
 October 2014, 21(5): 94–104

www.sciencedirect.com/science/journal/10058885 http://jcupt.xsw.bupt.cn

The Journal of China

Universities of Posts and

Telecommunications

Autonomic discovery of subgoals in hierarchical reinforcement learning

XIAO Ding (�), LI Yi-tong, SHI Chuan

School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

Option is a promising method to discover the hierarchical structure in reinforcement learning (RL) for learning
acceleration. The key to option discovery is about how an agent can find useful subgoals autonomically among the passing
trails. By analyzing the agent’s actions in the trails, useful heuristics can be found. Not only does the agent pass subgoals
more frequently, but also its effective actions are restricted in subgoals. As a consequence, the subgoals can be deemed as
the most matching action-restricted states in the paths. In the grid-world environment, the concept of the unique-direction
value reflecting the action-restricted property was introduced to find the most matching action-restricted states. The
unique-direction-value (UDV) approach is chosen to form options offline and online autonomically. Experiments show that
the approach can find subgoals correctly. Thus the Q-learning with options found on both offline and online process can
accelerate learning significantly.

Keywords hierarchical reinforcement learning, option, Q-learning, subgoal, UDV

1 Introduction

RL is a promising approach to building autonomous

agents and improving their performance with experiences.

Although many tasks can be learnt by adopting the

Markov decision process (MDP) framework using RL

techniques, a fundamental problem of the standard RL

algorithm is that, in practice, tasks cannot be solved in

reasonable time. The difficulty in solving such tasks is

usually due to the size of the state space and the lack of

immediate reinforcement signals. Two common

approaches were proposed to address these problems. The

first approach is to apply generalization techniques

involving low order approximations of the value

function [1–2]. The other popular approach is to utilize

hierarchical or related structures through task

decomposition. The main idea of hierarchical

reinforcement learning (HRL) methods in Ref. [3] is to

decompose the learning task into simpler subtasks, and

learn each of them independently. As a result, the overall

task is better understood and the learning is accelerated. A

Received date: 08-11-2013
Corresponding author: XIAO Ding, E-mail: dxiao@bupt.edu.cn
DOI: 10.1016/S1005-8885(14)60337-X

major challenge of the approach is how to autonomically

define the required decomposition, as in many cases the

decomposition is not straight forward and cannot be

obtained beforehand.

To address the problem, options (also known as

temporally extended actions, skills, abstraction, or

macro-actions) are introduced as closed-loop policies for

sequences of actions to enable HRL [3–6]. The primary

motivation of options is to permit one to add

temporally-extended activities to the repertoire of choices

available to an RL agent. A suitable set of options can then

help improve the agent’s efficiency in learning to solve

large-scale problems. A popular approach to developing

appropriate options is to identify subgoals and learn

options for these subgoals autonomically. A subgoal is

often a state or a region of state space, whereby reaching

such a state or region is assumed to be able to facilitate the

achievement of the overall goal of the task. A subgoal is

simply like a doorway in a robot navigation scenario.

When the robot wants to move out of a room, it must find

the doorway first, which acts as a subgoal. If the agent can

discover these subgoals and learn policies to reach them, it

can use these policies for more effective exploration as

well as refining overall policies more quickly. These

Issue 5 XIAO Ding, et al. / Autonomic discovery of subgoals in hierarchical reinforcement learning 95

subgoal policies can then be used to facilitate learning in

similar tasks.

The purpose of this article is to autonomically find the

target states which can usefully serve as subgoals.

Different kinds of heuristics strategies or learning

algorithms were applied to automatically discover

subgoals. The strategies used in subgoal discovery can be

roughly classified into five categories:

1) Some approaches choose states based on a

non-typical reinforcement. For example, Digney [7]

considered the states with a high reward gradient as

subgoals. However, this approach may be not applicable in

domains where there is a delayed reinforcement (e.g., a

maze with eight rooms and one goal)

2) Another popular approach states are chosen according

to their frequency of appearance [8– 9]. It is believed that

the states that are often visited in the past are likely to be

part of the agent’s optimal path, and thus the exploration

time may be reduced by finding local policies to reach

those states. This method was refined by Mcgovern et

al. [8] who proposed that the subgoals are states visited

frequently on successful trajectories but not on

unsuccessful ones. There are two disadvantages existing in

the frequency based approaches: much inefficient

frequency information may exist in the trajectories and the

agent may need excessive exploration of the environment

in order to distinguish between ‘important’ and ‘regular’

states.

3) Some other researches attempted to analyze the learnt

policy for certain structural properties after the agent

learning tasks [10–11]. For example, subgoals in Goel et

al.’s work were discovered by studying the dynamics along

the predecessor count curve and can include states that are

not an integral part of the initial policy.

