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Abstract 

Option is a promising method to discover the hierarchical structure in reinforcement learning (RL) for learning 
acceleration. The key to option discovery is about how an agent can find useful subgoals autonomically among the passing 
trails. By analyzing the agent’s actions in the trails, useful heuristics can be found. Not only does the agent pass subgoals 
more frequently, but also its effective actions are restricted in subgoals. As a consequence, the subgoals can be deemed as 
the most matching action-restricted states in the paths. In the grid-world environment, the concept of the unique-direction 
value reflecting the action-restricted property was introduced to find the most matching action-restricted states. The 
unique-direction-value (UDV) approach is chosen to form options offline and online autonomically. Experiments show that 
the approach can find subgoals correctly. Thus the Q-learning with options found on both offline and online process can 
accelerate learning significantly. 
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1  Introduction

   

RL is a promising approach to building autonomous 

agents and improving their performance with experiences. 

Although many tasks can be learnt by adopting the 

Markov decision process (MDP) framework using RL 

techniques, a fundamental problem of the standard RL 

algorithm is that, in practice, tasks cannot be solved in 

reasonable time. The difficulty in solving such tasks is 

usually due to the size of the state space and the lack of 

immediate reinforcement signals. Two common 

approaches were proposed to address these problems. The 

first approach is to apply generalization techniques 

involving low order approximations of the value   

function [1–2]. The other popular approach is to utilize 

hierarchical or related structures through task 

decomposition. The main idea of hierarchical 

reinforcement learning (HRL) methods in Ref. [3] is to 

decompose the learning task into simpler subtasks, and 

learn each of them independently. As a result, the overall 

task is better understood and the learning is accelerated. A 
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major challenge of the approach is how to autonomically 

define the required decomposition, as in many cases the 

decomposition is not straight forward and cannot be 

obtained beforehand.  

To address the problem, options (also known as 

temporally extended actions, skills, abstraction, or 

macro-actions) are introduced as closed-loop policies for 

sequences of actions to enable HRL [3–6]. The primary 

motivation of options is to permit one to add 

temporally-extended activities to the repertoire of choices 

available to an RL agent. A suitable set of options can then 

help improve the agent’s efficiency in learning to solve 

large-scale problems. A popular approach to developing 

appropriate options is to identify subgoals and learn 

options for these subgoals autonomically. A subgoal is 

often a state or a region of state space, whereby reaching 

such a state or region is assumed to be able to facilitate the 

achievement of the overall goal of the task. A subgoal is 

simply like a doorway in a robot navigation scenario. 

When the robot wants to move out of a room, it must find 

the doorway first, which acts as a subgoal. If the agent can 

discover these subgoals and learn policies to reach them, it 

can use these policies for more effective exploration as 

well as refining overall policies more quickly. These 
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subgoal policies can then be used to facilitate learning in 

similar tasks.   

The purpose of this article is to autonomically find the 

target states which can usefully serve as subgoals. 

Different kinds of heuristics strategies or learning 

algorithms were applied to automatically discover 

subgoals. The strategies used in subgoal discovery can be 

roughly classified into five categories:  

1) Some approaches choose states based on a 

non-typical reinforcement. For example, Digney [7] 

considered the states with a high reward gradient as 

subgoals. However, this approach may be not applicable in 

domains where there is a delayed reinforcement (e.g., a 

maze with eight rooms and one goal) 

2) Another popular approach states are chosen according 

to their frequency of appearance [8– 9]. It is believed that 

the states that are often visited in the past are likely to be 

part of the agent’s optimal path, and thus the exploration 

time may be reduced by finding local policies to reach 

those states. This method was refined by Mcgovern et    

al. [8] who proposed that the subgoals are states visited 

frequently on successful trajectories but not on 

unsuccessful ones. There are two disadvantages existing in 

the frequency based approaches: much inefficient 

frequency information may exist in the trajectories and the 

agent may need excessive exploration of the environment 

in order to distinguish between ‘important’ and ‘regular’ 

states.  

3) Some other researches attempted to analyze the learnt 

policy for certain structural properties after the agent 

learning tasks [10–11]. For example, subgoals in Goel et 

al.’s work were discovered by studying the dynamics along 

the predecessor count curve and can include states that are 

not an integral part of the initial policy.  

4) Graph theoretic is also used to identify subgoals. In 

these approaches, the agent’s transition history is mapped 

to a graph and then the states between strongly connected 

regions are identified as subgoals [5,12–15]. For example, 

Menache et al. [13] used the max-flow/min-cut algorithm 

to find bottleneck states while the state space is partitioned 

by some graph clustering algorithms in Refs. [5,12,14,16].  

