
Chapter 6
Fusion Learning on Heterogeneous
Social Networks

Jiawei Zhang

Abstract Looking from a global perspective, the landscape of online social networks
is highly fragmented. A large number of online social networks have appeared, which
can provide the users with various types of services. Generally, the information
available in the these online social networks is of diverse categories, which can
be represented as heterogeneous information networks (HIN) formally. Meanwhile,
in such an age of online social media, users usually participate in multiple online
social networks simultaneously to enjoy more social networks services, who can
act as bridges connecting different networks together. So multiple HINs not only
represent information in single network, but also fuse information from multiple
networks. Formally, the online social networks sharing common users are named as
the aligned social networks, and these shared users who act like anchors aligning the
networks are called the anchor users. The heterogeneous information generated by
users’ social activities in the multiple aligned social networks provides social network
practitioners and researchers with the opportunities to study individual user’s social
behaviors across multiple social platforms simultaneously.

6.1 Network Alignment

6.1.1 Overview

Heterogeneous information networks (HIN) is a very general network representation
in the real world and lots of network structured data can be represented as HINs
formally, such as collaboration networks, online social networks, and knowledge
base. Meta path first proposed by Sun et al. for heterogeneous information networks
in [32] is a powerful tool, which can be applied in link prediction problems [31,
34], clustering problems [32, 33], searching and ranking problems [16, 37], and
collective classification problem [11] in HINs. However, most of these applications
are within one single network only, meta path extracted from which are called the
intra-network meta path.

Meanwhile, to enjoy the social network services from multiple online social net-
works simultaneously, users nowadays are usually involved in multiple online social
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144 6 Fusion Learning on Heterogeneous Social Networks

networks at the same time. Formally, the online social networks sharing common
users are named as the aligned social networks, and these shared users who act like
anchors aligning the networks are called the anchor users. Social activity analysis
across aligned social networks has become a hot research topic in recent years and
many pioneer works have been done on this topic. Zhang et al. propose to study the
network alignment problem between pairwise fully aligned networks [12], pairwise
partially aligned networks [44, 45, 47], and multiple partially aligned networks [46].

Based on the aligned networks, various kinds of application problems have been
studied across multiple social platforms, including friend recommendation and social
link prediction for new users [42] and emerging networks [43, 44, 50], location
recommendation [43], community detection for emerging networks [48] and syner-
gistic clustering across networks [9, 28, 36], information diffusion [39, 40], viral
marketing [39], and tipping user identification [40]. To handle the heterogeneous
information available across the aligned social networks, the meta path concept is
firstly extended to inter-network scenario [45, 50] and applied to address various
synergistic knowledge discovery problems across partially aligned heterogeneous
social networks, which include network alignment [45], link recommendation [50],
community detection [36], and information diffusion [39, 40].

Network alignment problem has been well studied in bioinformatics, e.g., protein-
protein interaction (PPI) network alignment [10, 14, 17, 30]. Most network align-
ment approaches focus on finding approximate isomorphism between two graphs
[10, 14, 30]. Because of the intractability of the problem, existing methods usu-
ally rely on practical heuristics to solve the problem [10, 17]. Meanwhile, in recent
years, some works have been done on aligning social networks [12, 13, 22]. Vari-
ous network alignment models have been proposed to address the problem, which
include the supervised classification-based network alignment methods [12, 45], PU
(positive and unlabeled) classification-based method [44], and unsupervised matrix
estimation-based methods [46, 47].

In this chapter, we will take heterogeneous social network as an example and
introduce the network alignment problem and uniCOAT model studied in [47]. In
the network alignment problem, we aim at identifying the common users’ accounts
(i.e., the anchor links) across different social platforms based on the heterogeneous
information available in the networks, which includes both the network structure
information and various types of attribute information.

6.1.2 Terminology Definition and Social Meta Path

Before introducing the proposed framework for the network alignment problem, we
will first introduce a set of terminologies that will be used both in this section and
throughout this chapter, including heterogeneous information networks, multiple
aligned social networks, anchor links, and the intra-network meta path and inter-
network meta path. A set of intra-network and inter-network meta paths will also be
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Fig. 6.1 An example of HIN and the corresponding network schema

introduced, whose notations, representation, and physical meanings will be illustrated
as follows.

6.1.2.1 Terminology Definition

As shown in Fig. 6.1a, online social networks usually contain heterogeneous infor-
mation involving different types of nodes, e.g., users, posts, words, time stamps,
and location checkins, as well as complex links among the nodes, e.g., friendship
links among users, write links between users and posts, and the contain/attach links
between posts and words, time stamps, and checkins. Formally, such a kind of online
social network can be represented as the heterogeneous information networks.

Definition 6.1 (Heterogeneous Information Networks) A heterogeneous informa-
tion network can be represented as G = (V,E), where the nodes in set V = ⋃

i Vi

and the links in set E = ⋃
i Ei are of different categories, respectively.

Users nowadays are usually involved in multiple online social networks simulta-
neously to enjoy more social network services. Formally, the online social networks
sharing common users can be defined as the multiple aligned social networks [12],
which are connected by the anchor links [42] between the accounts of shared users,
i.e., the anchor users [50].

Definition 6.2 (Multiple Aligned Social Networks) The multiple aligned social
networks can be represented asG = ({Gi }i , {A(i, j)}i, j ), where Gi = (Vi ,Ei ) denotes
the ith heterogeneous information network and A(i, j) represents the set of undi-
rected anchor links between networks Gi and G j .

Definition 6.3 (Anchor Link) Between networks Gi and G j , the set of undi-
rected anchor links A(i, j) can be represented as A(i, j) = {(uim, v j

n)|uim ∈ Ui , v j
n ∈

Ui , uim and v j
nare the accounts of the same user}, where Ui ⊂ Vi and U j ⊂ V j are the

user node sets in networks Gi and G j , respectively.
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Table 6.1 Summary of intra-network social meta paths

ID Notation Intra-network social meta
path

Semantics

1 U → U User
f ollow−−−−→ User Follow

2 U → U → U User
f ollow−−−−→ User

f ollow−−−−→
User

Follower of follower

3 U → U ← U User
f ollow−−−−→ User

f ollow←−−−−
User

Common out-neighbor

4 U ← U → U User
f ollow←−−−− User

f ollow−−−−→
User

Common in-neighbor

5 U → P → W ← P ← U User
wri te−−−→ Post

contain−−−−→
Word

contain←−−−− Post
wri te←−−−

User

Posts containing common
words

6 U → P → T ← P ← U User
wri te−−−→ Post

contain−−−−→
Time

contain←−−−− Post
wri te←−−−

User

Posts containing common
time stamps

7 U → P → L ← P ← U User
wri te−−−→ Post

attach−−−→
Location

attach←−−− Post
wri te←−−−

User

Posts attaching common
location check-ins

One way to model the heterogeneous information available across the multiple
aligned social networks is meta path [33, 36, 50], which abstracts the connections
among the different categories of nodes as sequences of link types connected by the
node types. For instance, given the social network with its schema shown in Fig. 6.1,
a summary of the intra-network social meta paths extracted from the network is
provided in Table 6.1.

Definition 6.4 (Intra-NetworkMetaPath) Given a heterogeneous information net-
work Gi = (Vi ,Ei ), we can represents its networks schema as S(Gi ) = (Ti ,Ri ),
where Ti denotes the types of nodes in Vi and Ri denotes the types of links in Ei .
Formally, based on the network schema, we can define the meta path as a sequence

P : T i
1

Ri
1−→ T i

2

Ri
2−→ · · · Ri

m−→ T i
m+1, where T i

m ∈ Ti and Ri
n ∈ Ri are the node and link

types available in network Gi , respectively.

