
attribute of users can reflect their interests, and the type attribute of movies can reveal
the content of movies. So it is desirable to effectively integrate all kinds of informa-
tion for better recommendation performance, including not only feedback and social
relations but also attributes of users and items. Some works have began to explore
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this issue [5, 23, 24], while they did not focus on revealing the importance of these
attributes and their effects on recommendation accuracy.

Although integrating more information is promising to achieve better recommen-
dation performance, how to integrate these information still faces two challenges.
(1) The information to be integrated has different types. These mixed information
types include integer (i.e., rating information), vector (i.e., attribute information),
and graph (i.e., social relations). We need to design a unified model to effectively
integrate these different types of information. (2) A unified and flexible method is
desirable to integrate all or some of these information. In order to intensively study
the impacts of different information, the designed method should flexibly integrate
different granularities of information and uniformly utilize different types of infor-
mation.

As mentioned above, we can organize objects and relations in recommended
system as a heterogeneous information network which contains different types of
nodes or links. In order to utilize these heterogeneous information, we introducemeta
path-based similarity measure to evaluate the similarity betweeof users and items.
Based on matrix factorization, a dual regularization framework SimMF is proposed
to integrate heterogeneous information through adopting similarity information of
users and items as regularization on latent factors of users and items. Moreover,
in SimMF, two different regularization models, average-based regularization and
individual-based regularization, can flexibly confine regularization on users or items.

5.2.2 The SimMF Method

In this section, we will introduce the SimMF method, which utilizes matrix fac-
torization framework to incorporate similarity information. We firstly introduce the
rich similarity generation with HIN. And then, we review the basic low-rank matrix
factorization framework and introduce the improvedmodel through constraining sim-
ilarity regularization on users and items, respectively. Finally, we show the unified
model through applying similarity regularization on users and items simultaneously.

5.2.2.1 Similarity Generation

Two objects in a heterogeneous network can be connected via different paths, which
can be called meta path [19]. A meta path P is a path defined on a schema S =
(A,R) and is denoted in the form of A1

R1−→ A2
R2−→ · · · Rl−→ Al+1 (abbreviated as

A1A2 · · · Al+1), which defines a composite relation R = R1 ◦ R2 ◦ · · · ◦ Rl between
type A1 and Al+1, where ◦ denotes the composition operator on relations. Since
different meta paths have different semantics, objects connecting by different meta
paths have different similarity. So we can evaluate the similarity of users (or movies)
based on different meta paths. For example, for users, we can consider meta paths
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UU, UGU, UMU, and so on. Similarly, meaningful meta paths connecting movies
include MAM and MDM.

There are several path-based similarity measures to evaluate the similarity of
objects in HIN [6, 16, 19]. Considering semantics in meta paths, Sun et al. [19]
proposed PathSim tomeasure the similarity of same-type objects based on symmetric
paths. Lao andCohen [6] proposed a Path Constrained RandomWalk (PCRW)model
to measure the entity proximity in a labeled directed graph constructed by the rich
metadata of scientific literature. The HeteSim [16] can measure the relatedness of
heterogeneous objects based on an arbitrary meta path. All these similarity measures
can be used in the similarity calculation, and their differences can be seen in Ref. [16].

We define S(l)
i j to denote the similarity of two objects ui and u j under the given

meta path Pl . The similarity (S) is determined by the given meta path (P) and the
similarity measure (M). That is, S = P × M. We know that the similarity of different
paths are different and they are incomparable. So we normalize them with Sigmoid
function as shown in Eq.5.14, where S̄(l) means the average of S(l)

i j and β is set to
1. The normalization process has the following two advantages. (1) It confines the
similarity into [0, 1] without changing their ranking. (2) It can reduce the similarity
difference of different paths. In the following section, we directly use the S(l)

i j to
represent the normalized similarity:

S(l)
i j

′
= 1

1 + e−β×(S(l)
i j −S̄(l))

(5.14)

Since users (or items) have different similarity under different meta paths, we
consider their similarity on all paths through assigning weights on different paths.
For users, we define SU for the similarity matrix of users on all paths and SI for the
similarity matrix of items on all paths. They can be defined as follows, where wU

l
represents theweight of similaritymatrix of users under the path Pl andwI

l represents
that of items:

SU = ∑
l w

U
l S

(l) ΣlwU
l = 1; 0 ≤ wU

l ≤ 1
SI = ∑

l w
I
l S

(l) ΣlwI
l = 1; 0 ≤ wI

l ≤ 1
(5.15)