5) Some other strategies were used to discover subgoals 

recently. Planning under uncertainty with macro-actions 

(PUMA) [17] combined the initial macro-action and 

successively shorter macro-actions for PUMA. Konidaris 

et al. [18] presented an abstraction selection algorithm to 

select a suitable abstraction from a library of available 

abstractions.  

This article presented new heuristic information for 

subgoals, and thereby proposed a new subgoal-based 

method to form options autonomically in RL. By 

analyzing actions of the agent in a grid-world environment, 

we have found useful heuristic information to identify 

subgoals. That is, the agent must pass through subgoals in 

a certain direction and thus its effective actions in subgoals 

are not as arbitrary as those in other states. As a 

consequence, the subgoals are not only frequently visited 

but also action-restricted. Therefore, they can be defined as 

the most matching action-restricted states in the paths. 

That is, the direction of actions in subgoals is either 

uniform or inverted. To find the most matching 

action-restricted states for grid-world tasks, we would like 

to propose the concept of unique-direction value to denote 

the action-restricted heuristic. The UDV of a state in a path 

intuitionally reflects whether the path swerves in the state. 

It has been found that the approach can effectively 

distinguish subgoals from other states, especially the states 

near the subgoals. Experiments have proved the accuracy 

of the proposed approach in finding subgoals and the 

efficacy of learning options autonomically. We have also 

applied the UDV approach to form options offline and 

online. The offline option learning is to form the options 

through learning the random tasks beforehand, and learn 

the global optimal policies with these options, while the 

online option learning is to form options during the 

learning procedure, and switch to the learning with options 

autonomically. Experiments in both options show that with 

the help of options, the Q-learning can accelerate learning 

greatly. From these experiments, we have also analyzed 

how the option size and the time of generating options may 

affect the performances of the Q-learning.  

It should be noted that the definition of subgoals is 

different from the existing methods. Firstly, it extends the 

definition of subgoals proposed by Stolle et al. [9] and 

Mcgovern et al. [8]. Subgoals in this article are regarded as 

states that are visited frequently as well as action-restricted. 

Thus our method is more likely to discover the correct 

subgoals when compared with those frequency-based 

methods [8–9]. The method is similar to some of the other 

state-transition-graph methods [5,13], in that all of us 

attempt to find the characteristics of subgoals from trails 

where the agent has passed; however, we try to apply a 

different technique and heuristics. The method here made 

use of the action-restricted property of subgoals and 
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proposed UDV concept to find these states. Autonomic 

subgoal discovery is often usually considered as a machine 

learning problem although Mcgovern et al. [8] regard it as 

a multiple-instance learning problem and some researchers 

in Refs. [12,19] consider it as a clustering problem. In this 

paper, we regard it as a path-matching problem. 

The following is organized this way. In Sect. 2, the RL 

setup is described and extended to the use of options.  

Sect. 3 presents the detail of the autonomic subgoal 

discovery approach with unique-direction value. Sect. 4 

applies the approach to form options offline, and validates 

it through two grid-world tasks. Sect. 5 describes the 

online application, and analyzes the factors that affect 

Q-learning with options through experimentation. Finally, 

we draw the conclusion in Sect. 6.  

2  RL with options 

RL is a computational approach to automating 

goal-directed learning and decision making [20]. It 

encompasses a broad range of methods for determining 

optimal ways of behaving in complex, uncertain and 

stochastic environments. Most RL researches are based on 

the formalism of MDPs. Although RL is by no means 

restricted to MDPs, this discrete-time, countable (in fact, 

usually finite) state and action formalism provides the 

simplest framework to study basic algorithms and their 

properties. Here we will briefly describe the well-known 

framework.  

A discrete time MDP with a finite set of states S and a 

finite set of actions A works as follows. At each time step t, 
1,2,...,t =  the learning agent is in the state 

t
s S∈ . The 

agent can choose an action 
t

a  from a set of available 

actions at state 
t

s , ( )
t

A s , to cause a state transition to 

1t
s S+ ∈ . The agent observes a scalar reward 

t
r  that is a 

function of the current state and the action is performed by 

the agent. The agent’s goal is to find a map from states to 

actions, called a policy, which maximizes the expected 

discounted reward over time, 
0

t

t

t

rγ
∞

=

 
Ε  

 
∑ , where 1γ <  

is the discount factor and expectation is taken with respect 

to the random policy of the agent. A common solution 

strategy is to approximate the optimal action-value 

function, or Q-function, which maps each state and action 

to the maximum expected return starting from the given 

state and action and thereafter always takes the best 

actions [6]. 