Besides the intra-network meta Paths, via the anchor links and other shared infor-
mation entities, nodes across different networks can also get connected by the inter-
network meta paths.

Definition 6.5 (Inter-Network Meta Path) Given a meta path P consisting of
sequences of link types, P is an inter-network meta path between networks Gi

and G j iff P involves the node types and link types from the schema of both network
Gi and network G j .
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Table 6.2 Summary of inter-network social meta paths

ID Notation Intra-network social meta
path

Semantics

1 Ui → Ui ↔ U j ← U j Useri
f ollow−−−−→ Useri

Anchor←−−→
User j

f ollow←−−−− User j
Inter-network common
out-neighbor

2 Ui ← Ui ↔ U j → U j Useri
f ollow←−−−− Useri

Anchor←−−→
User j

f ollow−−−−→ User j
Inter-network common
in-neighbor

3 Ui → Ui ↔ U j → U j Useri
f ollow−−−−→ Useri

Anchor←−−→
User j

f ollow−−−−→ User j
Inter-network common out
in-neighbor

4 Ui ← Ui ↔ U j ← U j Useri
f ollow←−−−− Useri

Anchor←−−→
User j

f ollow←−−−− User j
Inter-network common in
out-neighbor

5 Ui → Pi → L ← P j ← U j Useri
wri te−−−→ Posti

checkin at−−−−−−→
Location

checkin at←−−−−−− Post j
wri te←−−− User j

Inter-network common
location checkins

7 Ui → Pi → T ← P j ← U j Useri
wri te−−−→ Posti

at−→ Time
at←− Post j

wri te←−−− User j
Inter-network common time
stamps

8 Ui → Pi → W ← P j ← U j Useri
wri te−−−→ Posti

contain−−−−→
Word

contain←−−−− Post j
wri te←−−−

User j

Inter-network common words

The simplest inter-network meta path between networks Gi and G j will be the
anchor meta path [45, 50] involving the user node types from Gi and G j and the
anchor link type between Gi and G j . Some inter-network meta path examples are
summarized in Table 6.2.

6.1.2.2 Social Meta Paths

Meta paths can actually connect various categories of node types from the network,
and those starting and ending with user node types are formally named as the social
meta paths [36] specifically. In this chapter, we will use the Foursquare and Twitter
networks as the example of multiple aligned social networks, which actually share
a large amount of common users. As shown in Fig. 6.1a, both the Foursquare and
Twitter networks can be represented as a heterogeneous information network G =
(V,E), where the node set V = U∪P∪ L∪T∪W involves the nodes of users, posts,
locations, time stamps, and words, while the link setE = Eu,u∪Eu,p∪Ep,l∪Ep,t∪Ep,w

contains the links among users, between users and posts, and those between posts and
locations, time stamps, and words, respectively. The corresponding network schema
of the HIN is shown in Fig. 6.1b. Based on the network schema, a set of intra-network
social meta paths can be extracted and defined from the network, which are shown
in Table 6.1.
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Besides the intra-network social metapaths, in Table 6.2, we also show a list of
inter-network social meta paths connecting user node types in networks Gi and
G j , respectively. These inter-network social meta paths connect user nodes across
networks via either the anchor links or other common information entities, e.g.,
location checkins, words, and time stamps.

6.1.3 Cross-Network Network Alignment

Formally, given networks G1,G2, · · · ,Gn together with information available in
them, the network alignment problem aims at identifying the anchor link sets
A(1,2),A(1,3), · · · ,A(n−1,n) between pairwise networks. The set of anchor links to be
inferred between networks Gi and G j can be represented as A(i, j), which aligns users
between networks Gi and G j . Considering that users in different social networks are
associated with both links and attribute information, the quality of the inferred anchor
links A(i, j) can be measured by the costs introduced by such mappings calculated
with users’ link and attribute information, i.e.,

cost (A(i, j)) = cost in links (A(i, j)) + α · cost in attributes(A(i, j)), (6.1)

where α denotes the weight of the cost obtained from the attribute information.

6.1.3.1 Structure Information-Based Network Alignment

Based on the social links among users in both Gi and G j (i.e., Ei
u,u and E j

u,u , respec-

tively), we can construct the binary social adjacency matrices Si ∈ R
|Ui |×|Ui | and

S j ∈ R
|U j |×|U j | for networks Gi and G j , respectively. Entries in Si and S j (e.g.,

Si (p, q) and S j (l,m)) will be assigned with value 1 iff the corresponding social
links (uip, u

i
q) and (u j

l , u
j
m) exist in Gi and G j , where uip, u

i
q ∈ Ui and u j

l , v
j
m ∈ U j

are users in networks Gi and G j .
Via the inferred anchor links A(i, j), users as well as their social connections can

be mapped between networks Gi and G j . We can represent the inferred anchor links
A(i, j) with binary user transitional matrix P ∈ R

|Ui |×|U j |, where the (ith, jth) entry
P(p, q) = 1 iff link (uip, u

j
q) ∈ A(i, j). Considering that the constraint on anchor

links is one-to-one, each column and each row of P can contain at most one entry
being assigned with value 1, i.e.,

P1|U j |×1 ≤ 1|Ui |×1, P	1|Ui |×1 ≤ 1|U j |×1, (6.2)

where P1|U j |×1 and P	1|Ui |×1 can get the sum of rows and columns of matrix P,
respectively. Eq. P1|U j |×1 ≤ 1|Ui |×1 denotes that every entry of the left vector is no
greater than the corresponding entry in the right vector.



6.1 Network Alignment 149

Matrix P is an equivalent representation of anchor link set A(i, j). Next, we will
infer the optimal user transitional matrix P, from which we can obtain the optimal
anchor link set A(i, j).

The optimal anchor links are those which can minimize the inconsistency of
mapped social links across networks and the cost introduced by the inferred anchor
link set A(i, j) with the link information can be represented as

cost in link(A(i, j)) = cost in link(P) = ∥
∥P	SiP − S j

∥
∥2

F
, (6.3)

where ‖·‖F denotes the Frobenius norm of the corresponding matrix and P	 is the
transpose of matrix P.

6.1.3.2 Attribute Information-Based Network Alignment

With these different attribute information (i.e., username, temporal activity, and text
content), we can calculate the similarities between users across networks Gi and
G j based on the inter-network social meta paths. To measure the social closeness
among users across directed heterogeneous information networks, we propose a new
closeness measure named INMP-Sim (Inter-Network Meta Path-based Similarity)
as follows.

Definition 6.6 (INMP-Sim) Let Pi (x � y) and Pi (x � ·) be the sets of path
instances of inter-network meta paths # i going from x to y and those going from
x to other nodes in the network. The INMP-Sim of node pair (x, y) is defined as

INMP-Sim(x, y) =
∑

i

ωi

( |Pi (x � y)| + |Pi (y � x)|
|Pi (x � ·)| + |Pi (y � ·)|

)

, (6.4)

where ωi is the weight of inter-network meta paths # i and
∑

i ωi = 1.