4) Graph theoretic is also used to identify subgoals. In

these approaches, the agent’s transition history is mapped

to a graph and then the states between strongly connected

regions are identified as subgoals [5,12–15]. For example,

Menache et al. [13] used the max-flow/min-cut algorithm

to find bottleneck states while the state space is partitioned

by some graph clustering algorithms in Refs. [5,12,14,16].

5) Some other strategies were used to discover subgoals

recently. Planning under uncertainty with macro-actions

(PUMA) [17] combined the initial macro-action and

successively shorter macro-actions for PUMA. Konidaris

et al. [18] presented an abstraction selection algorithm to

select a suitable abstraction from a library of available

abstractions.

This article presented new heuristic information for

subgoals, and thereby proposed a new subgoal-based

method to form options autonomically in RL. By

analyzing actions of the agent in a grid-world environment,

we have found useful heuristic information to identify

subgoals. That is, the agent must pass through subgoals in

a certain direction and thus its effective actions in subgoals

are not as arbitrary as those in other states. As a

consequence, the subgoals are not only frequently visited

but also action-restricted. Therefore, they can be defined as

the most matching action-restricted states in the paths.

That is, the direction of actions in subgoals is either

uniform or inverted. To find the most matching

action-restricted states for grid-world tasks, we would like

to propose the concept of unique-direction value to denote

the action-restricted heuristic. The UDV of a state in a path

intuitionally reflects whether the path swerves in the state.

It has been found that the approach can effectively

distinguish subgoals from other states, especially the states

near the subgoals. Experiments have proved the accuracy

of the proposed approach in finding subgoals and the

efficacy of learning options autonomically. We have also

applied the UDV approach to form options offline and

online. The offline option learning is to form the options

through learning the random tasks beforehand, and learn

the global optimal policies with these options, while the

online option learning is to form options during the

learning procedure, and switch to the learning with options

autonomically. Experiments in both options show that with

the help of options, the Q-learning can accelerate learning

greatly. From these experiments, we have also analyzed

how the option size and the time of generating options may

affect the performances of the Q-learning.

It should be noted that the definition of subgoals is

different from the existing methods. Firstly, it extends the

definition of subgoals proposed by Stolle et al. [9] and

Mcgovern et al. [8]. Subgoals in this article are regarded as

states that are visited frequently as well as action-restricted.

Thus our method is more likely to discover the correct

subgoals when compared with those frequency-based

methods [8–9]. The method is similar to some of the other

state-transition-graph methods [5,13], in that all of us

attempt to find the characteristics of subgoals from trails

where the agent has passed; however, we try to apply a

different technique and heuristics. The method here made

use of the action-restricted property of subgoals and

96 The Journal of China Universities of Posts and Telecommunications 2014

proposed UDV concept to find these states. Autonomic

subgoal discovery is often usually considered as a machine

learning problem although Mcgovern et al. [8] regard it as

a multiple-instance learning problem and some researchers

in Refs. [12,19] consider it as a clustering problem. In this

paper, we regard it as a path-matching problem.

The following is organized this way. In Sect. 2, the RL

setup is described and extended to the use of options.

Sect. 3 presents the detail of the autonomic subgoal

discovery approach with unique-direction value. Sect. 4

applies the approach to form options offline, and validates

it through two grid-world tasks. Sect. 5 describes the

online application, and analyzes the factors that affect

Q-learning with options through experimentation. Finally,

we draw the conclusion in Sect. 6.

2 RL with options

RL is a computational approach to automating

goal-directed learning and decision making [20]. It

encompasses a broad range of methods for determining

optimal ways of behaving in complex, uncertain and

stochastic environments. Most RL researches are based on

the formalism of MDPs. Although RL is by no means

restricted to MDPs, this discrete-time, countable (in fact,

usually finite) state and action formalism provides the

simplest framework to study basic algorithms and their

properties. Here we will briefly describe the well-known

framework.

A discrete time MDP with a finite set of states S and a

finite set of actions A works as follows. At each time step t,
1,2,...,t = the learning agent is in the state

t
s S∈ . The

agent can choose an action
t

a from a set of available

actions at state
t

s , ()
t

A s , to cause a state transition to

1t
s S+ ∈ . The agent observes a scalar reward

t
r that is a

function of the current state and the action is performed by

the agent. The agent’s goal is to find a map from states to

actions, called a policy, which maximizes the expected

discounted reward over time,
0

t

t

t

rγ
∞

=

Ε

∑ , where 1γ <

is the discount factor and expectation is taken with respect

to the random policy of the agent. A common solution

strategy is to approximate the optimal action-value

function, or Q-function, which maps each state and action

to the maximum expected return starting from the given

state and action and thereafter always takes the best

actions [6].