5.2.2.2 Low-Rank Matrix Factorization

The low-rank matrix factorization has been widely studied in recommended system
[18]. Its basic idea is to factorize the user–item rating matrix R into two matrices
(U and V ) representing users’ and items’ distributions on latent semantic, respec-
tively. Then, the rating prediction can be made through these two specific matrices.
Assuming an m × n rating matrix R to be m users’ ratings on n items, this approach
mainly minimizes the objective function L(R,U, V ) as follows:

min
U,V

L(R,U, V ) = 1

2

m∑

i=1

n∑

j=1

Ii j (Ri j −UiV
T
j )2 + λ1

2
‖U‖2 + λ2

2
‖V ‖2, (5.16)
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where Ii j is the indicator function that is equal to 1 if user i rates item j and equal
to 0 otherwise.U ∈ R

m×d and V ∈ R
n×d , where d is the dimension of latent factors

and d 
 min(m, n). Ui is a row vector derived from the i th row of matrix U , and
Vj is a row vector derived from the j th row of matrix V . λ1 and λ2 represent the
regularization parameters. In summary, the optimization problemminimizes the sum-
of-squared-errors objective function with quadratic regularization terms which aim
to avoid overfitting. This problem can be effectively solved by a simple stochastic
gradient descent technique.

5.2.2.3 Similarity Regularization on Users and Items

As mentioned above, the user-specific factorized matrix describes users’ distribu-
tion over latent semantic. In this section, we will introduce two different types of
similarity regularization (i.e., average-based regularization and individual-based reg-
ularization) on users to force the distance between Up and Uq to be much smaller if
user p is highly similar to user q.

Average-based Regularization Intuitively, we have similar behavior model with
people who are similar with us. That is, the latent factor of a user is similar to the
latent factor of people who are the most similar to the user. Based on this assumption,
we add user’s similarity regularization to the basic low-rank matrix factorization
framework.

min
U,V

L(R,U, V ) = 1

2

m∑

i=1

n∑

j=1

Ii j (Ri j −UiV
T
j )2 + α

2

m∑

i=1

‖Ui −
∑

f ∈T+
u (i) S

U
i f U f

∑
f ∈T+

u (i) S
U
i f

‖2

+λ1

2
‖U‖2 + λ2

2
‖V ‖2 (5.17)

where T+
u (i) is the set of users who are in the top k similarity list of user i and

SUi f is the element located on the i th row and the f th column of user similarity
matrix SU. The average-based regularization confines that the latent factor of a user
is close to the average of the latent factor of the top k similar people to the user. The
analogous regularization has been used in social recommendation [13], while it just
enforces constraints on friends of users. Here, the average-based regularization not
only extends to the top k similarity list of users but also considers the similarity values
as the weights. The parameter k can be set to trade-off accuracy and computation
cost. Large k usually means high accuracy but low efficiency. In our experiments,
k is set to 5% of the vector dimension. A local minimum of the objective function
given by Eq.5.17 can be solved by performing gradient descent in feature vectors
Ui and Vj , which is shown in Eqs. 5.18 and 5.19. Here, T−

u (i) represents the set of
users whose top k similarity list contains user i .
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∂L

∂Ui
=

n∑

j=1

Ii j (UiV
T
j − Ri j )Vj + α(Ui −

∑
f ∈T+

u (i)(S
U
i f U f )

∑
f ∈T+

u (i) S
U
i f

)

+α
∑

g∈T−
u (i)

−SUig(Ug −
∑

f ∈T+
u (g)(S

U
g f U f )

∑
f ∈T+

u (g) S
U
g f

)

∑
f ∈T+

u (g) S
U
g f

+ λ1Ui , (5.18)

∂L

∂Vj
=

m∑

i=1

Ii j (UiV
T
j − Ri j )Ui + λ2Vj . (5.19)

Individual-based Regularization The above average-based regularization con-
strains user’s taste with the average taste of people who are the most similar users.
However, it may be ineffective for users whose similar users have diverse tastes. In
order to avoid this disadvantage, we employ individual-based regularization on users
as follows:

min
U,V

L(R,U, V ) = 1

2

m∑

i=1

n∑

j=1

Ii j (Ri j −UiV
T
j )2 + α

2

m∑

i=1

m∑

j=1

SUi j‖Ui −Uj‖2

+λ1

2
‖U‖2 + λ2

2
‖V ‖2. (5.20)

In essential, the individual-based regularization enforces a large SUi j to have a small
distance between Ui and Uj . That is, similar users have smaller distance on latent
factors. With the same optimization technique, a local minimum of Eq.5.20 can also
be found by performing gradient descent in Ui and Vj .