Formally, we represent such similarity matrix as Λ ∈ R
|Ui |×|U j |, where entry

Λ(p, q) is the similarity between uip and u j
q . Similar users across social networks

are more likely to be the same user and anchor links A(i, j)
u that align similar users

together should lead to lower cost. In this chapter, the cost function introduced by
the inferred anchor links A(i, j)

u in attribute information is represented as

cost in attribute(A(i, j)
u ) = cost in attribute(P) = −‖P ◦ Λ‖1 , (6.5)

where ‖·‖1 is the L1 norm of the corresponding matrix, entry (P ◦ Λ)(i, l) can be
represented as P(i, l) ·Λ(i, l), and P ◦Λ denotes the Hadamard product of matrices
P and Λ.
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6.1.3.3 Joint Objective Function for Network Alignment

Both link and attribute information is important for anchor link inference. By taking
these two categories of information into consideration simultaneously, we can rep-
resent the optimal user transitional matrix P∗ which can lead to the minimum cost
as follows:

P∗ = arg min
P

cost (A(i, j)
u )

= arg min
P

∥
∥P	SiP − S j

∥
∥2

F − α · ‖P ◦ Λ‖1 (6.6)

s.t.P ∈ {0, 1}|Ui |×|U j |,

P1|U j |×1 ≤ 1|Ui |×1, P	1|Ui |×1 ≤ 1|U j |×1.

The objective function is an constrained 0 − 1 integer programming problem,
which is hard to address mathematically. Many relaxation algorithms have been
proposed so far. For more information about how to resolve the objective function,
please refer to [47].

6.1.4 Experiments

To test the effectiveness of the proposed uniCOAT model, in this section, extensive
experiments have been done on two real-world partially co-aligned online social
networks: Foursquare and Twitter.

6.1.4.1 Dataset

The social networks dataset used in this chapter are Foursquare and Twitter, which
are co-aligned by both users and locations shared between these two networks. These
two social network datasets are crawled during November, 2012, whose statistical
information is available in Table 6.3. More detailed descriptions and the crawling
method is available in [43, 50].

To show the advantages of uniCOAT in addressing the Network Alignment
problem, we compare uniCOAT with many different baseline methods. Considering
that no known anchor links are available actually in the Network Alignment
problem, as a result, no existing supervised network alignment methods (e.g., MNA
[12]) can be applied. All the comparison methods are based on unsupervised learning
settings, which can be divided into 4 categories:
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Table 6.3 Properties of the heterogeneous networks

Property Network

Twitter Foursquare

# node User 5,223 5,392

Tweet/tip 9,490,707 48,756

Location 297,182 38,921

# link Friend/follow 164,920 76,972

Write 9,490,707 48,756

Locate 615,515 48,756

Co-Alignment Methods

• uniCOAT: Method uniCOAT can align two online social networks based on
the shared users and locations simultaneously, which consists of two steps: (1)
unsupervised potential anchor links inference; (2) co-matching of social networks
to prune redundant anchor links to maintain the one-to-one constraint.

Bipartite Graph Alignment Methods

• BigAlign: Method BigAlign is a bipartite network alignment method introduced
in [13], which can align two bipartite graphs (e.g., user-product bipartite graph)
simultaneously with link information only.

• BigAlignExt: Method BigAlignExt is a bipartite network alignment method.
BigAlignExt can align user-location bipartite networks with both location links
between users and locations as well as attribute information about users and loca-
tions across networks.

Isolated Alignment Methods

• ISO: Method ISO is an unsupervised network alignment method introduced in
[13]. ISO merely infers the anchor links only based on the friendship information
among users.

• ISOExt: Method ISOExt is an unsupervised network alignment method, which
is identical to ISO but utilizes both friendship links among users and attribute
information of users.

Traditional Unsupervised Link Prediction Methods

• Relative Degree Distance-based Network Alignment: RDD is the heuristics-based
unsupervised network alignment method introduced in [13] to fill in the initial val-
ues of the cross-network transitional matrices, e.g., P. For any two users/location
u(i)
l and u( j)

m in networks G(i) and G( j), the relative degree distance between them

can be represented as RDD(u(i)
l , u( j)

m ) =
(

1 + |deg(u(i)
l )−deg(u( j)

m )|
(deg(u(i)

l )+deg(u( j)
m ))/2

)−1
. High rela-

tive degree distance denotes lower confidence score of anchor link (u(i)
l , u( j)

m ).
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Methods uniCOAT (the first step), BigAlign, BigAlignExt ISO, ISOExt and
RDD can output the confidence scores of potential inferred links but no labels are
available, whose performance can be evaluated by metrics such as AUC and Pre-
cision@100. As to method uniCOAT, links selected finally in the matching are
assumed to achieve confidence score 1.0 and label +1, while the remaining can
achieve confidence score 0.0 and label −1. As a result, uniCOAT can also output
the labels of potential anchor links, whose performance can be evaluated by various
metrics, e.g., AUC, Precision@100, Precision, Recall, F1, and Accuracy, simultane-
ously.

The experiment results of addressing the Network Alignment problem are
available in Table 6.4 and Fig. 6.2. In Fig. 6.2, we fix θ = 1 and show the results
achieved by comparison methods without matching step (i.e., methodsuniCOAT (the
first step),BigAlign,BigAlignExt, ISO, ISOExt andRDD) evaluated by AUC and
Precision@100. Methods ISO and ISOExt can only be applied to align networks via

Table 6.4 Performance comparison of different methods for inferring user anchor links (uniCOAT
here denotes the first step of uniCOAT only)

Measure θ

Methods 1 2 3 4 5

AUC uniCOAT 0.868 0.831 0.814 0.804 0.799
BigAlignExt 0.813 0.779 0.759 0.752 0.749

BigAlign 0.568 0.557 0.555 0.552 0.550

ISOExt 0.818 0.782 0.762 0.754 0.61

ISO 0.547 0.529 0.52 0.518 0.516

RDD 0.531 0.530 0.523 0.514 0.508

Prec@100 uniCOAT 0.705 0.688 0.657 0.640 0.556
BigAlignExt 0.587 0.507 0.472 0.434 0.327

BigAlign 0.347 0.284 0.265 0.228 0.220

ISOExt 0.427 0.391 0.373 0.352 0.301

ISO 0.301 0.253 0.225 0.216 0.208

RDD 0.234 0.228 0.207 0.172 0.127

(a) AUC (b) Prec@100

Fig. 6.2 Performance of methods without matching in inferring anchor links (uniCOAT here
denotes the first step of uniCOAT only)
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user generated information. In Fig. 6.2, we can observe that (1) uniCOAT performs
the best among all the comparison methods in inferring anchor links evaluated by
both AUC and Precision@100. For example, in Fig. 6.2, uniCOAT can achieve
AUC score of 0.87, which is over 6% better than BigAlignExt and ISOExt, and
50% higher than the AUC score achieved by BigAlign, ISO and RDD. Similar
performance of uniCOAT is available in other plots. It demonstrates that utilizing
the heterogeneous information in the network to infer anchor links simultaneously
can improve the results a lot. (2) BigAlignExt and ISOExt can achieve better
performance than BigAlign and ISO. Recalling that methods BigAlignExt and
ISOExt use both the link and attribute information, while BigAlign and ISO use
the link information. It justifies that the attribute information of both users is helpful
for inferring anchor links across networks. (3) By comparing uniCOAT with RDD
(i.e., the initialization method of matrices P in uniCOAT), we observe that uniCOAT
can outperform RDD with significant advantages. It proves the effectiveness of the
proposed network co-alignment model, which can obtain better results than the initial
value.

6.1.4.2 Sensitivity Analysis

In Fig. 6.2, parameter θ is fixed as 1. In Table 6.4, we further change it with values
in {1, 2, 3, 4, 5} by adding more non-anchor users into the network. Generally, with
more non-anchor users, the Network Alignment will become more difficult and
the performance of all the methods will degrade, but uniCOAT can achieve the best
performance consistently. For example, when θ = 5, the AUC score achieved byuni-
COAT in inferring social links is 0.799, which is 6.7, 45, 31, 54.8, and 57.2% higher
than that gained by BigAlignExt, BigAlign, ISOExt, ISO, and RDD, respec-
tively. Similar observations can be obtained from the anchor links inference results
evaluated by Precision@100 in Table 6.4.