Recently, macro Q-learning [21] was proposed to fasten

the learning process, which has extended Q-learning with

options. An option is a sequence of actions that are

executed by the agent until a termination condition is met.

Formally, an option is defined by a triplet , ,I π β ,

where I is the option’s input set, i.e., all the states by which
the option can be initiated; π is the option’s policy,

mapping states belonging to I to a sequence of actions;
β is the termination conditions over states, i.e., ()sβ
enotes the termination probability of the option when

reaching state s. The subgoal is usually regarded as the

terminating state. As a consequence, the autonomic

subgoal discovery is crucial to the formation of options.

While the agent is following an option, it will not stop

until the option terminates. When not following an option,

the agent can either choose a primitive action or initiate an

option. The updated rule for an option o, initiated at state s,

is

(,) (,) [max (,) (,)]
o O

Q s o Q s o r Q s o Q s o
τα γ

∈
′← + + −

where τ denotes the number of time steps elapsing

between s and s′ , r denotes the cumulative discounted

reward over this time, and it is implicit that the step-size
parameter α is the learning rate that may depend

arbitrarily on the states, option, and time steps. The
estimated (,)Q s o converges to the optimal value

function over options, * (,)
O

Q s o for all s S∈ and

o O∈ under conditions similar to those for conventional

Q-learning. The updated rule for a primitive action is
similar with 1τ = .

3 Autonomic subgoal discovery using UDV

A direct option discovery approach is to generate new

options and let the agent test them by adding them to its set

of actions. However, due to the great size of the state space

and the large number of optional actions and options, such

approach will inevitably cause inefficiency. So it is

necessary to find small quantity yet high quality subgoals.

Observing the actions of an agent in subgoals, we can find

some novel properties that may be useful to discover

subgoals.

3.1 Action properties of subgoals

Take an example of scenario in which an agent goes out

of a room to a restaurant for lunch. You may wander in the

room, moving to whatever directions possible: left, right,

Issue 5 XIAO Ding, et al. / Autonomic discovery of subgoals in hierarchical reinforcement learning 97

forward or backward. But once he reaches the doorway, he

can only go either into or out of the room; otherwise you

will bump onto the doorframe. Since the ultimate goal is

the restaurant for lunch, the agent will definitely go out of

the room at the doorway. Obviously, the doorway is a

critical subgoal in the context. It must be passed through if

the agent wants to go out of (or into) a room. Furthermore,

the effective actions in the doorway are restricted to going

into and out, not turning left or right.

A clearer explanation in the grid-world environment is

shown in Fig. 1. In the environment, the black cell

represents the blocking wall and the white cell represents

the free space to explore. Suppose that the policies of the

whole state space was learnt, we randomly select a set of

start state and target state as the agent’s tasks. The known

policies allow us to find the shortest path from the start

state to the target state, and then record the action of each

state in the path. Fig. 1 illustrates the four random tasks

and their shortest paths. It is clear that the two useful
subgoals in the figure are (3,3)s and (6,7)s . Here,

(,)s x y means the state in the grid-world in the xth row

and yth column (the cell in top left corner is (0,0)s).

Every path shown in the figure passes through one of these

subgoals. Actions in the subgoals are either in the uniform
direction (e.g., (3,3)s) or in the inverted direction (e.g.,

(6,7)s). However, the actions in other states are not

restricted, such as (4,6)s and (7,7)s .

Fig. 1 Illustration of action properties of subgoals in 10 × 10
grid-world

Through analyzing the effective actions of agents in

subgoals, we can conclude that the actions in subgoals

have the following two properties.

Propery 1 The subgoals are the states through which

trajectories connecting start and target states often pass.

This property implies that the subgoals are visited

frequently. Many frequency-based approaches are based on

this property. For example, in the work by Stolle et al. [9],

if states occur frequently on trajectories that represent

solutions to random tasks, these states may be important.

The property is called the high-frequency property.

Propery 2 The subgoals are the states where the

effective actions of an agent are usually restricted.

To achieve the task, the agent must pass through the

subgoals in the direction from the start state to the target

state. The effective actions in the subgoals are restricted

unlike those in other states. The property is also called the

action-restricted property. It should be noted again that the

effective actions are emphasized here because the agent

can explore in any possible directions in subgoals, and

some noneffective directions may lead to bumping onto

the wall. The action-restricted property is important as it

can distinguish subgoals with other states through their

actions. However, it is usually ignored by many

contemporary methods.