∂L

∂Ui
=

n∑

j=1

Ii j (UiV
T
j − Ri j )Vj + α

m∑

j=1

(SUi j + SUj i )(Ui −Uj ) + λ1Ui , (5.21)

∂L

∂Vj
=

m∑

i=1

Ii j (UiV
T
j − Ri j )Ui + λ2Vj . (5.22)

Similarity Regularization on Items For simplicity, we define the notation Regxy to
represent the average-based or individual-based regularization termon users or items,
where x ∈ {U,I} means Users or Items and y ∈ {ave, ind} means average-based or
individual-based regularization. That is, for similarity regularization on users, we
have
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RegUave =
m∑

i=1

‖Ui −
∑

f ∈T+
u (i) S

U
i f U f

∑
f ∈T+

u (i) S
U
i f

‖2, (5.23)

RegUind =
m∑

i=1

m∑

j=1

SUi j‖Ui −Uj‖2. (5.24)

Similar to the regularization on users, we can also define these two different types
of regularization on items as follows:

RegIave =
n∑

j=1

‖Vj −
∑

f ∈T+
i ( j) S

I
j f V f

∑
f ∈T+

i ( j) S
I
j f

‖2, (5.25)

RegIind =
n∑

i=1

n∑

j=1

SIi j‖Vi − Vj‖2, (5.26)

where T+
i ( j) is the set of items who are in the top k similarity list of item j , and SIj f

is the element located on the j th row and the f th column of similarity matrix SI. We
can also define the optimization function based on these two regularization terms on
items and derive their gradient learning algorithms as above.

5.2.2.4 A Unified Dual Regularization

Now, we consider regularization on users and items simultaneously. The correspond-
ing optimization function is shown as follows:

min
U,V

L(R,U, V ) = 1

2

m∑

i=1

n∑

j=1

Ii j (Ri j −UiV
T
j )2 + α

2
RegUy + β

2
RegIy

+λ1

2
‖U‖2 + λ2

2
‖V ‖2, (5.27)

where α and β control the effect of user and item regularization, respectively. For y ∈
{ave, ind}, there are four regularization models. Similarly, we can use the gradient
descent method to solve this optimization problem. The whole algorithm framework
is shown in Algorithm 2.

5.2.3 Experiments

In this section, we will verify the superiority of our model by conducting a series of
experiments compared to the state-of-the-art recommendation methods.
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Algorithm 2 Algorithm Framework of SimMF
Require:

G: heterogeneous information network
PU , PI : sets of meta paths related to users and items
η: learning rate for gradient descent
α, β, λ1, λ2: controlling parameters defined above
ε: convergence tolerance

Ensure:
U, V : the latent factor of users and items

1: Calculate similarity matrix of user SU based on PU , G
2: Calculate similarity matrix of item SI based on PI , G
3: Initialize U, V
4: repeat
5: Uold := U ,Vold := V
6: Calculate ∂L

∂U , ∂L
∂V

7: Update U := U − η ∗ ∂L
∂U

8: Update V := V − η ∗ ∂L
∂V

9: until ‖U −Uold‖2 + ‖V − Vold‖2 < ε

5.2.3.1 Experiment Settings

In experiments, we employs two real datasets from two various domains. Douban
Movie3 is from the movie domain. Stemming from the business domain, the widely
used Yelp challenge dataset4 [23, 24] records users’ ratings on local business and
also contains social relations and attribute information of business (e.g., cities and
categories). In addition, we use Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) to evaluate the performance of different methods.

In this section,we compare SimMFwith six representativemethods. There are dif-
ferent variations for SimMF.We use SimMF-U(y)I(y) to represent SimMFwith reg-
ularization on users and items, where y ∈ {a, i}, and it represents the average-based
or individual-based regularization. Similarly, SimMF-U(y) (SimMF-I(y)) means
SimMF with regularization only on users (items). There are six baseline methods,
including four types. There are two basic methods (i.e., UserMean and ItemMean),
a collaborative filtering with low-rank matrix factorization (i.e., PMF), a social rec-
ommendation method (i.e., SoMF), and two HIN-based methods (i.e., HeteMF and
HeteCF). These baselines are summarized as follows.

• UserMean. This method uses the mean value of every user to predict the missing
values.

• ItemMean. This method utilizes the mean value of every item to predict the
missing values.

3http://movie.douban.com/.
4http://www.yelp.com/dataset_challenge/.

http://movie.douban.com/
http://www.yelp.com/dataset_challenge/
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• PMF. This method is a typical matrix factorization method proposed by Salakhut-
dinov and Minh [15]. And in fact, it is equivalent to basic low-rank matrix factor-
ization in the previous section.

• SoMF. This is the matrix factorization-based recommendation method with social
average-based regularization proposed by Ma et al. [13].

• HeteMF. This is the matrix factorization-based recommendation framework com-
bining user ratings and various entity similaritymatrices proposed byYu et al. [22].

• HeteCF. This is the social collaborative filtering algorithm using heterogeneous
relations [9].

We employ HeteSim [16] to evaluate the similarity of objects. For the Douban
Movie dataset, we use 7 meaningful meta paths for user whose length is smaller than
4 (i.e., UU, UGU, ULU, UMU, UMDMU, UMTMU, UMAMU) and 5 meaningful
meta paths for movie whose length is smaller than 3 (i.e., MTM, MDM, MAM,
MUM, MUUM). For the Yelp dataset, we use 4 meta paths for user (i.e., UU, UBU,
UBCBU, UBLBU) and 4 meta paths for business (i.e., BUB, BCB, BLB, BUUB).
Similarly, we utilize 5 meta paths for user (i.e., UGU, UAU, UOU, UMU, UMTMU)
and 2 meta paths for movie (i.e., MTM, MUM) for the MovieLens dataset. And for
the Douban Book dataset, we utilize 7 meta paths for user (i.e., UU, UGU, ULU,
UBU, UBABU, UBPBU, UBYBU) and 5 meta paths for book (i.e., BAB, BPB,
BYB, BUB, BUUB). These similarity data are fairly used for HeteCF and SimMF.
HeteMF uses similarity data of users, since the model only considers the similarity
relationships between items.