In the previous part, we have shown the performance of methods without matching
step, while anchor links inferred by which cannot meet the one-to-one constraint.
Next, we will test the effectiveness of the matching step in pruning the non-existing
anchor links and the results achieved by uniCOAT (the second step) are shown in
Fig. 6.3. Parameter θ are assigned with values in {1, 2, 3, 4, 5}. The anchor links
inferred by uniCOAT can all meet the one-to-one constraint and are of high quality.
For example, when θ = 1, the Precision, Recall, F1, and Accuracy achieved by
uniCOAT are 0.73, 0.54, 0.62, and 0.75, respectively, in inferring anchor links. As
θ increases, Recall and F1 scores achieved by uniCOAT will decrease as it will be
more hard to identify the real anchor links among larger number of potential ones.
Meanwhile, the Precision and Accuracy of uniCOAT will increase. The potential
reason can be due to the class imbalance problem. By adding more non-anchor users
to the network, more non-existing anchor links (i.e., the negative class links) will be
introduced and uniCOAT can achieve higher Precision and Accuracy by predicting
more negative instances correctly.



154 6 Fusion Learning on Heterogeneous Social Networks

Fig. 6.3 Performance of
methods with matching in
inferring anchor links
(uniCOAT here includes
both two steps of uniCOAT)

(a) (b)

(c)(d)

6.2 Link Transfer Across Aligned Networks

To investigate users’ social activities and the propagation of information across dif-
ferent social platforms, several application problems will also be introduce in this
chapter after aligning the networks. One important work will be the link prediction
problems, which aims at infer potential connections among the information entities
in the networks. Link prediction across the multiple aligned social networks is not
an easy task, and the heterogeneity of the social networks renders the problem more
challenging to solve.

6.2.1 Overview

Link prediction in social networks first proposed by Liben-Nowell [18] has been a
hot research topic and many different methods have been proposed. Liben-Nowell
[18] proposes many unsupervised link predicators to predict the social connections
among users. Later, Hasan [1] proposes to predict links by using supervised learning
methods. An extensive survey of link prediction works is available in [7, 8]. Most
existing link prediction works are based on one single network but many researchers
start to shift their attention to multiple networks. Dong et al. [5] propose to do link
prediction with multiple information sources. Zhang et al. introduce the link pre-
diction problem across aligned networks for new users [42] and emerging networks
[43, 44] based on supervised classification models [42] and PU classification models
[43, 44], respectively. Depending on the specific application settings, the links to be
predicted are usually subject to different cardinality constraints, like one-to-one [12],
one-to-many [49], and many-to-many [50]. For links with each type of the cardinality
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constraints, different link prediction models have been proposed already. Zhang et
al. propose to unify these different link prediction tasks into a general link prediction
problem and introduce a general model for the problem [41].

In this chapter, we will briefly introduce the multinetwork synergistic PU link pre-
diction framework Mli as follows. Given a network screenshot, Mli labels the exist-
ing and non-existing social links among users as positive and unlabeled instances,
respectively, where the unlabeled links involve both positive and negative links at the
same time. Therefore, the link prediction task can be transferred into a PU learning
task.

6.2.2 Cross-Network Link Prediction

Formally, given multiple aligned networks G = ({G1,G2, · · · ,Gn}, {A(1,2),A(1,3),

· · · ,A(n−1,n)}), the objective of the cross-network link prediction problem is to infer
the potential social connections which will be formed in the near future in networks
G1,G2, · · · ,Gn , respectively.

6.2.2.1 PU Link Prediction Feature Extraction

Meta paths introduced in the previous sections can actually cover a large number
of path instances connecting users across the network. Formally, we denote that
node n (or link l) is an instance of node type T (or link type R) in the network as

n ∈ T (or l ∈ R). Identity function I (a, A) =
{

1, if a ∈ A

0, otherwise,
can check whether

node/link a is an instance of node/link type A in the network. To consider the effect
of the unconnected links when extracting features for social links in the network, we
formally define the Social Meta Path-based Features to be:

Definition 6.7 (SocialMeta Path-based Features) For a given link (u, v), the feature

extracted for it based on meta path P = T1
R1−→ T2

R2−→ · · · Rk−1−−→ Tk from the networks
is defined to be the expected number of formed path instances between u and v across
the networks:

x(u, v) = I (u, T1)I (v, Tk)
∑

n1∈{u},n2∈T2,··· ,nk∈{v}

k−1∏

i=1

p(ni , ni+1)I ((ni , ni+1), Ri ),

(6.7)

where p(ni , ni+1) = 1.0 if (ni , ni+1) ∈ Eu,u and otherwise, p(ni , ni+1) denotes the
formation probability of link (ni , ni+1) to be introduced in Sect. 6.2.2.3.
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Based on the above social meta path-based feature definition and the extracted
intra-network and inter-network meta paths, a set of features can be extracted for
user pairs with the information across the aligned networks.

6.2.2.2 Meta Path-Based Feature Selection

Meanwhile, information transferred from aligned networks via the features extracted
based on the inter-network social meta path can be helpful for improving link predic-
tion performance in a given network but can be misleading as well, which is called
the network difference problem. To solve the network difference problem, we pro-
pose to rank and select top K features from the feature vector extracted based on
the intra-network and inter-network social meta paths, x, from the multiple partially
aligned heterogeneous networks.

Let variable Xi ∈ x be a feature extracted based on meta paths #i and variable
Y be the label. P(Y = y) denotes the prior probability that links in the training set
having label y and P(Xi = x) represents the frequency that feature Xi has value x .
Information theory related measure mutual information (mi) is used as the ranking
criteria:

mi(Xi ) =
∑

x

∑

y

P(Xi = x,Y = y) log
P(Xi = x,Y = y)

P(Xi = x)P(Y = y)
(6.8)

Let x̄ be the features of the top K mi score selected from x. In the next subsection,
we will use the selected feature vector x̄ to build a novel PU link prediction model.

6.2.2.3 PU Link Prediction Method

As introduced at the beginning of this section, from a given network, e.g., G, we
can get two disjoint sets of links: connected (i.e., formed) links P and unconnected
links U. To differentiate these links, we define a new concept “connection state”, z, to
show whether a link is connected (i.e., formed) or unconnected in network G. For a
given link l, if l is connected in the network, then z(l) = +1; otherwise, z(l) = −1.
As a result, we can have the “connection states” of links in P and U to be: z(P) = +1
and z(U) = −1.

Besides the “connection state,” links in the network can also have their own
“labels,” y, which can represent whether a link is to be formed or will never be
formed in the network. For a given link l, if l has been formed or to be formed, then
y(l) = +1; otherwise, y(l) = −1. Similarly, we can have the “ labels” of links in
P and U to be: y(P) = +1 but y(U) can be either +1 or −1, as U can contain both
links to be formed and links that will never be formed.

By using P and U as the positive and negative training sets, we can build a link
connection prediction model Mc, which can be applied to predict whether a link
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exists in the original network, i.e., the connection state of a link. Let l be a link to be
predicted, by applying Mc to classify l, we can get the connection probability of l to
be:

Definition 6.8 (Connection Probability) The probability that link l’s connection
states is predicted to be connected (i.e., z(l) = +1) is formally defined as the
connection probability of link l: p(z(l) = +1|x̄(l)).

Meanwhile, if we can obtain a set of links that “will never be formed”, i.e., “−1”
links, from the network, which together withP (“+1” links) can be used to build a link
formation prediction model, M f , which can be used to get the formation probability
of l to be:

Definition 6.9 (Formation Probability) The probability that link l’s label is pre-
dicted to be formed or will be formed (i.e., y(l) = +1) is formally defined as the
formation probability of link l: p(y(l) = +1|x̄(l)).