According to Property 1, the paths passing through the

same subgoal should match with the subgoal with a high

frequency. However, it is not correct that high-frequency

matching states are subgoals. Property 2 is an effective

method to distinguish true subgoals from other

high-frequency matching states. The effective actions of

the agent in subgoals are restricted in uniform or inverted

directions (no turns or swerves possible). Taking Fig. 1 for

example, path <s1, t1> and path <s2, t2> match in states
from (3,2)s to (3,4)s , and path <s3, t3> and path <s4,

t4> match in states from (5,7)s to (7,7)s . Among all

these six states, only (3,3)s and (6,7)s are action-

restricted. Thus, only these two states are considered as the

potential subgoals. Therefore, Property 2 is optimal in

looking for the most matching action-restricted states in

paths as subgoals.

3.2 The UDV approach

In current environment, it is hard to find the most

matching action-restricted states in paths due to the high

computational complexity. However, it is possible to solve

the problem in the grid-world environment since it is

regular. Here, the authors want to propose a novel concept

of UDV, which can effectively denote the information of

action directions. Through the UDV, the subgoals can be

98 The Journal of China Universities of Posts and Telecommunications 2014

easily calculated as the states with max UDV in paths. To

calculate the UDV, paths should be mapped into the

grid-world. To generate a path, we can calculate the UDV

of each state in the path by utilizing the trait of the

grid-world. To find all paths, we can accumulate the UDV

of each state and select the maximal ones as potential

subgoals. The detailed approach is described as follows.

3.2.1 Mapping a path

To map a path into the grid-world, the states in the path

can be labeled following their sequences. If a state is

visited many times, it only records the last sequence. As

Fig. 2(a) shows, it maps two paths <s2, t2> and <s3, t3> into

the grid-world.

(a) Mapping path <s2, t2 >and <s3, t3> in Fig. 1 into the grid-world

(b) The UDV of states in Fig. 2(a)

Fig. 2 The detailed approach to find all paths

3.2.2 Calculating the UDV

As was pointed, the effective actions in subgoals are

restricted to left/right or up/down in the grid-world,

compared to left/right/up/down in other states. Here, we

want to use the unique-direction value of a state to denote

action directions of states. Each state in a path has a

horizontal unique-direction value (HUDV) and a vertical

unique-direction value (VUDV) that are denoted as

IsHorDir ()V s and IsVerDir ()V s respectively, which can be

defined as follows:

IsHorDir

Seq Seq Seq

Seq Seq Seq

((,))

0; 2 ((,)) ((, 1)) ((, 1)

1; 2 ((,)) ((, 1)) ((, 1)

V s x y

S s x y S s x y S s x y

S s x y S s x y S s x y

=

≠ − + +

= − + +
(1)

IsVerDir

Seq Seq Seq

Seq Seq Seq

((,))

0; 2 ((,)) ((1,)) ((1,)

1; 2 ((,)) ((1,)) ((1,)

V s x y

S s x y S s x y S s x y

S s x y S s x y S s x y

=

≠ + + −

= + + −

(2)
where Seq ((,))S s x y denotes the sequence value of

(,)s x y in a path. Take Fig. 2(a) as an example,

Seq ((3,3)) 5S s = and
Seq

((6,7)) 6S s = .

According to the definition, IsHorDir () 1V s = means the

states on the left side and right side of s are the preceding

and successive states of s in the path, that is, the path

passes through s in the horizontal direction. Similarly,

IsVerDir
() 1V s =

means the states under s and above s are the

preceding and successive states of s in the path, which is

the path passing through s in the vertical direction.

Because the subgoals must be passed through, the UDV

of subgoals in a path is always 1. Since the effective

actions in the subgoal are restricted, either the HUDV or

the VUDV is 1 in the subgoals. Consequently, the subgoals

have the following property.

Property 3 If a state s is a subgoal, for all paths
passing s, IsHorDir () 1V s = , IsVerDir () 0V s = , sHorDir () 0

I
V s =

and IsVerDir () 1V s = .

Compared with subgoals, the UDV of other states in the

path is 1 or 0, and their HUDV and VUDV may both be 1.

Fig. 2(b) shows the UDV of states in Fig. 2(a). As
Fig. 2(b) shows, for the subgoals (3,3)s and (6,7)s ,

IsHorDir ((3,3)) 1V s = and IsVerDir ((6,7)) 1.V s = For the

non-subgoal state (4,6),s IsHorDir ((4,6)) 1V s = and

IsVerDir ((4,6)) 1V s = .

Issue 5 XIAO Ding, et al. / Autonomic discovery of subgoals in hierarchical reinforcement learning 99

In fact, the UDV of a state reflects whether the path

swerves in the state intuitionally. A state’s UDV being 0

means the path swerves in the state. As the scenario has

illustrated, one can wander in the room. Similarly, the path

can swerve in a room, which means the UDV of the

non-subgoal states in the path can be 0. Different paths can

pass the same position in the room in different directions.