Recently, macro Q-learning [21] was proposed to fasten 

the learning process, which has extended Q-learning with 

options. An option is a sequence of actions that are 

executed by the agent until a termination condition is met. 

Formally, an option is defined by a triplet , ,I π β , 

where I is the option’s input set, i.e., all the states by which 
the option can be initiated; π  is the option’s policy, 

mapping states belonging to I to a sequence of actions; 
β is the termination conditions over states, i.e., ( )sβ  
enotes the termination probability of the option when 

reaching state s. The subgoal is usually regarded as the 

terminating state. As a consequence, the autonomic 

subgoal discovery is crucial to the formation of options. 

While the agent is following an option, it will not stop 

until the option terminates. When not following an option, 

the agent can either choose a primitive action or initiate an 

option. The updated rule for an option o, initiated at state s, 

is 

( , ) ( , ) [ max ( , ) ( , )]
o O

Q s o Q s o r Q s o Q s o
τα γ

∈
′← + + −  

where τ denotes the number of time steps elapsing 

between s and s′ , r denotes the cumulative discounted 

reward over this time, and it is implicit that the step-size 
parameter α  is the learning rate that may depend 

arbitrarily on the states, option, and time steps. The 
estimated ( , )Q s o  converges to the optimal value 

function over options, * ( , )
O

Q s o  for all s S∈  and 

o O∈  under conditions similar to those for conventional 

Q-learning. The updated rule for a primitive action is 
similar with 1τ = . 

3  Autonomic subgoal discovery using UDV 

A direct option discovery approach is to generate new 

options and let the agent test them by adding them to its set 

of actions. However, due to the great size of the state space 

and the large number of optional actions and options, such 

approach will inevitably cause inefficiency. So it is 

necessary to find small quantity yet high quality subgoals. 

Observing the actions of an agent in subgoals, we can find 

some novel properties that may be useful to discover 

subgoals. 

3.1  Action properties of subgoals 

Take an example of scenario in which an agent goes out 

of a room to a restaurant for lunch. You may wander in the 

room, moving to whatever directions possible: left, right, 



  
Issue 5            XIAO Ding, et al. / Autonomic discovery of subgoals in hierarchical reinforcement learning           97 

forward or backward. But once he reaches the doorway, he 

can only go either into or out of the room; otherwise you 

will bump onto the doorframe. Since the ultimate goal is 

the restaurant for lunch, the agent will definitely go out of 

the room at the doorway. Obviously, the doorway is a 

critical subgoal in the context. It must be passed through if 

the agent wants to go out of (or into) a room. Furthermore, 

the effective actions in the doorway are restricted to going 

into and out, not turning left or right. 

A clearer explanation in the grid-world environment is 

shown in Fig. 1. In the environment, the black cell 

represents the blocking wall and the white cell represents 

the free space to explore. Suppose that the policies of the 

whole state space was learnt, we randomly select a set of 

start state and target state as the agent’s tasks. The known 

policies allow us to find the shortest path from the start 

state to the target state, and then record the action of each 

state in the path. Fig. 1 illustrates the four random tasks 

and their shortest paths. It is clear that the two useful 
subgoals in the figure are (3,3)s  and (6,7)s . Here, 

( , )s x y  means the state in the grid-world in the xth row 

and yth column (the cell in top left corner is (0,0)s ). 

Every path shown in the figure passes through one of these 

subgoals. Actions in the subgoals are either in the uniform 
direction (e.g., (3,3)s ) or in the inverted direction (e.g., 

(6,7)s ). However, the actions in other states are not 

restricted, such as (4,6)s  and (7,7)s . 

 
Fig. 1  Illustration of action properties of subgoals in 10 × 10 
grid-world 

Through analyzing the effective actions of agents in 

subgoals, we can conclude that the actions in subgoals 

have the following two properties. 

Propery 1  The subgoals are the states through which 

trajectories connecting start and target states often pass. 

This property implies that the subgoals are visited 

frequently. Many frequency-based approaches are based on 

this property. For example, in the work by Stolle et al. [9], 

if states occur frequently on trajectories that represent 

solutions to random tasks, these states may be important. 

The property is called the high-frequency property. 