However, from the network, we have no information about “links that will never
be formed” (i.e., “−1” links). As a result, the formation probabilities of potential
links that we aim to obtain can be very challenging to calculate. Meanwhile, the
correlation between link l’s connection probability and formation probability has
been proved in existing works [6] to be:

p(y(l) = +1|x̄(l)) ∝ p(z(l) = +1|x̄(l)). (6.9)

In other words, for links whose connection probabilities are low, their formation
probabilities will be relatively low as well. This rule can be utilized to extract links
which can be more likely to be the reliable “−1” links from the network. We propose
to apply the link connection prediction model Mc built with P and U to classify links
in U to extract the reliable negative link set. Formally, such a kind of negative link
extraction method is called the spy technique-based reliable negative link extraction.
For more detailed information about method, please refer to [50].

With the extracted reliable negative link setRN, we can solve the PU link prediction
problem with classification-based link prediction methods, where P and RN are used
as the positive and negative training sets, respectively. Meanwhile, when applying
the built model to predict links in Li , the optimal labels, Ŷi , of Li , should be those
which can maximize the following formation probabilities:

Ŷi = arg max
Yi

p(y(Li ) = Yi |G1,G2, · · · ,Gk)

= arg max
Yi

p(y(Li ) = Yi |x̄(Li )) (6.10)

where y(Li ) = Yi represents that links in Li have labels Yi .
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Fig. 6.4 PU link prediction framework across multiple aligned networks

6.2.2.4 Multinetwork Link Prediction Framework

Method proposed in [50] is a general link prediction framework and can be applied
to predict social links in n partially aligned networks simultaneously. When it comes
to n partially aligned network, the optimal labels of potential links {L1,L2, · · · ,Ln}
of networks G1,G2, · · · ,Gn will be:

Ŷ1, Ŷ2, · · · , Ŷn

= arg maxY1,Y2,··· ,Yn p(y(L1) = Y1, y(L2) = Y2, · · · , y(Ln) = Yn |G1,G2, · · · ,Gn)

(6.11)

The above target function is very complex to solve and we propose to obtain the
solution by updating one variable, e.g., Y1, and fix other variables, e.g., Y2, · · · ,Yn ,
alternatively with the following equation [43]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Ŷ1)(τ) = arg maxY1 p(y(L1) = Y1|G1, · · · ,Gn, (Ŷ2)(τ−1), (Ŷ3)(τ−1), · · · , (Ŷn)(τ−1))

(Ŷ2)(τ) = arg maxY2 p(y(L2) = Y2|G1, · · · ,Gn, (Ŷ1)(τ), (Ŷ3)(τ−1), · · · , (Ŷn)(τ−1))

· · · · · ·
(Ŷn)(τ) = arg maxYn p(y(Ln) = Yn |G1, · · · ,Gn, (Ŷ1)(τ), (Ŷ2)(τ), · · · , (Ŷ(n−1))(τ ))

(6.12)

The structure of the link prediction framework is shown in Fig. 6.4a. When pre-
dicting social links in network Gi , we can extract features based on the intra-network
social meta path extracted from Gi and those extracted based on the inter-network
social meta path across G1, G2, · · · , Gi−1, Gi+1, · · · , Gn for links in Pi , Ui and Li .
Feature vectors x(P) and x(P) as well as the labels, y(P), y(U), of links in P and
U are passed to the PU link prediction model Mi and the meta path selection model
MSi . The formation probabilities of links in Li predicted by model Mi will be used to
update the network by replace the weights of Li with the newly predicted formation
probabilities. The initial weights of these potential links in Li are set as 0 (i.e., the
formation probability of links mentioned in Definition 11). After finishing these steps
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on Gi , we will move to conduct similar operations on Gi+1. We iteratively predict
links in G1 to Gn alternatively in a sequence until the results in all of these networks
converge.

6.2.3 Experiments

To test the effectiveness of the proposed Mli framework, in this section, extensive
experiments have been done on two real-world partially co-aligned online social
networks dataset introduced in the previous section.

6.2.3.1 Performance Evaluation Results

To show the advantages of Mli, we compare Mli with many other baseline methods,
which include:

• Mli: MethodMli is the multinetwork link prediction framework, which can predict
social links in multiple online social networks simultaneously. The features used
byMli are extracted based on the meta paths selected from � and � across aligned
networks.

• LI: Method LI (Link Identifier) is identical to Mli except that LI predict the
formation of social links in each network independently.

• SCAN: Method SCAN (Cross Aligned Network link prediction) proposed in [42,
43] is similar to Mli except that (1) SCAN predicts social links in each network
independently; (2) features used by SCAN are those extracted based on meta paths
� and �1 without meta path selection.

• SCAN- s: Method SCAN- s (SCAN with Source Network) proposed in [42, 43]
is identical to SCAN except that the features used by SCAN- s are those extracted
based on �1 without meta path selection.

• SCAN- t: Method SCAN- t (SCAN with Target Network) proposed in [42, 43])
is identical to SCAN except that the features used by SCAN- s are those extracted
based on � without meta path selection.

The social links in both Foursquare and Twitter are used as the ground truth to
evaluate the prediction results. SVM [4] with linear kernel and optimal parameters is
used as the base classifier of all comparison methods. Accuracy, AUC, and F1 score
are used as the evaluation metrics in the experiments.

To denote different degrees of network newness, in Table 6.5, we fix ρT as 0.8
but changes ρF within {0.1, 0.2, · · · , 0.8}. Table 6.5 has two parts: the upper part
is the link prediction results in Foursquare and the lower part is that in Twitter, as
Mli is an integrated PU link prediction framework. The link prediction results in
each part are evaluated by different metrics: AUC, Accuracy, and F1. As shown
in Table 6.5, Mli can outperform all other comparison methods consistently for
ρF ∈ {0.1, 0.2, · · · , 0.8} in both Foursquare network and Twitter network. For
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example, in Foursquare when ρF = 0.5, the AUC achieved by Mli is about 5%
better than LI, 15% better than SCAN, 19% better than SCAN- t and 73% better
than SCAN- s; the Accuracy achieved by Mli is about 2.3% better than LI, 8% better
than SCAN, 9.1% higher than SCAN- t and over 40% higher than SCAN- s; the F1
of Mli is 6.4% higher than LI, 18% higher than SCAN and SCAN- t and 36% higher
than SCAN- s. When ρF = 0.5, the link prediction results of Mli in Twitter are also
much better than all other baseline methods. For instances, in Twitter the AUC of
Mli is 0.923±0.002, which is about 6% better than LI, over 13% better than SCAN,
SCAN- t and over 40% better than SCAN- s. Similar results can be obtained when
evaluated by Accuracy and F1.

In Table 6.6, we fix ρF = 0.8 but change ρT with values in {0.1, 0.2, · · · , 0.8}.
Similar to the results obtained in Table 6.5 where ρF varies, Mli can beat all other
methods in both Twitter and Foursquare when the degree of newness of the Twitter
network changes.

Mli can perform better than LI in both Foursquare and Twitter, which shows
that predicting social links in multiple networks simultaneously in Mli framework
can do enhance the results in both networks; the fact that LI can beat SCAN shows
that features extracted based on cross network meta paths can do transfer useful
information for both anchor and non-anchor users; SCAN works better than both
SCAN- t and SCAN- s denotes that link prediction with information in two networks
simultaneously is better than that with information in one single network.