5.2.3.2 Effectiveness Experiments

This section will validate the effectiveness of SimMF through comparing its different
variations to baselines. Here, we run four versions of SimMF-U(y)I(y) (y ∈ {a, i})
and record theworst (denoted as SimMF-max inTables5.5 and 5.6), the best (denoted
as SimMF-min), and the average (denoted as SimMF-mean) performance of these
four versions. The α and β are set to 100 and 10, respectively, for Douban Movie
dataset, as suggested in the following parameter experiment. For other datasets, α

and β are set to the optimal values according to related parameter experiments. For
all the experiments in this chapter, the values of λ1 and λ2 are set to a trivial value
0.001 and the length of latent feature vectorsUi and Vj are set to 10. The parameters
of other methods are set to the optimal values obtained in parameter experiments.

For these datasets, we use different ratios (80%, 60%, 40%, 20%) of data as
training set. For example, the training data 80% means that we select 80% of the
ratings from user–item rating matrix as the training data to predict the remaining
20% of ratings. The random selection was carried out 10 times independently in
all the experiments. We report average results on Douban Movie and Yelp datasets
in Tables5.5 and 5.6, respectively, and record the improvement ratio of all meth-
ods compared to the PMF. In addition, we also report the average running time of
these methods with the 80% training ratio in the last line of above tables. For those
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HIN-based methods (i.e., HeteCF, HeteMF, and SimMF), we only report the running
time of the model learning process, ignoring the running time of similarity computa-
tion. Note that we report the mean running time for SimMF, since the four versions
of SimMF have the similar computational complexity.

The results are shown in Tables5.5 and 5.6. In addition, we also conduct the t-test
experiments with 95% confidence, which shows that the MAE/RMSE improvement
difference is statistically stable and non-contingent. Due to the space limitation, they
are omitted in the paper, but the results can be found in [17]. From the experimental
comparisons, we can observe the following phenomena.

• SimMF always outperforms the baselines in most conditions, even for the worst
performance of SimMF (i.e., SimMF-max). It validates that more attribute infor-
mation from users and items exploited in SimMF is really helpful to improve
the recommendation performance. In addition, the model integrating more infor-
mation usually has better performances. That is, the reason why other matrix
factorization models integrating heterogeneous information usually have better
performance than the basic matrix factorization model PMF.

• Although HeteMF and HeteCF also utilize the attribute information from users
and items, they have worse performance than SimMF, which implies the proposed
SimMF has better mechanism to integrate heterogeneous information. We know
that HeteMF only integrates attribute information of items, while the same para-
meter for similarity regularization terms of users and items may cause the bad
performance of HeteCF.

• When considering different training data ratios, we can find that the superiority
of SimMF is more significant for less training data. It indicates that SimMF can
effectively alleviate data sparsity problem.We think the reason lies in that, through
exploiting different meta paths, we can make full use of rich attribute information
of users and items to reflect the similarity of users and items from different aspects.
The integration of similarities can comprehensively reveal the similarity of users
and items, which compensates for shortage of training data.

Observing the running time of different methods in the last row of Tables5.5
and 5.6, we can find that the running time becomes longer as the models become
more complex. That is, HIN-based methods (i.e., HeteMF, HeteCF, and SimMF)
have longer running time than the other methods, since they have more parameters
to be learned. However, SimMF is still faster than the other two HIN-based methods
because SimMF does not need to learn the weights of meta paths.

5.2.3.3 Impact of Different Regularizations

Experiments in this section will validate the effect of different regularization models
on users and items. Ma et al. [13] have explored the effect of average-based and
individual-based regularization on social relations of users. However, in this chapter,
we not only explore the effect on more complex relations, but also consider the effect
on both users and items.
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Fig. 5.7 Performance of SimMFwith different regularizations on DoubanMovie and Yelp datasets