That is, the HUDV and VUDV of the non-subgoal states

can both be 1. Then the path cannot swerve in the subgoal,

namely, the UDV of the subgoals in the path must be 1, or

the agent will bump onto the wall. And the path must pass

through a subgoal in a certain direction, that is, either the

HUDV or the VUDV is 1 in the subgoal.

3.2.3 Accumulating UDV of all paths

For the mapping of all paths, we can calculate the
accumulated UDV of each state. HorDir ()V s and VerDir ()V s

represent the sum of the HUDV and VUDV in state s

respectively.

HorDir IsHorDir() ()
l

l L

V s V s
∈

= ∑
(3)

VerDir IsVerDir() ()
l

l L

V s V s
∈

= ∑
 (4)

where, L is the path set, l is one path,
l

s means the state s

in path l.

The accumulated UDV of a state s in all paths is denoted
as UniDir ()V s , which can be defined as follows:

UniDir HorDir VerDir() | () () |V s V s V s= −

(5)

Finally, we select the states with the maximum

accumulated UDV as subgoal set.

sg
SG UniDirmax ();

N
S V s s S= ∈ (6)

where
SG

S represents the subgoal set and S represents the

state set. If there are
sg

N

subgoals, we select the first
sg

N

states with maximum accumulated UDV as subgoals.

UniDir ()V s can distinguish the subgoals and other states

for two reasons. On one hand, according to Property 1,

subgoals usually have larger visiting frequency. That is, the

UDV of subgoals is large. On the other hand, according to

Property 2, the subgoals are different from other states in

restricted actions, which makes the accumulated UDV of

subgoals larger than high-frequency non-subgoals states.
For the m n× grid-world, there are sN m n= × states.

Each path is so far mapped into the grid-world. There are L
paths, so the storage space complexity is s()O LN . Each

state also needs to be mapped into the grid-world, and its

unique-direction value and the accumulated unique-

direction value need to be caculated. And thus, for L paths
and sN states, the approach needs s3 L N× × basic

operations. Consequently, the run-time complexity is

s()O LN . The run-time and space complexities are both

linear with the number of paths and states.

4 Application in forming options offline

4.1 Forming options offline

As illustrated above, the UDV approach can be used to

autonomically discover the subgoals that are the crucial

components of options. In this section, we will apply the

approach to form options offline, which means that the

agent explores the environment to learn options ahead of

time. During this time, the option discovery process is

based on a series of random tasks in this environment, and

the agent learns to find options from random tasks. Then

the options learnt can be used to accelerate these kinds of

learning tasks.

In the grid-world environment, the whole state space

can be divided into several subspaces. The states in these

subspaces are closely connected, and obviously, these

subspaces are divisional. Some in-between states connect

these subspaces, which are then regarded as the subgoals.

The definition of option requires us to find the input set,

the internal policies in the option, and the termination

condition. Suppose each subspace in the state space

corresponds to an option, the process can be constructed as

follows:

1) The subgoals in the subspaces can be regarded as the

terminate state of the option.

2) The other states except the subgoals in the subspace

can be regarded as the input set I.

3) The internal policies in the option can be learnt with

Q-learning when the input set and terminate state are

determinate.

The option discovery algorithm is described in

Algorithm 1 and Algorithm 2 in detail.

Algorithm 1 The discovery of subgoals with UDV

approach in a grid-world environment.

DisSubGoal(){

Select a number of learning tasks at random;

For each task
Perform trainN episodes of Q-learning;

100 The Journal of China Universities of Posts and Telecommunications 2014

Perform testN episodes and record the paths;

Map these paths into the grid-world;

For each path and state s in it
 Calculate VerDir ()V s and HorDir ()V s ;

For each state s
Calculate UniDir ()V s for all tasks;

Select the
sg

N

subgoals with maximum UniDir ()V s ;

}

Once the options are found, we can use SMDP

Q-learning, as described in Sect. 2, in order to learn the

optimal policies over options. We may notice that the paths

may not visit all initial states, so we cannot guarantee that

all initial states in the subspace are in the input set. In

order to learn from the arbitrary states for the agent, we

should add all primitive actions as one-step options to the

option set.

Algorithm 2 Automatic creation of option with UDV

in a grid world environment.

CreateOptionOffline(){

 Run DisSubGoal() to get
sg

N

subgoals SG;

 For each subgoal s in SG

 Define a new option o whose terminate state is the subgoal

s;

 For each path passing through s

 Set the states between its preceding and successive

subgoal as its input set;

 Set the input I of o with the combination of all input set of s;

 Learn the internal policies of o to reach the subgoal s;

}

4.2 Experimental study in offline application

In the experiment, two grid-world navigation tasks were

used to test our proposed algorithm: a 10 × 10 grid-world

with 2 subgoals, and a 13× 13 grid-world with 4 subgoals

as shown in Fig. 3. The subgoals are hallways in the

grid-world (i.e. bottleneck states in the environment), since

trajectories passing from one room to another have to pass

through the hallways. The navigation task intends to find

the shortest path from the start state (marked ‘S’ in the

grid-world) to the target state (marked ‘T’). In such

context, the algorithm is expected to find the subgoals first,

then options for going to the subgoals, and finally the

shortest way of navigation over the options.