6.2.3.2 Parameter Analysis

An important parameter that can affect the performance of all these methods is the
rate of anchor links existing across networks. In this part, we will analyze the effects
of the anchor link rate, ρ A ∈ [0, 1.0]. To exclude other parameters’ interference, we
fix ρF and ρT as 0.8 but change ρ A with values in {0.1, 0.2, · · · , 1.0} and study the
link prediction results in both Foursquare and Twitter under the evaluation of AUC,
Accuracy, and F1. The results are shown in Fig. 6.5.

As shown in Fig. 6.5, where Fig. 6.5a–c are the link prediction results in Foursquare
and the Fig. 6.5d–f are those in Twitter, almost all the methods can perform better
as ρ A increases, except SCAN- t as it only utilizes information in the target net-
work only. It shows that with more anchor links, Mli, LI, SCAN and SCAN- s can
transfer much more information from other aligned source networks to the target
network to enhance the results. In addition, Mli can work better than LI consistently
as ρ A varies, which can show the effectiveness of Mli in dealing with networks with
different ratios of anchor links

6.2.3.3 Convergence Analysis

Mli need to predict the links in all the aligned networks alternatively and iteratively
until convergence. In this part, we will analyze whether Mli can converge as this
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(b) (b) (c)

(f)(e)(d)

Fig. 6.5 Effects of anchor link ratio ρA on prediction results in different networks evaluated by
different metrics

(a) Foursquare-AUC (b) Foursquare-Acc. (c) Foursquare-F1

(d) Twitter-AUC (e) Twitter-Acc. (f) Twitter-F1

Fig. 6.6 Convergence analysis in different networks under the evaluation of different metrics

process continues. We show the link prediction results achieved by Mli in both
Foursquare and Twitter under the evaluation of AUC, Accuracy and F1 when ρF ,
ρT and ρ A are all set as 0.8 in Fig. 6.6. Figure 6.6a–c are the results in Foursquare
network from iteration 1 to iteration 30 and Fig. 6.6d–f are those in Twitter network.
As shown in these figures, results achieved by Mli can converge in less than 10
iterations in both Foursquare and Twitter evaluated by all these three metrics.



166 6 Fusion Learning on Heterogeneous Social Networks

6.3 Synergistic Network Community Detection

6.3.1 Overview

Clustering is a very broad research area, which includes various types of clustering
problems, e.g., consensus clustering [20, 21], multiview clustering [2, 3], multirela-
tional clustering [35], co-training-based clustering [15], at the same time. Clustering-
based community detection in online social networks is a hot research topic and many
different models have already been proposed to optimizing certain evaluation met-
rics, e.g., modularity function [25] and normalized cut [29]. A detailed survey about
existing community detection works is available in [23, 24]. Meanwhile, based on
the information available in multiple aligned networks, Jin [9], Zhang et al. [36]
and Shao et al. [28] propose to do synergistic community detection across multiple
aligned social networks. Via the anchor links, Zhang et al. also propose to trans-
fer information from developed networks to detect social community structures in
emerging networks in [48].

The goal of cross-network community detection is to distill relevant information
from another social network to compliment knowledge directly derivable from each
network to improve the clustering or community detection, while preserving the dis-
tinct characteristics of each individual network. To solve the mutual clustering prob-
lem, a novel community detection method, MCD, is proposed in [36]. By mapping
the social network relations into a heterogeneous information, the proposed method
in [36] uses the concept of social meta path to define closeness measure among
users. Based on this similarity measure, the proposed method [36] can preserve the
network characteristics and utilize the information in other networks to refine com-
munity structures mutually at the same time. In this section, we will introduce the
mutual community detection framework proposed in [36] briefly.

6.3.2 Cross-Network Community Detection

Given multiple aligned networks G = ({G1,G2, · · · ,Gn}, {A(1,2),A(1,3), · · · ,

A(n−1,n)}), the cross-network community detection problem aims at detecting the
community structures of networks G1,G2, · · · ,Gn , respectively.

6.3.2.1 Network Characteristic Preservation Clustering

Clustering each network independently can preserve each networks characteristics
effectively as no information from external networks will interfere with the clus-
tering results. Partitioning users of a certain network into several clusters will cut
connections in the network and lead to some costs inevitably. Optimal clustering
results can be achieved by minimizing the clustering costs.
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Let Ai be the adjacency matrix corresponding to the intra-network meta path # i
among users in the network and Ai (m, n) = k iff there exist k different path instances
of intra-network meta path # i from user m to n in the network. Furthermore, the
similarity score matrix among users of meta path # i can be represented as Si =
(
Di + D̄i

)−1 (
Ai + AT

i

)
, where AT

i denotes the transpose of Ai , diagonal matrices
Di and D̄i have values Di (l, l) = ∑

m Ai (l,m) and D̄i (l, l) = ∑
m(AT

i )(l,m) on
their diagonals, respectively. The meta path-based similarity matrix of the network
which can capture all possible connections among users is represented as follows:

S =
∑

i

ωiSi =
∑

i

ωi

((
Di + D̄i

)−1 (
Ai + AT

i

))
. (6.13)

For a given network G, let C = {U1,U2, . . . ,Uk} be the community structures
detected from G. Term Ui = U−Ui is defined to be the complement of set Ui in G.
Various cost measure of partition C can be used, e.g., cut and normalized cut:

cut (C) = 1

2

k∑

i=1

S(Ui ,Ui ) = 1

2

k∑

i=1

∑

u∈Ui ,v∈Ui

S(u, v), (6.14)

Ncut (C) = 1

2

k∑

i=1

S(Ui ,Ui )

S(Ui , ·) =
k∑

i=1

cut (Ui ,Ui )

S(Ui , ·) , (6.15)

where S(u, v) denotes the similarity between u, v and S(Ui , ·) = S(Ui ,U) =
S(Ui ,Ui ) + S(Ui ,Ui ).

For all users in U, their clustering result can be represented in the result confidence
matrix H, where H = [h1, h2, . . . , hn]T, n = |U|, hi = (hi,1, hi,2, . . . , hi,k) and
hi, j denotes the confidence that ui ∈ U is in cluster Uj ∈ C. The optimal H that can
minimize the normalized-cut cost can be obtained by solving the following objective
function:

min
H

Tr(HT LH),

s.t.HT DH = I. (6.16)

where L = D − S, diagonal matrix D has D(i, i) = ∑
j S(i, j) on its diagonal, and

I is an identity matrix.

6.3.2.2 Clustering of Multiple Aligned Networks

Besides the shared information due to common network construction purposes
and similar network features [48], anchor users can also have unique information
(e.g., social structures) across aligned networks, which can provide us with a more
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comprehensive knowledge about the community structures formed by these users.
Meanwhile, by maximizing the consensus (i.e., minimizing the “discrepancy”) of
the clustering results about the anchor users in multiple partially aligned networks,
we refine the clustering results of the anchor users with information in other aligned
networks mutually. We can represent the clustering results achieved in Gi and G j as
Ci = {Ui

1,U
i
2, · · · , Ui

ki } and C j = {U j
1 ,U j

2 , · · · ,U j
k j }, respectively.

Let u p and uq be two anchor users in the network, whose accounts in Gi and G j

are uip, u j
p, uiq and u j

q , respectively. If users uip and uiq are partitioned into the same

cluster in Gi but their corresponding accounts u j
p and u j

q are partitioned into different
clusters in G j , then it will lead to a discrepancy between the clustering results of uip,

u j
p, uiq and u j

q in aligned networks Gi and G j .