We employ four variations of SimMF with average-based and individual-based
regularization on users and items (i.e., SimMF with U(a)I(i), U(a)I(a), U(i)I(i), and
U(i)I(a)) and four variations of SimMF with average-based or individual-based reg-
ularization on users or items (i.e., SimMF with U(a), U(i), I(a), and I(i)). The same
parameters are set with above experiments, and the average results are shown in
Fig. 5.7. We can find that SimMF, integrating similarity information on both users
and items, always has better performance than the one only integrating similarity
information on users or items. Again, we can observe the difference is far more
pronounced when the fraction of training set is low; e.g., at 20%, SimMF-U(i) and
SimMF-U(a) perform very bad. Moreover, we can also observe an interesting phe-
nomena: Regularization models have different effects on users and items. SimMF-
U(a) has better performance than SimMF-U(i) on both datasets, which indicates
average-based regularization may be more suitable for users. However, it is not the
case for items. SimMF-I(i) performs better than SimMF-I(a) on Douban Movie,
while SimMF-I(a) outperforms SimMF-I(i) on Yelp. As a result, SimMF-U(a)I(i)
has the best performance on Douban Movie, while SimMF-U(a)I(a) is the best one
on Yelp. Although it is hard to draw general conclusions, the above study indicates
that different regularization model may significantly affect performance of matrix
factorization methods. In summary, we need to find the optimal regularization model
according to data properties in real applications.
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5.2.3.4 Impact of Different Meta Paths

In this section,we study the impact of differentmeta paths.Due to similar analysis,we
only show results on Douban Movie dataset. As illustrated above, we employ 7 meta
paths on users and 5 meta paths on movies. We will observe performance of SimMF
with similarity matrix generated by one single meta path. Under the same parameters
with above experiments, we run SimMF-U(a) with similarity matrix generated by
each meta path on users. Similarly, we also run SimMF-I(i) with similarity matrix
generated by each meta path on movies.

The experiment results on Douban Movie dataset are shown in Fig. 5.8. We can
observe different impacts of meta paths on users and movies. The SimMF-U(a) with
different meta paths (see Fig. 5.8a, b) on users all have close performance. Moreover,
SimMF-U(a) with MUM has slightly better performance and SimMF-U(a) with UU
has worse performance. However, it is not the case for meta paths on items. The
SimMF-I(i) with different meta paths on items (see Fig. 5.8c, d) have totally different
performance. We can find that SimMF-I(i) with MDM has the worst performance,
even worse than PMF in some conditions, while SimMF-I(i) with MTM and MUM
achieve much better performance on both criteria. We think there are two reasons:
(1) Note that the performance of SimMF is much affected by the density of relations.
The density of relations on MT and MU is much higher than that on MD and MA.
The dense relations are helpful to generate good similarity of items. The similar
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Fig. 5.8 Performance of SimMF with different meta paths on Douban Movie dataset
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Fig. 5.9 Performance of SimMF on MAE and RMSE with different weights setting methods

phenomena have been widely observed in social recommendation [10, 13]. (2) The
meaningful meta paths are helpful to reveal the similarity of objects. MTM means
movies with same type, and MUM means movies seen by same users. These two
paths are highly correlated as both reveal properties of themovies. These two reasons
can also explain the slightly worse performance of the meaningful but sparse UU
meta path as compared to other meta paths of users. The experiments imply that we
only need to use one single dense and meaningful meta path to generate similarity
information, which also can obtain good enough performance.

We further design an experiment to illustrate different importance of meta paths.
Concretely, we observe the performance of above SimMF-I(i) with different weight
combination methods on 5 meta paths. Except mean weight and random weight on
5 paths, we design a heuristic weight method, i.e., setting the weights according to
the performance of these paths. That is, paths with good performance have higher
weights. Assume the MAE performance value of a path (Pl) is Pl , and the maxMAE
value is Pmax . Then, the difference is dl = ePmax−Pl . And thus, the weight of the path
is wI

l = dl∑
l dl

. The experiment also includes PMF as the baseline. The results are
shown in Fig. 5.9. It is obvious that SimMF-I(i) with the heuristic weight method has
the best performance, which further validates that the meaningful and dense meta
paths are more important. The more detailed method description and experiment
validation can be seen in [17].

5.3 Social Recommendation with Heterogeneous
Information

5.3.1 Overview

With the boom of social media, social recommendation has become a hot research
topic, which utilizes the social relations among users for better recommendation.
Some researchers utilized trust information among users [10, 11], and some began
to use friend relationship among users [13, 21] or other types of information
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[1, 2]. Most of these social recommendation methods employ social regularization
to confine similar users under the low-rank matrix factorization framework. Specif-
ically, we can obtain the similarity of users from their social relations, and then, the
social regularization, as a constraint term, confines the latent factors of similar users
to be closer. It is reasonable, since similar users should have similar latent features.

However, the widely used social regularization in social recommendation has
several shortcomings. (1) The similarity information of users is only generated from
social relations of users. But we can obtain users’ similarity from many ways in real
applications, such as users’ contents. (2) The social regularization only has constraint
on users. In fact, we can also obtain the similarity of items and impose constraint
on the latent factors of items. (3) The social regularization may be ineffective for
dissimilar users, which may lead to dissimilar users having similar factors. The
analysis and experiments in the next section validate this point.