(a) Rooms environment in 10 × 10 grid-world

(b) Rooms environment in 13 × 13 grid-world

Fig. 3 Two grid-world navigation tasks used in our experiment

The state is in the current cell position. There are four

deterministic primitive actions of the agent: up, down, left

and right. If the agent attempts to move into a wall, it stays

in the same position, no penalty is incurred. The discount
factor 0.9γ = and there are no intermediate rewards

anywhere. The agent can only obtain a reward upon

entering a designated goal state and the reward is 100.

The algorithm runs independently for 20 times, and the

results are the average values. During each run, the option

discovery algorithm is used to find as many options as the

subgoals. During the option discovery stage, the 25% of

the states are used as potential start and target states for
random tasks. We use train 100N = episodes to learn

Q-values for each pair of start and target states. After
learning, we use test 10N = episodes to generate the UDV.

Once the options are learnt, we compare the performance

Issue 5 XIAO Ding, et al. / Autonomic discovery of subgoals in hierarchical reinforcement learning 101

of a learning agent using primitive actions only with the

performance of an agent using both primitive actions and
options. Both agents use a learning rate 0.1α = and

ε -greedy policy for generating behavior with 0.1ε = .

The authors did many experiments in different

environments and observed that the UDV approach can

find the subgoals correctly. Figs. 4(a) and 5(a) illustrate the

expected number of steps to the goal for the two

algorithms of Q-learning and Q-learning with options in

the two navigation tasks. It can be found that Q-learning

with options achieves optimality much earlier than

standard Q-learning. The advantage of using options is

further demonstrated in Figs. 4(b) and 5(b).

(a) Average number of steps to goal

(b) The average Q-value of the initial state

Fig. 4 Experiment results in 10 × 10 grid-world

Here we present the Q-value of the start state as a

function of time step, where each interaction with the

environment takes one unit of time. The Q-value of the

start state of Q-learning with options increases much faster

than that of Q-learning. In these two grid environments

and by two criteria, Q-learning with options has always

achieved better performances. It should be noted that these

two methods (i.e., Q-learning and Q-learning with options)

have the same settings except for the option learning, so

we think the better performances of Q-learning with

options attribute to the option learning process. Generally,

with the help of options, the agent can find the subgoals

easily and reach the goal more quickly. That is the reason

why the Q-value of the first state reaches the maximum

value faster compared with Q-learning.

(a) Average number of steps to goal

(b) The Q-value of the initial state

Fig. 5 Experiment results in 13 × 13 grid-world.

5 Application in forming options online

In the offline application, we assume that the agent can

explore the environment to form options beforehand.

However, the assumption is unpractical in many real

applications. Moreover, the agent usually spends much

time excessively exploring the environment in order to

discover valuable subgoals. As a consequence, the

autonomic options discovery during the learning process is

more important and useful. In this section, we will apply

the unique-direction-value approach to form options

online.

5.1 Forming options online

In the experiment, we added the autonomic option

102 The Journal of China Universities of Posts and Telecommunications 2014

generation procedure and combined it with

macro-Q-learning. The outline of the learning procedure is

described in Algorithm 3. The atomic action is considered

as an option with one step. Compared with the primitive

Q-learning, Algorithm 3 adds the process that generates

options autonomically. The time of generating options

faces a trade-off. The options discovery algorithm is

performed early in the learning process, where the impact

on the exploration would be the most significant. On the

other hand, if options are performed too early, the

information obtained may not suffice to generate

meaningful subgoals, and the resulting options would

contribute less to the learning effort. To describe the

condition, we define two parameters in the algorithm. The

lower boundary parameter is the beginning time that starts

to record the paths; the up boundary parameter is the

ending time that finishes recording the paths. They are

both the percentages of the running generations. The

following experiments examined their effect on the

algorithm. The conditions for generating options should in

general be problem-dependent and call for further study.

The similar issue was studied in Mannor et al. [12].

Algorithm 3 Q-learning algorithm with option.

QLearnOption(){

 Learn the optimal policies with Q-learning;

 If condition is satisfied

 Call CreateOptionOnline();

 Add options into action state space;

 Learn the optimal policies with Q-learning based on options;

}

Then let us consider how to generate options

autonomically. The autonomic option discovery algorithm

online is described in Algorithm 4. The basic idea is that

the agent calculates the UDV of each state in the paths to

discover the subgoals, and then analyzes the paths to find
the input set I, and finally forms the internal policies π .