Propery 2  The subgoals are the states where the 

effective actions of an agent are usually restricted. 

To achieve the task, the agent must pass through the 

subgoals in the direction from the start state to the target 

state. The effective actions in the subgoals are restricted 

unlike those in other states. The property is also called the 

action-restricted property. It should be noted again that the 

effective actions are emphasized here because the agent 

can explore in any possible directions in subgoals, and 

some noneffective directions may lead to bumping onto 

the wall. The action-restricted property is important as it 

can distinguish subgoals with other states through their 

actions. However, it is usually ignored by many 

contemporary methods. 

According to Property 1, the paths passing through the 

same subgoal should match with the subgoal with a high 

frequency. However, it is not correct that high-frequency 

matching states are subgoals. Property 2 is an effective 

method to distinguish true subgoals from other 

high-frequency matching states. The effective actions of 

the agent in subgoals are restricted in uniform or inverted 

directions (no turns or swerves possible). Taking Fig. 1 for 

example, path <s1, t1> and path <s2, t2> match in states 
from (3,2)s  to (3,4)s , and path <s3, t3> and path <s4, 

t4> match in states from (5,7)s  to (7,7)s . Among all 

these six states, only (3,3)s  and (6,7)s  are action- 

restricted. Thus, only these two states are considered as the 

potential subgoals. Therefore, Property 2 is optimal in 

looking for the most matching action-restricted states in 

paths as subgoals. 

3.2  The UDV approach 

In current environment, it is hard to find the most 

matching action-restricted states in paths due to the high 

computational complexity. However, it is possible to solve 

the problem in the grid-world environment since it is 

regular. Here, the authors want to propose a novel concept 

of UDV, which can effectively denote the information of 

action directions. Through the UDV, the subgoals can be 
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easily calculated as the states with max UDV in paths. To 

calculate the UDV, paths should be mapped into the 

grid-world. To generate a path, we can calculate the UDV 

of each state in the path by utilizing the trait of the 

grid-world. To find all paths, we can accumulate the UDV 

of each state and select the maximal ones as potential 

subgoals. The detailed approach is described as follows. 

3.2.1  Mapping a path 

To map a path into the grid-world, the states in the path 

can be labeled following their sequences. If a state is 

visited many times, it only records the last sequence. As 

Fig. 2(a) shows, it maps two paths <s2, t2> and <s3, t3> into 

the grid-world. 

 
(a) Mapping path <s2, t2 >and <s3, t3> in Fig. 1 into the grid-world  

 
(b) The UDV of states in Fig. 2(a) 

Fig. 2  The detailed approach to find all paths 

3.2.2  Calculating the UDV 

As was pointed, the effective actions in subgoals are 

restricted to left/right or up/down in the grid-world, 

compared to left/right/up/down in other states. Here, we 

want to use the unique-direction value of a state to denote 

action directions of states. Each state in a path has a 

horizontal unique-direction value (HUDV) and a vertical 

unique-direction value (VUDV) that are denoted as 

IsHorDir ( )V s  and IsVerDir ( )V s  respectively, which can be 

defined as follows:  

IsHorDir

Seq Seq Seq

Seq Seq Seq

( ( , ))

0;    2 ( ( , )) ( ( , 1)) ( ( , 1)
         

1;    2 ( ( , )) ( ( , 1)) ( ( , 1)

V s x y

S s x y S s x y S s x y

S s x y S s x y S s x y

=

≠ − + +


= − + +
(1) 

IsVerDir

Seq Seq Seq

Seq Seq Seq

( ( , ))

0;    2 ( ( , )) ( ( 1, )) ( ( 1, )
        

1;    2 ( ( , )) ( ( 1, )) ( ( 1, )

V s x y

S s x y S s x y S s x y

S s x y S s x y S s x y

=

≠ + + −  
 

= + + −  

(2) 
where Seq ( ( , ))S s x y  denotes the sequence value of 

( , )s x y  in a path. Take Fig. 2(a) as an example, 

Seq ( (3,3)) 5S s =  and 
Seq

( (6,7)) 6S s = .  

According to the definition, IsHorDir ( ) 1V s =  means the 

states on the left side and right side of s are the preceding 

and successive states of s in the path, that is, the path 

passes through s in the horizontal direction. Similarly, 

IsVerDir
( ) 1V s =

 
means the states under s and above s are the 

preceding and successive states of s in the path, which is 

the path passing through s in the vertical direction. 