In order to address the limitation of traditional social recommendation, we pro-
pose a dual similarity regularization-based recommendation method (called DSR).
Inspired by the success of Heterogeneous InformationNetwork (HIN) inmany appli-
cations, we organize a recommended system as an HIN, which can integrate all
kinds of information, including interactions between users and items, social relations
among users, and attribute information of users and items. Based on the HIN, we can
generate rich similarity information on both users and items by setting proper meta
paths. Furthermore, we propose a new similarity regularization which can impose
the constraint on users and items with high and low similarity. With the similarity
regularization, DSR adopts a new optimization objective to integrate those similarity
information of users and items. Then, we derive its solution to learn the weights of
different similarities.

5.3.2 The DSR Method

In this section, we propose the dual similarity regularization-based matrix factoriza-
tion method DSR and infer its learning algorithm.

5.3.2.1 Limitations of Social Recommendation

Recently, with the increasing popularity of social media, there is a surge of social
recommendations which leverage rich social relations among users to improve rec-
ommendation performance. Ma et al. [13] first proposed the social regularization to
extend low-rank matrix factorization, and then, it is widely used in a lot of work [9,
22]. A basic social recommendation method is illustrated as follows:
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min
U,V

J = 1

2

m∑

i=1

n∑

j=1

Ii j (Ri j −UiV
T
j )2 + α

2

m∑

i=1

m∑

j=1

SU (i, j)‖Ui −Uj‖2

+λ1

2
(‖U‖2 + ‖V ‖2), (5.28)

where m × n rating matrix R depicts users’ ratings on n items and Ri j is the score
user i gives to item j . Ii j is an indicator function which equals to 1 if user i rated
item j and equals to 0 otherwise. U ∈ R

m×d and V ∈ R
n×d , where d 
 min(m, n)

is the dimension number of latent factor.Ui is the latent vector of user i derived from
the i th row of matrix U , while Vj is the latent vector of item j derived from the j th
row of V . SU is the similarity matrix of users, and SU (i, j) denotes the similarity of
user i and user j . ‖ · ‖2 is the Frobenius norm. Particularly, the second term is the
social regularization which is defined as follows:

SocReg = 1

2

m∑

i=1

m∑

j=1

SU (i, j)‖Ui −Uj‖2. (5.29)

As a constraint term in Eq.5.28, SocReg forces the latent factors of two users to be
close when they are very similar. However, it may have two drawbacks.

• The similarity information may be simple. In social recommendation, the simi-
larity information of users is usually generated from rating information or social
relations, and only one type of similarity information is employed. However, in
many applications, we can obtain much more rich similarity information of users
and items from various ways, such as rich attribute information and interactions.
We need to make full use of these similarity information of users and items for
recommendation.

• The constraint term may not work well when two users are not very similar. The
minimization of optimization objective should force the latent factors of two users
with high similarity to be close. However, when two users are not similar (i.e.,
SU (i, j) is small), SocReg may still force the latent factors of these two users to
be close. However, these two users should be dissimilar which means their latent
factors should have large distance.

In order to uncover the limitations of social regularization, we apply the model
detailed in Eq.5.28 to conduct four experiments each with different levels of similar-
ity information (None, Low, High, All). None denotes that we utilize no similarity
information in the model (i.e., α = 0 in the model), Low denotes that we utilize
bottom 20% users’ similarity information generated in the model, High is that of
top 20%, and All denotes we utilize all users’ similarity information. The Douban
dataset is employed in the experiments, and we report MAE and RMSE in Fig. 5.10.
The results of Low, High, and All are better than that of None, which implies
social regularization really works in the model. However, in terms of performance
improvement compared to None, Low does not improve as much as High and All
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do. The above analysis reveals that the social regularization may not work well in
recommender models when users are with low similarity.

5.3.2.2 Rich Similarity Generation

Traditional social recommendations only consider the constraint of users with their
social relations. However, rich similarity information on users and items can be gen-
erated in a heterogeneous information network. Two types of objects in an HIN can
be connected via various meta paths [19], which is a composite relation connect-
ing these two types of objects. Therefore, we can evaluate the similarity of users
(or movies) based on different meta paths. For example, for users, we can consider
UU, UGU, UMU, etc. Similarly, meaningful meta paths connecting movies include
MAM and MDM.

Several path-based similarity measures have been proposed to evaluate the simi-
larity of objects under given meta path in HIN [16, 19]. We assume that S(p)

U denotes
similarity matrix of users under meta path P (p)

U connecting users, and S(p)
U (i, j)

denotes the similarity of users i and j under the path P (p)
U . Similarly, S(q)

I denotes
similaritymatrix of items under the path P (q)

I connecting items, and S(q)

I (i, j) denotes
the similarity of items i and j . Since users (or items) have different similarities under
various meta paths, we combine their similarities on all paths through assigning
weights on these paths. For users and items, we define SU and SI to represent the
similarity matrix of users and items on all meta paths, respectively.