Definition 6.10 (Discrepancy) The discrepancy between the clustering results of u p

and uq across aligned networks Gi and G j is defined as the difference of confidence
scores of u p and uq being partitioned in the same cluster across aligned networks.
Considering that in the clustering results, the confidence scores of uip and uiq (u j

p and

u j
q ) being partitioned into ki (k j ) clusters can be represented as vectors hi

p and hi
q (h j

p

and h j
q ), respectively, while the confidences thatu p anduq are in the same cluster inGi

andG j can be denoted as hi
p(h

i
q)

T and h j
p(h

j
q)

T . Formally, the discrepancy of the clus-

tering results about u p and uq is defined to be dp,q(Ci ,C j ) =
(

hi
p(h

i
q)

T − h j
p(h

j
q)

T
)2

if u p, uq are both anchor users; and dp,q(Ci ,C j ) = 0 otherwise. Furthermore, the
discrepancy of Ci and C j will be:

d(Ci ,C j ) =
ni∑

p

n j
∑

q

dp,q(C
i ,C j ), (6.17)

where ni = |Ui | and n j = |U j |.
However, considering that d(Ci ,C j ) is highly dependent on the number of anchor

users and anchor links between Gi and G j , minimizing d(Ci ,C j ) can favor highly
consented clustering results when the anchor users are abundant but have no signif-
icant effects when the anchor users are very rare. To solve this problem, we propose
to minimize the normalized discrepancy instead.

Definition 6.11 (Normalized Discrepancy) The normalized discrepancy measure
computes the differences of clustering results in two aligned networks as a fraction
of the discrepancy with regard to the number of anchor users across partially aligned
networks:

Nd(Ci ,C j ) = d(Ci ,C j )
(∣
∣A(i, j)

∣
∣
) (∣

∣A(i, j)
∣
∣ − 1

) . (6.18)
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Optimal consensus clustering results of Gi and G j will be Ĉi , Ĉ j :

Ĉi , Ĉ j = arg min
Ci ,C j

Nd(Ci ,C j ). (6.19)

Similarly, the normalized-discrepancy objective function can also be represented
with the clustering results confidence matrices Hi and H j as well. Meanwhile, con-
sidering that the networks studied in this chapter are partially aligned, matrices Hi

and H j contain the results of both anchor users and non-anchor users, while non-
anchor users should not be involved in the discrepancy calculation according to the
definition of discrepancy. After pruning the non-anchor users from the confidence
matrices, we can represent the pruned confidence matrices as H̄i and H̄ j .

Furthermore, the objective function of inferring clustering confidence matrices,
which can minimize the normalized discrepancy can be represented as follows

min
Hi ,H j

∥
∥
∥H̄i

(
H̄i

)T − H̄ j
(
H̄ j

)T
∥
∥
∥

2

F
∥
∥T(i, j)

∥
∥2
F

(∥
∥T(i, j)

∥
∥2
F − 1

) ,

s.t.(Hi )T DiHi = I, (H j )T D jH j = I. (6.20)

where Di , D j are the corresponding diagonal matrices of similarity matrices of net-
works Gi and G j , respectively.

6.3.2.3 Joint Optimization Objective Function

Taking both of these two issues into considerations, the optimal mutual clustering
results Ĉi and Ĉ j of aligned networks Gi and G j can be achieved as follows:

arg min
Ci ,C j

α · Ncut (Ci ) + β · Ncut (C j ) + θ · Nd(Ci ,C j ) (6.21)

where α, β, and θ represent the weights of these terms and, for simplicity, α and β

are both set as 1.
By replacing Ncut (Ci ), Ncut (C j ), Nd(Ci ,C j ) with the objective equations

derived above, we can rewrite the joint objective function as follows:

min
Hi ,H j

α·Tr((Hi )T LiHi ) + β · Tr((H j )T L jH j ) + θ ·
∥
∥
∥H̄i

(
H̄i

)T − H̄ j
(
H̄ j

)T
∥
∥
∥

2

F
∥
∥T(i, j)

∥
∥2
F

(∥
∥T(i, j)

∥
∥2
F − 1

) ,

s.t.(Hi )T DiHi = I, (H j )T D jH j = I, (6.22)

where Li = Di − Si , L j = D j − S j and matrices Si , S j and Di , D j are the similarity
matrices and their corresponding diagonal matrices defined before.
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The objective function is a complex optimization problem with orthogonality
constraints, which can be very difficult to solve because the constraints are not only
non-convex, but also numerically expensive to preserve during iterations. Please refer
to [36] for more information about the solution to the objective function.

6.3.3 Experiments

To test the performance of the MCD model in detecting the communities across mul-
tiple aligned social networks, extensive experiments have been done on the aligned
social networks dataset: Foursquare and Twitter. The experimental results will be
illustrated as follows.

6.3.3.1 Performance Evaluation Results

The comparison methods used in the experiments can be divided into three categories,
Mutual Clustering Methods

• MCD: MCD is the mutual community detection method, which can detect the
communities of multiple aligned networks with consideration of the connections
and characteristics of different networks. Heterogeneous information in multiple
aligned networks are applied in building MCD.

Multinetwork Clustering Methods

• SIclus: the clustering method proposed in [38, 48] can calculate the sim-
ilarity scores among users by propagating heterogeneous information across
views/networks. We extend the method proposed in [38, 48] and propose SIclus
to calculate the intimacy scores among users in multiple networks simultaneously,
based on which, users can be grouped into different clusters with clustering mod-
els based on intimacy matrix factorization as introduced in [48]. Heterogeneous
information across networks is used to build SIclus.

Isolated Clustering Methods, which can detect communities in each isolated net-
work:

• Ncut: Ncut is the clustering method based on normalized cut proposed in [29].
Method Ncut can detect the communities in each social network merely based
on the social connections in each network in the experiments.

• Kmeans: Kmeans is a traditional clustering method, which can be used to detect
communities [27] in social networks based on the social connections only in the
experiments.

The evaluation metrics applied can be divided into two categories: Quality Metrics
and Consensus Metrics.
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Quality Metrics: The four widely and commonly used quality metrics are applied
to measure the clustering result, e.g., C = {Ui }Ki=1, of each network.

• normalized-dbi [38]:

ndbi(C) = 1

K

∑

i

min
j �=i

d(ci , c j ) + d(c j , ci )

σi + σ j + d(ci , c j ) + d(c j , ci )
, (6.23)

where ci is the centroid of community Ui ∈ C, d(ci , c j ) denotes the distance
between centroids ci and c j and σi represents the average distance between ele-
ments in Ui and centroid ci . (Higher ndbi corresponds to better performance).

• entropy [38]: H(C) = −∑K
i=1 P(i) log P(i), where P(i) = |Ui |∑K

i=1 |Ui | . (Lower

entropy corresponds to better performance).
• density [38]: dens(C) = ∑K

i=1
|Ei |
|E | , where E and Ei are the edge sets in the

network and Ui . (Higher density corresponds to better performance).
• silhouette [19]:

sil(C) = 1

K

K∑

i=1

(
1

|Ui |
∑

u∈Ui

b(u) − a(u)

max{a(u), b(u)} ), (6.24)

where a(u)= 1
|Ui |−1

∑
v∈Ui ,u �=v d(u, v) and b(u)= min j, j �=i

(
1

|Uj |
∑

v∈Uj
d(u, v)

)
.

(Higher silhouette corresponds to better performance).

Consensus Metrics: Given the clustering results C(1) = {U (1)
i }K (1)

i=1 and C(2) =
{U (2)

i }K (2)

i=1 , the consensus metrics measuring the how similar or dissimilar the anchor
users are clustered in C(1) and C(2) include:

• rand [26]: rand(C(1),C(2)) = N01+N10
N00+N01+N10+N11

, where N11(N00) is the numbers of
pairwise anchor users who are clustered in the same (different) community(ies) in
both C(1) and C(2), N01(N10) is that of anchor users who are clustered in the same
community (different communities) in C(1) but in different communities (the same
communities) in C(2). (Lower rand corresponds to better performance).