Because the subgoals must be passed through, the UDV 

of subgoals in a path is always 1. Since the effective 

actions in the subgoal are restricted, either the HUDV or 

the VUDV is 1 in the subgoals. Consequently, the subgoals 

have the following property. 

Property 3  If a state s is a subgoal, for all paths 
passing s, IsHorDir ( ) 1V s = , IsVerDir ( ) 0V s = , sHorDir ( ) 0

I
V s =  

and IsVerDir ( ) 1V s = . 

Compared with subgoals, the UDV of other states in the 

path is 1 or 0, and their HUDV and VUDV may both be 1. 

Fig. 2(b) shows the UDV of states in Fig. 2(a). As     
Fig. 2(b) shows, for the subgoals (3,3)s  and (6,7)s , 

IsHorDir ( (3,3)) 1V s =  and IsVerDir ( (6,7)) 1.V s =  For the 

non-subgoal state (4,6),s  IsHorDir ( (4,6)) 1V s = and 

IsVerDir ( (4,6)) 1V s = . 
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In fact, the UDV of a state reflects whether the path 

swerves in the state intuitionally. A state’s UDV being 0 

means the path swerves in the state. As the scenario has 

illustrated, one can wander in the room. Similarly, the path 

can swerve in a room, which means the UDV of the 

non-subgoal states in the path can be 0. Different paths can 

pass the same position in the room in different directions. 

That is, the HUDV and VUDV of the non-subgoal states 

can both be 1. Then the path cannot swerve in the subgoal, 

namely, the UDV of the subgoals in the path must be 1, or 

the agent will bump onto the wall. And the path must pass 

through a subgoal in a certain direction, that is, either the 

HUDV or the VUDV is 1 in the subgoal. 

3.2.3  Accumulating UDV of all paths 

For the mapping of all paths, we can calculate the 
accumulated UDV of each state. HorDir ( )V s  and VerDir ( )V s  

represent the sum of the HUDV and VUDV in state s 

respectively.  

HorDir IsHorDir( ) ( )
l

l L

V s V s
∈

= ∑                      
(3) 

VerDir IsVerDir( ) ( )
l

l L

V s V s
∈

= ∑                      
 (4) 

where, L is the path set, l is one path, 
l

s means the state s 

in path l. 

The accumulated UDV of a state s in all paths is denoted 
as UniDir ( )V s , which can be defined as follows: 

UniDir HorDir VerDir( ) | ( ) ( ) |V s V s V s= −
                   

(5) 

Finally, we select the states with the maximum 

accumulated UDV as subgoal set. 

sg
SG UniDirmax ( );    

N
S V s s S= ∈                        (6) 

where 
SG

S  represents the subgoal set and S represents the 

state set. If there are 
sg

N
 

subgoals, we select the first 
sg

N
 

states with maximum accumulated UDV as subgoals. 

UniDir ( )V s  can distinguish the subgoals and other states 

for two reasons. On one hand, according to Property 1, 

subgoals usually have larger visiting frequency. That is, the 

UDV of subgoals is large. On the other hand, according to 

Property 2, the subgoals are different from other states in 

restricted actions, which makes the accumulated UDV of 

subgoals larger than high-frequency non-subgoals states. 
For the m n×  grid-world, there are sN m n= ×  states. 

Each path is so far mapped into the grid-world. There are L 
paths, so the storage space complexity is s( )O LN . Each 

state also needs to be mapped into the grid-world, and its 

unique-direction value and the accumulated unique- 

direction value need to be caculated. And thus, for L paths 
and sN  states, the approach needs s3 L N× ×  basic 

operations. Consequently, the run-time complexity is 

s( )O LN . The run-time and space complexities are both 

linear with the number of paths and states. 

4  Application in forming options offline 

4.1  Forming options offline 

As illustrated above, the UDV approach can be used to 

autonomically discover the subgoals that are the crucial 

components of options. In this section, we will apply the 

approach to form options offline, which means that the 

agent explores the environment to learn options ahead of 

time. During this time, the option discovery process is 

based on a series of random tasks in this environment, and 

the agent learns to find options from random tasks. Then 

the options learnt can be used to accelerate these kinds of 

learning tasks.  

In the grid-world environment, the whole state space 

can be divided into several subspaces. The states in these 

subspaces are closely connected, and obviously, these 

subspaces are divisional. Some in-between states connect 

these subspaces, which are then regarded as the subgoals. 