SU =
|PU |∑

p=1

w(p)
U S(p)

U , (5.30)

SI =
|PI |∑

q=1

w(q)

I S(q)

I , (5.31)
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where w(p)
U denotes the weight of meta path P (p)

U among all meta paths PU connect-
ing users, and w(q)

I denotes the weight of meta path P (q)

I among all meta paths PI

connecting items.

5.3.2.3 Similarity Regularization

Due to the limitations ofwidely used social regularization, we design a new similarity
regularization to constraining users and items simultaneously with much available
similarity information of users and items. The basic idea of similarity regularization
is that the distance of latent factors of two users (or items) should be negatively
correlated to their similarity, which means two similar users (or items) should have a
short distance while two dissimilar ones should have a long distance with their latent
factors. We note that the Gaussian function meets above requirement. Moreover,
the range of Gaussian function is [0,1], same with the range of similarity function.
Following this idea, we design a similarity regularization on users as follows:

SimRegU = 1

8

m∑

i=1

m∑

j=1

(SU (i, j) − e−γ ‖Ui−Uj‖2)2, (5.32)

where γ controls the radial intensity of Gaussian function and the coefficient 1
8 is

convenient for deriving the learning algorithm. This similarity regularization can
enforce constraint on both similar and dissimilar users. In addition, the similarity
matrix SU can be generated from social relations or the above HIN. Similarly, we
can also design the similarity regularization on items as follows:

SimRegI = 1

8

n∑

i=1

n∑

j=1

(SI (i, j) − e−γ ‖Vi−Vj‖2)2, (5.33)

The Proposed DSR Model We propose the Dual Similarity regularization for
Recommendation (called DSR) through adding the similarity regularization on users
and items into low-rank matrix factorization framework. Specifically, the optimiza-
tion model is proposed as follows:

min
U,V,wU ,wI

J = 1

2

m∑

i=1

n∑

j=1

Ii j (Ri j −UiV
T
j )2

+λ1

2
(‖U‖2 + ‖V ‖2) + λ2

2
(‖wU‖2 + ‖wI‖2)

+αSimRegU + βSimRegI (5.34)

s.t.
|PU |∑

p=1

w(p)
U = 1,w(p)

U ≥ 0
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|PI |∑

q=1

w(q)

I = 1,w(q)

I ≥ 0,

where α and β control the ratio of similarity regularization term on users and items,
respectively.

5.3.2.4 The Learning Algorithm

The learning algorithm of DSR can be divided into two steps. (1) Optimize the
latent factor matrices of users and items (i.e., U , V ) with the fixed weight vec-
tors wU = [w(1)

U ,w(2)
U , · · · ,w(|PU |)

U ]T and wI = [w(1)
I ,w(2)

I , · · · ,w(|PI |)
I ]T . (2) Opti-

mize the weight vectors wU and wI with the fixed latent factor matrices U and V .
Through iteratively optimizing these two steps, we can obtain the optimalU , V , wU ,
and wI .
Optimize U and V With the fixed wU and wI , we can optimize U and V by per-
forming stochastic gradient descent.

∂J

∂Ui
=

n∑

j=1

Ii j (UiV
T
j − Ri j )Vj (5.35)

+α

m∑

j=1

γ [(SU (i, j) − e−γ ‖Ui−Uj‖2)e−γ ‖Ui−Uj‖2(Ui −Uj )]

+λ1Ui ,

∂J

∂Vj
=

m∑

i=1

Ii j (UiV
T
j − Ri j )Ui (5.36)

+β

n∑

i=1

γ [(SI (i, j) − e−γ ‖Vi−Vj‖2)e−γ ‖Vi−Vj‖2(Vi − Vj )]

+λ1Vj ,

Optimize wU and wI With the fixed U and V , the minimization of J with respect
to wU and wI is a well-studied quadratic optimization problem with nonnegative
bound. We can use the standard trust region reflective algorithm to updatewU andwI

at each iteration. We can simplify the optimization function of wU as the following
standard quadratic formula:
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min
wU

1

2
wT
U HUwU + f TU wU (5.37)

s.t.
|PU |∑

p=1

w(p)
U = 1,w(p)

U ≥ 0.

Here, HU is a |PU | × |PU | symmetric matrix as follows:

HU (i, j) =
{

α
4 (

∑∑
S(i)
U � S( j)

U ) i �= j, 1 ≤ i, j ≤ |PU |
α
4 (

∑∑
S(i)
U � S( j)

U ) + λ2 i = j, 1 ≤ i, j ≤ |PU |,

� denotes the dot product. fU is a columnvectorwith length |PU |, which is calculated
as follows:

fU (p) = −α

4

m∑

i=1

m∑

j=1

S(p)
U (i, j)e−γ ‖Ui−Uj‖2 .

Similarly, we can also infer the optimization function of wI .

5.3.3 Experiments

In this section, we conduct experiments to validate the effectiveness of DSR and
further explore the cold-start problem.