The parameter λ in Algorithm 4 is used to control the size

of option. The appropriate option size is also a trade-off.

Too large option may have negative effects on

performances, whereas too small option may not accelerate
the learning significantly. However, the appropriate λ is

problem-dependent and needs further study. The authors
analyzed how λ affects the performance in the following

experiments.

Algorithm 4 Online create option with UDV in a grid

world environment.

CreateOptionOnline(){

For each path recorded

Map the path into the grid-world；

For each state s in the path
Calculate IsVerDir ()V s and IsHorDir ()V s ;

For each state s existing in paths
Calculate VerDir ()V s , HorDir ()V s and UniDir ()V s ;

 Select sgN

states with maximum UniDir ()V s

as subgoals SG;

For each subgoal s in SG

 Define a new option o whose terminate state is the subgoal

s;

 For each path passing through s
Set the states whose distance from s is smaller than λ

as its input set;

 Set the input I of o with the combination of all input set of s;

 Learn the internal policies of o to reach the subgoal s;

}

5.2 Experimental study in online application

Fig. 6 illustrates a more complex task, where a

grid-world navigation task with six subgoals is used to

validate the proposed algorithms. In Fig. 6, 1-6 are the

subgoals in the environment, and G is the goal state. The

navigation task intends to find the optimal policies that the

agent travels from the other states to the goal state G.

Fig. 6 Rooms environment in 21 × 32 grid world.

The experiment environment and the parameters are the

same with that in Sect. 4.2. When the agent reaches the

goal successfully, it will randomly select an initial state to

continue to learn the optimal policies. In the experiments,

the mean Q-value of all states is used as the function of the

time step. The experiments were designed to compare the

primitive Q-learning with options based Q-learning.

Fig. 7(a) illustrates the relation between the mean

Q-value of all states and time step in different conditions

that generate options. Fig. 7(b) illustrates the relation

Issue 5 XIAO Ding, et al. / Autonomic discovery of subgoals in hierarchical reinforcement learning 103

between the mean Q-value of all states and time step in
different sizes of options. λ is R/3, where R is the width

of the grid-world (i.e., 32).

(a) Different time generating options

(b) Different size of options

Fig. 7 The relation between the mean Q-value of all states
and time step in 21 × 32 grid world

From Fig. 7(a) we can observe that there are no obvious

differences in the four algorithms before the options are

generated, since they all are the primitive Q-learning. After

the options are generated, the algorithms with options have

better performance than those without options, since they

reach the max Q-value faster. At the same time, we have

also found that [lower boundary, up boundary] have a

distinct effect on the performance. In the condition Cand 1,

the parameter is [0.1, 0.2], the algorithm has the most

significant performance improvement. Since some paths

have been learnt in this condition, the valuable information

contained in these recorded paths is useful to generate

meaningful options. It is found that these good options can

accelerate the Q-learning obviously. In the condition

Cand 2, the parameter is [0, 0.1], the paths are recorded

from the beginning. And thus they contain less valuable

information, so the options generated by them may not be

valuable. As a consequence, although these options can

accelerate Q-learning, the result is not as remarkable as

that in Cand 1. In the condition Cand 3, the parameter is

[0.2, 0.3], it is a little late to generate options. Although

options can still fasten the Q-learning to some extent, the

improvement is limited, since the primitive Q-learning has

begun to converge quickly. In all, the Q-learning with

options is sensitive to the time of generating options. It

should be pointed out that the primitive Q-learning has

tardy process in the beginning phase, quick performance

improvement in the middle phase, and slow convergence

in the end. This shows that perhaps we should utilize the

characteristic and select the appropriate time to generate

valuable options. In our algorithm, the appropriate time is

that it begins to record the paths after some paths are learnt

and it generates the options before fast Q-learning

convergence.

In the experiment, lower boundary is 0.1, and, up

boundary is 0.2. Observing Fig. 7(b), we have found that

the four algorithms have close performance before

generating options, whereas the performance of the

algorithms with options is better than those without

options after the options are generated. In the condition
Cand 1 (i.e., λ =R/3), the algorithm has the best

performance. With the help of options, it converges to the

optimal value quickly. This might be due to the fact that
when λ =R/3, the initial states of an option are exactly the

states in both sides of the subgoals. Such option has an

appropriate size, so its performance is the best one. In the
condition Cand 2 (i.e., λ =R), its performance is better

than that of the primitive Q-learning (i.e., Q-learning

without options) before 53.5 10× time step, whereas it is

not the case after the time step. When λ =R, the size of

options is too large, which may have a negative effect on
the algorithm. In the condition Cand 3 (i.e., λ =R/6), the

algorithm has also improved the performance obviously,
whereas it is still worse than that in Cand 1. When λ =R/6,

the size of options is a little small, so these options may

not show their potential sufficiently. The experiments have

shown that the proposed algorithm is also sensitive to the

size of options. The selection of the appropriate option size

is problem-dependent. In the grid-world environment, it is

better for the option to incorporate the states in subspace

(except the subgoal) into its initial states.