The definition of option requires us to find the input set, 

the internal policies in the option, and the termination 

condition. Suppose each subspace in the state space 

corresponds to an option, the process can be constructed as 

follows:  

1) The subgoals in the subspaces can be regarded as the 

terminate state of the option. 

2) The other states except the subgoals in the subspace 

can be regarded as the input set I.  

3) The internal policies in the option can be learnt with 

Q-learning when the input set and terminate state are 

determinate.  

The option discovery algorithm is described in 

Algorithm 1 and Algorithm 2 in detail.  

Algorithm 1  The discovery of subgoals with UDV 

approach in a grid-world environment. 

DisSubGoal(){ 

Select a number of learning tasks at random; 

For each task 
Perform trainN  episodes of Q-learning; 
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Perform testN  episodes and record the paths; 

Map these paths into the grid-world; 

For each path and state s in it 
        Calculate VerDir ( )V s  and HorDir ( )V s ; 

For each state s  
Calculate UniDir ( )V s  for all tasks; 

Select the 
sg

N
 

subgoals with maximum UniDir ( )V s ;  

} 

Once the options are found, we can use SMDP 

Q-learning, as described in Sect. 2, in order to learn the 

optimal policies over options. We may notice that the paths 

may not visit all initial states, so we cannot guarantee that 

all initial states in the subspace are in the input set. In 

order to learn from the arbitrary states for the agent, we 

should add all primitive actions as one-step options to the 

option set. 

Algorithm 2  Automatic creation of option with UDV 

in a grid world environment. 

CreateOptionOffline(){ 

 Run DisSubGoal() to get 
sg

N
 

subgoals SG; 

 For each subgoal s in SG 

  Define a new option o whose terminate state is the subgoal  

s; 

  For each path passing through s 

         Set the states between its preceding and successive  

subgoal as its input set; 

       Set the input I of o with the combination of all input set of s; 

       Learn the internal policies of o to reach the subgoal s; 

} 

4.2  Experimental study in offline application 

In the experiment, two grid-world navigation tasks were 

used to test our proposed algorithm: a 10 × 10 grid-world 

with 2 subgoals, and a 13× 13 grid-world with 4 subgoals 

as shown in Fig. 3. The subgoals are hallways in the 

grid-world (i.e. bottleneck states in the environment), since 

trajectories passing from one room to another have to pass 

through the hallways. The navigation task intends to find 

the shortest path from the start state (marked ‘S’ in the 

grid-world) to the target state (marked ‘T’). In such 

context, the algorithm is expected to find the subgoals first, 

then options for going to the subgoals, and finally the 

shortest way of navigation over the options. 

 
(a) Rooms environment in 10 × 10 grid-world 

 
(b) Rooms environment in 13 × 13 grid-world 

Fig. 3  Two grid-world navigation tasks used in our experiment 

The state is in the current cell position. There are four 

deterministic primitive actions of the agent: up, down, left 

and right. If the agent attempts to move into a wall, it stays 

in the same position, no penalty is incurred. The discount 
factor 0.9γ =  and there are no intermediate rewards 

anywhere. The agent can only obtain a reward upon 

entering a designated goal state and the reward is 100. 

The algorithm runs independently for 20 times, and the 

results are the average values. During each run, the option 

discovery algorithm is used to find as many options as the 

subgoals. During the option discovery stage, the 25% of 

the states are used as potential start and target states for 
random tasks. We use train 100N =  episodes to learn 

Q-values for each pair of start and target states. After 
learning, we use test 10N =  episodes to generate the UDV. 

Once the options are learnt, we compare the performance 
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of a learning agent using primitive actions only with the 

performance of an agent using both primitive actions and 
options. Both agents use a learning rate 0.1α =  and 

ε -greedy policy for generating behavior with 0.1ε = . 

The authors did many experiments in different 

environments and observed that the UDV approach can 

find the subgoals correctly. Figs. 4(a) and 5(a) illustrate the 

expected number of steps to the goal for the two 

algorithms of Q-learning and Q-learning with options in 

the two navigation tasks. It can be found that Q-learning 

with options achieves optimality much earlier than 

standard Q-learning. The advantage of using options is 

further demonstrated in Figs. 4(b) and 5(b).  