5.3.3.1 Experiment Settings

We use two real datasets: Douban and Yelp in experiments. Note that the Douban
dataset has sparse social relationship with dense rating information, while the Yelp
dataset has dense social relationships with sparse rating information. We still use
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) to evaluate the
performance of rating prediction.

In order to validate the effectiveness of DSR, we compare it with following repre-
sentative methods. Besides the classical social recommendation method SoMF, the
experiments also include two recent HIN-based methods, HeteCF and HeteMF. In
addition, in order to validate the effectiveness of similarity regularization, we include
the revised version of SoMF with similarity regularization (i.e., SoMFSR).

• UserMean. It employs a user’s mean rating to predict the missing ratings directly.
• ItemMean. It employs an item’smean rating to predict themissing ratings directly.
• PMF [14]. Salakhutdinov and Minh proposed the basic low-rank matrix factor-
ization method for recommendation.
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• SoMF [13]. Ma et al. proposed the social recommendation method with social
regularization on users.

• HeteCF [9]. Luo et al. proposed the social collaborative filtering algorithm using
heterogeneous relations.

• HeteMF [22]. Yu et al. proposed the HIN-based recommendation method through
combining user ratings and items’ similarity matrices.

• SoMFSR. It adapts SoMF through only replacing the social regularization with the
similarity regularization SimRegU.

For Douban dataset, we utilize 7 meta paths for user (i.e., UU, UGU, ULU, UMU,
UMDMU, UMTMU, and UMAMU) and 5 meta paths for item (i.e., MTM, MDM,
MAM, MUM, and MUUM). For Yelp dataset, we utilize 2 meta paths for user (i.e.,
UB and UU) and 2 meta paths for item (i.e., BC and BL). HeteSim [16] is employed
to evaluate the object similarity based on abovemeta paths. These similarity matrices
are fairly utilized for HeteCF, HeteMF, and DSR. We set γ = 1, α = 10, and β =
10 through parameter experiments on Douban dataset. In the experiments on Yelp
dataset, we set the parameters γ = 1, α = 10, and β = 10. Meanwhile, optimal
parameters are set for other models in the experiments.

5.3.3.2 Effectiveness Experiments

For Douban dataset, we use different ratios (80%, 60%, 40%) of data as training sets
and the rest of the dataset for testing. Considering the sparse density of Yelp dataset,
we use 90%, 80%, and 70% of data as training sets and the rest of the dataset for
testing for Yelp dataset. The random selection is carried out 10 times independently,
and we report the average results in Table5.7.

It is clear that three HIN-based methods (DSR, HeteCF, and HeteMF) all achieve
significant performance improvements compared to PMF,UserMean, ItemMean, and
SoMF. It implies that integrating heterogeneous information is a promising way to
improve recommendation performance. Particularly, DSR always has the best per-
formance on all conditions compared to other methods. It indicates that the dual sim-
ilarity regularization on users and items may be more effective than traditional social
regularization. It can be further confirmed by the better performance of SoMFSR
over SoMF. Although the superiority of SoMFSR over SoMF is not significant, the
improvement is achieved on the very weak social relations in Douban dataset. In
addition, we can also find that DSR has better performance improvement for less
training data. It reveals that DSR has the potential to alleviate the cold-start problem.

5.3.3.3 Study on Cold-Start Problem

Furthermore, we validate the superiority of DSR on cold-start problem. We run
PMF, SoMF, HeteCF, HeteMF, and DSR on Douban dataset with 40% training ratio.
We set four levels of users: three types of cold-start users with various numbers
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Fig. 5.11 MAE improvement against PMF on various cold-start levels

of rated movies (e.g., [0, 8] denotes users rated no more than 8 movies and “All”
means all users in Fig. 5.11). We conduct similar experiments on cold-start items
and users&items (users and items are both cold-start). The experiments are shown in
Fig. 5.11. Once again, we find that 3 HIN-based methods all are effective for cold-
start users and items. Moreover, DSR always has the highest MAE improvement
on almost all conditions, due to dual similarity regularization on users and items.
It is reasonable since the DSR method takes much constraint information of users
and items into account which would play a crucial role when there is little available
information of users or items. The more detailed method description and experiment
validation can be seen in [3, 26].

5.4 Conclusions

In recent years, recommendation has become a very popular application to alleviate
information overload, and many recommendation techniques have been proposed.
Recommender system includes a lot of object types and the rich relations among
object types, so we can naturally constitute a heterogeneous information network
from recommended system. The comprehensive information integration and rich
semantic information of HIN make it promising to generate better recommendation.
In this chapter, we introduce two types of recommendation methods with HIN. One
type of methods employ the semantic path-based similarity measure to recommend
items directly, and the other type of methods utilize rich similarity generated by
meta paths to extend traditional matrix factorization methods. Experiments not only
validate the effectiveness of these proposed methods but also show the benefits of
information integration with heterogeneous network. In the future work, we can
exploit the power and benefits of information integrationwith heterogeneous network
in more applications.
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