• variation of information (vi) [26]: vi(C(1),C(2)) = H(C(1)) + H(C(2)) −
2mi(C(1),C(2)). (Lower vi corresponds to better performance).

• mutual information [26]:mi(C(1),C(2))= ∑K (1)

i=1

∑K (2)

j=1 P(i, j) log P(i, j)
P(i)P( j) , where

P(i, j) = |U (1)
i ∩AU

(2)
j |

|A| and |U (1)
i ∩A U (2)

j | =
∣
∣
∣{u|u ∈ U (1)

i , ∃v ∈ U (2)
i , (u, v) ∈ A}

∣
∣
∣

[12]. (Higher mi corresponds to better performance).
• normalized mutual information [26]: nmi(C(1),C(2)) = mi(C(1),C(2))√

H(C(1))H(C(2))
. (Higher

nmi corresponds to better performance).

The experiment results are available in Tables 6.7 and 6.8. To show the effects
of the anchor links, we use the same networks but randomly sample a propor-
tion of anchor links from the networks, whose number is controlled by σ ∈
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{0.1, 0.2, · · · , 1.0}, where σ = 0.1 means that 10% of all the anchor links are
preserved and σ = 1.0 means that all the anchor links are preserved.

Table 6.7 displays the clustering results of different methods in Foursquare and
Twitter, respectively, under the evaluation of ndbi, entropy, density, and silhouette. As
shown in these two tables,MCD can achieve the highest ndbi score in both Foursquare
and Twitter for different sample rate of anchor links consistently. The entropy of
the clustering results achieved by MCD is the lowest among all other comparison
methods and is about 70% lower than SIclus, 40% lower than Ncut and Kmeans
in both Foursquare and Twitter. In each community detected by MCD, the social
connections are denser than that of SIclus, Ncut, and Kmeans. Similar results
can be obtained under the evaluation of silhouette, the silhouette score achieved by
MCD is the highest among all comparison methods. So, MCD can achieve better
results than modified multiview and isolated clustering methods under the evaluation
of quality metrics.

Table 6.8 shows the clustering results on the aligned networks under the evaluation
of consensus metrics, which include rand, vi, nmi, and mi. As shown in Table 6.8,
MCD can perform the best among all the comparison methods under the evaluation
of consensus metrics. For example, the rand score of MCD is the lowest among
all other methods and when σ = 0.5, the rand score of MCD is 20% lower than
SIclus, 72% lower than Ncut and Kmeans. Similar results can be obtained for
other evaluation metrics, like when σ = 0.5, the vi score of MCD is about half of
the score of SIclus; the nmi and mi score of MCD is the triple of that ofKmeans.
As a result, MCD can achieve better performance than both modified multiview and
isolated clustering methods under the evaluation of consensus metrics.

According to the results shown in Tables 6.7 and 6.8, we observe that the perfor-
mance of MCD does not varies much as σ changes. The possible reason can be that,
in method MCD, normalized clustering discrepancy is applied to infer the clustering
confidence matrices. As σ increases in the experiments, more anchor links are added
between networks, part of whose effects will be neutralized by the normalization of
clustering discrepancy and does not affect the performance of MCD much.

6.3.3.2 Convergence Analysis

MCD can compute the solution of the optimization function with Curvilinear Search
method, which can update matrices X(1) and X(2) alternatively. This process will
continue until convergence. To check whether this process can stop or not, in this
part, we will analyze the convergence of X(1) and X(2). In Fig. 6.7, we show the L1

norm of matrices X(1) and X(2),
∥
∥X(1)

∥
∥

1 and
∥
∥X(2)

∥
∥

1, in each iteration of the updating

algorithm, where the L p norm of matrix X is ‖X‖p = (
∑

i

∑
i Xi j

p)
1
p . As shown in

Fig. 6.7, both
∥
∥X(1)

∥
∥

1 and
∥
∥X(2)

∥
∥

1 can converge in less than 200 iterations.
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(a)
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∥
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1

Fig. 6.7
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1 in each iteration

(a) k(1)-ndbi (Foursquare) (b) k(1)-ndbi (Twitter) (c) k(1)-rand

(d) k(2)-ndbi (Foursquare) (e) k(2)-ndbi (Twitter) (f) k(2)-rand

Fig. 6.8 Analysis of parameters k(1) and k(2)

6.3.3.3 Parameter Analysis

In method MCD, we have three parameters: k(1), k(2), and θ , where k(1) and k(2) are
the numbers of clusters in Foursquare and Twitter networks, respectively, while θ is
the weight of the normalized discrepancy term in the object function. In the pervious
experiment, we set k(1) = 50, k(2) = 50 and θ = 1.0. Here, we will analyze the
sensitivity of these parameters in details.

To analyze k(1), we fix k(2) = 50 and θ = 1.0 but assign k(1) with values in
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The clustering results of MCD with differ-
ent k(1) evaluated by ndbi and rand metrics are given in Fig. 6.8a–c. As shown in the
figures, the results achieved by MCD are very stable for k(1) with in range [40, 100]
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(a) θ -ndbi (Foursquare) (b) θ -ndbi (Twitter) (c) θ -rand

Fig. 6.9 Analysis of parameter θ

under the evaluation of ndbi in both Foursquare and Twitter. Similar results can be
obtained in Fig. 6.8c, where the performance of MCD on aligned networks is not
sensitive to the choice of k(1) for k(1) in range [40, 100] under the evaluation of both
rand. In a similar way, we can study the sensitivity of parameter k(2), the results
about which are shown in Fig. 6.8d–f.

To analyze the parameter θ , we set both k(1) and k(2) as 50 but assign θ with values
in {0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0}. The results are shown in Fig. 6.9, where
when θ is small, e.g., 0.001, the ndbi scores achieved by MCD in both Foursquare
and Twitter are high but the rand score is not good (rand is inversely proportional).
On the other hand, large θ can lead to good rand score but bad ndbi scores in both
Foursquare and Twitter. As a result, (1) large θ prefers consensus results, (2) small
θ can preserve network characteristics and prefers high quality results.

6.4 Conclusions

In this chapter, we have introduced several research works across multiple aligned
social networks, including the network alignment problem, link transfer problem,
and community detection problem. The problems introduced in this chapter are
all very important for many concrete real-world social network applications and
services. Several nontrivial algorithms have been proposed to resolve these problems,
respectively, whose performance are evaluated with several real-world datasets.

Besides the works introduced in this chapters, many other research problems have
been studied across the aligned social networks, like network embedding, informa-
tion diffusion, viral marketing, and tipping user detection. There are also several
interesting directions for further research in the domain of social network fusion
learning studies:

• Multiple Aligned Social Sites: Existing aligned network studies mainly focus on
studying two aligned networks. Meanwhile, when it comes to multiple aligned
networks (more than two), many of the studied problems will encounter many
new challenges, e.g., the balance of information from different sites, constraints
introduced by the multiple sources (e.g., on anchor links).
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• Large Scale Networks: Most of the introduced methods and models work very
well for small-sized social networks, but when it comes to the large scale net-
works they will suffer from the high time complexity problem a lot. Extending
and generalize the existing models to the scalable version will be an interesting
direction.

• Domain Difference Problem: Many of the existing cross-network studies tackle
the domain difference problem in a very simple way, e.g., the meta path selection in
link prediction, and meta path weighting in community detection and information
diffusion. A more general and effective method to handle the domain difference
problem is still an open problem so far.
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