 
(a) Average number of steps to goal 

 
(b) The average Q-value of the initial state 

Fig. 4  Experiment results in 10 × 10 grid-world 

Here we present the Q-value of the start state as a 

function of time step, where each interaction with the 

environment takes one unit of time. The Q-value of the 

start state of Q-learning with options increases much faster 

than that of Q-learning. In these two grid environments 

and by two criteria, Q-learning with options has always 

achieved better performances. It should be noted that these 

two methods (i.e., Q-learning and Q-learning with options) 

have the same settings except for the option learning, so 

we think the better performances of Q-learning with 

options attribute to the option learning process. Generally, 

with the help of options, the agent can find the subgoals 

easily and reach the goal more quickly. That is the reason 

why the Q-value of the first state reaches the maximum 

value faster compared with Q-learning. 

 
(a) Average number of steps to goal 

 
(b) The Q-value of the initial state 

Fig. 5  Experiment results in 13 × 13 grid-world. 

5  Application in forming options online 

In the offline application, we assume that the agent can 

explore the environment to form options beforehand. 

However, the assumption is unpractical in many real 

applications. Moreover, the agent usually spends much 

time excessively exploring the environment in order to 

discover valuable subgoals. As a consequence, the 

autonomic options discovery during the learning process is 

more important and useful. In this section, we will apply 

the unique-direction-value approach to form options 

online. 

5.1  Forming options online 

In the experiment, we added the autonomic option 
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generation procedure and combined it with 

macro-Q-learning. The outline of the learning procedure is 

described in Algorithm 3. The atomic action is considered 

as an option with one step. Compared with the primitive 

Q-learning, Algorithm 3 adds the process that generates 

options autonomically. The time of generating options 

faces a trade-off. The options discovery algorithm is 

performed early in the learning process, where the impact 

on the exploration would be the most significant. On the 

other hand, if options are performed too early, the 

information obtained may not suffice to generate 

meaningful subgoals, and the resulting options would 

contribute less to the learning effort. To describe the 

condition, we define two parameters in the algorithm. The 

lower boundary parameter is the beginning time that starts 

to record the paths; the up boundary parameter is the 

ending time that finishes recording the paths. They are 

both the percentages of the running generations. The 

following experiments examined their effect on the 

algorithm. The conditions for generating options should in 

general be problem-dependent and call for further study. 

The similar issue was studied in Mannor et al. [12].  

Algorithm 3  Q-learning algorithm with option. 

QLearnOption(){ 

 Learn the optimal policies with Q-learning; 

 If condition is satisfied 

    Call CreateOptionOnline(); 

    Add options into action state space; 

 Learn the optimal policies with Q-learning based on options; 

} 

Then let us consider how to generate options 

autonomically. The autonomic option discovery algorithm 

online is described in Algorithm 4. The basic idea is that 

the agent calculates the UDV of each state in the paths to 

discover the subgoals, and then analyzes the paths to find 
the input set I, and finally forms the internal policies π . 

The parameter λ in Algorithm 4 is used to control the size 

of option. The appropriate option size is also a trade-off. 

Too large option may have negative effects on 

performances, whereas too small option may not accelerate 
the learning significantly. However, the appropriate λ is 

problem-dependent and needs further study. The authors 
analyzed how λ affects the performance in the following 

experiments. 

Algorithm 4  Online create option with UDV in a grid 

world environment. 

CreateOptionOnline(){ 

For each path recorded 

Map the path into the grid-world；  

For each state s in the path  
Calculate IsVerDir ( )V s  and IsHorDir ( )V s ; 

For each state s existing in paths 
Calculate VerDir ( )V s , HorDir ( )V s  and UniDir ( )V s ; 

    Select sgN
 

states with maximum UniDir ( )V s
 
as subgoals SG; 

For each subgoal s in SG 

     Define a new option o whose terminate state is the subgoal  

s; 

     For each path passing through s 
Set the states whose distance from s is smaller than λ   

as its input set; 

         Set the input I of o with the combination of all input set of s; 

          Learn the internal policies of o to reach the subgoal s; 

} 

5.2  Experimental study in online application 

Fig. 6 illustrates a more complex task, where a 

grid-world navigation task with six subgoals is used to 

validate the proposed algorithms. In Fig. 6, 1-6 are the 

subgoals in the environment, and G is the goal state. The 

navigation task intends to find the optimal policies that the 

agent travels from the other states to the goal state G.  

 
Fig. 6  Rooms environment in 21 × 32 grid world. 

The experiment environment and the parameters are the 

same with that in Sect. 4.2. When the agent reaches the 

goal successfully, it will randomly select an initial state to 

continue to learn the optimal policies. In the experiments, 

the mean Q-value of all states is used as the function of the 

time step. The experiments were designed to compare the 

primitive Q-learning with options based Q-learning.  

Fig. 7(a) illustrates the relation between the mean 

Q-value of all states and time step in different conditions 

that generate options. Fig. 7(b) illustrates the relation 
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between the mean Q-value of all states and time step in 
different sizes of options. λ  is R/3, where R is the width 

of the grid-world (i.e., 32).  

 
(a) Different time generating options 

 
(b) Different size of options 

Fig. 7  The relation between the mean Q-value of all states 
and time step in 21 × 32 grid world 

From Fig. 7(a) we can observe that there are no obvious 

differences in the four algorithms before the options are 

generated, since they all are the primitive Q-learning. After 

the options are generated, the algorithms with options have 

better performance than those without options, since they 

reach the max Q-value faster. At the same time, we have 

also found that [lower boundary, up boundary] have a 

distinct effect on the performance. In the condition Cand 1, 

the parameter is [0.1, 0.2], the algorithm has the most 

significant performance improvement. Since some paths 

have been learnt in this condition, the valuable information 

contained in these recorded paths is useful to generate 

meaningful options. It is found that these good options can 

accelerate the Q-learning obviously. In the condition  

Cand 2, the parameter is [0, 0.1], the paths are recorded 

from the beginning. And thus they contain less valuable 

information, so the options generated by them may not be 

valuable. As a consequence, although these options can 

accelerate Q-learning, the result is not as remarkable as 

that in Cand 1. In the condition Cand 3, the parameter is 

[0.2, 0.3], it is a little late to generate options. Although 

options can still fasten the Q-learning to some extent, the 

improvement is limited, since the primitive Q-learning has 

begun to converge quickly. In all, the Q-learning with 

options is sensitive to the time of generating options. It 

should be pointed out that the primitive Q-learning has 

tardy process in the beginning phase, quick performance 

improvement in the middle phase, and slow convergence 

in the end. This shows that perhaps we should utilize the 

characteristic and select the appropriate time to generate 

valuable options. In our algorithm, the appropriate time is 

that it begins to record the paths after some paths are learnt 

and it generates the options before fast Q-learning 

convergence.  

In the experiment, lower boundary is 0.1, and, up 

boundary is 0.2. Observing Fig. 7(b), we have found that 

the four algorithms have close performance before 

generating options, whereas the performance of the 

algorithms with options is better than those without 

options after the options are generated. In the condition 
Cand 1 (i.e., λ =R/3), the algorithm has the best 

performance. With the help of options, it converges to the 

optimal value quickly. This might be due to the fact that 
when λ =R/3, the initial states of an option are exactly the 

states in both sides of the subgoals. Such option has an 

appropriate size, so its performance is the best one. In the 
condition Cand 2 (i.e., λ =R), its performance is better 

than that of the primitive Q-learning (i.e., Q-learning 

without options) before 53.5 10×  time step, whereas it is 

not the case after the time step. When λ =R, the size of 

options is too large, which may have a negative effect on 
the algorithm. In the condition Cand 3 (i.e., λ =R/6), the 

algorithm has also improved the performance obviously, 
whereas it is still worse than that in Cand 1. When λ =R/6, 

the size of options is a little small, so these options may 

not show their potential sufficiently. The experiments have 

shown that the proposed algorithm is also sensitive to the 

size of options. The selection of the appropriate option size 

is problem-dependent. In the grid-world environment, it is 

better for the option to incorporate the states in subspace 

(except the subgoal) into its initial states. 

6  Conclusions 

This article presented action-restricted heuristics for 
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subgoals and proposed a novel UDV approach to 

autonomically discover subgoals. Subgoals in this paper 

are regarded as the most matching action-restricted states 

in the paths. In grid-world tasks, the action-restricted 

heuristics can be roughly simplified to the UDV, which can 

be adopted to distinguish subgoals from other states. Thus, 

we propose the UDV approach for autonomic subgoal 

discovery and illustrated its application with two cases. In 

the offline application, the options are generated through 

some random tasks beforehand and the experiments have 

shown that options can accelerate the primitive Q-learning 

greatly. The online application forms options 

autonomically during the learning process. The 

experiments have also shown that with the help of options, 

Q-learning achieves the optimal policies much faster.  

This article also validated three minor problems in the 

UDV approach. We will further examine the approach in 

some moderately large problems in the future research. 

Additionally, although the UDV approach is limited to the 

grid-world environment, the action-restricted heuristics is 

widely applicable. The future research will consider its 

implementation in other environments, such as real life 

and dynamic task environments. 
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