6 Conclusions

This article presented action-restricted heuristics for

104 The Journal of China Universities of Posts and Telecommunications 2014

subgoals and proposed a novel UDV approach to

autonomically discover subgoals. Subgoals in this paper

are regarded as the most matching action-restricted states

in the paths. In grid-world tasks, the action-restricted

heuristics can be roughly simplified to the UDV, which can

be adopted to distinguish subgoals from other states. Thus,

we propose the UDV approach for autonomic subgoal

discovery and illustrated its application with two cases. In

the offline application, the options are generated through

some random tasks beforehand and the experiments have

shown that options can accelerate the primitive Q-learning

greatly. The online application forms options

autonomically during the learning process. The

experiments have also shown that with the help of options,

Q-learning achieves the optimal policies much faster.

This article also validated three minor problems in the

UDV approach. We will further examine the approach in

some moderately large problems in the future research.

Additionally, although the UDV approach is limited to the

grid-world environment, the action-restricted heuristics is

widely applicable. The future research will consider its

implementation in other environments, such as real life

and dynamic task environments.

Acknowledgements

This work was supported by the National Basic Research Program of

China (2013CB329603), the National Natural Science Foundation of

China (61375058, 71231002), the China Mobile Research Fund (MCM

20130351), the Ministry of Education of China and the Special

Co-Construction Project of Beijing Municipal Commission of

Education.

References

1. Singh S P, Jaakkola T, Jordan M I. Reinforcement learning with soft state
aggregation. Advance in Neural Information Processing Systems 7:
Proceedings of the Neural Information Processing Systems Conference
(NIPS’94), Nov 28−Dec 1, 1994, Denver, CO, USA. Cambridge, MA,
USA: MIT Press, 1995: 361−368

2. Tsitsiklis J N, Van Roy B. An analysis of temporal-difference learning
with function approximation. IEEE Transactions on Automatic Control,
1997, 42(5): 674−690

3. Dietterich T G. Hierarchical reinforcement learning with the max Q value
function decomposition. Journal of Artificial Intelligence Research, 2000,
13: 227−303

4. Parr R. Hierarchical control and learning for Markov decision processes.
PhD Thesis. Berkeley, CA, USA: University of California, Berkeley, 1998

5. Simsek Ö, Wolfe P A, Barto A G. Identifying useful subgoals in
reinforcement learning by local graph partitioning. Proceedings of the
22nd International Conference on Machine Learning (ICML’05), Aug
7−10, 2005. Bonn, Germany. New York, NY, USA: ACM, 2005:

816−823
6. Sutton R S, Precup D, Singh S. Between MDPs and semi-MDPs: a

framework for temporal abstraction in reinforcement learning. Artificial
Intelligence, 1999, 112(1/2): 181−211

7. Digney B L. Learning hierarchical control structure for multiple tasks and
changing environments. From Animals to Animats 5: Proceedings of the
5th International Conference on Simulation of Adaptive Behavior
(SAB’98). Aug 17−21, 1998, Zurich, Switzerland. Cambridge, MA, USA:
MIT Press, 1998: 321−330

8. Mcgovern A, Barto A G. Automatic discovery of subgoals in
reinforcement learning using diverse density. Proceedings of the 18th
International Conference on Machine Learning (ICML’01), Jun 28−Jul 1,
Williamstown, MA, USA. San Francisco, CA, USA: Morgan Kaufmann,
2001: 361−368

9. Stolle M, Precup D. Learning options in reinforcement learning.
Proceedings of the 5th International Symposium on Abstraction,
Reformulation and Approximation (SARA’02), Aug 2−4, Kananaskis,
Canada. Berlin, Germany: Springer, 2002: 212−223

10. Asadi M, Huber M. Autonomous subgoal discovery and hierarchical
abstraction for reinforcement learning using Monte Carlo method.
Proceedings of the 20th National Conference on Artificial Intelligence
and the 17th Innovative Applications of Artificial Intelligence Conference
(AAAI’05), Jul 9−13, 2005, Pittsburgh, PA, USA. Cambridge, MA, USA:
MIT Press, 2005: 1588−1589

11. Goel S, Huber M. Subgoal discovery for hierarchical reinforcement
learning using learnt policies. Proceedings of the 16th International
Florida Artificial Intelligence Research Society Conference (FLAIRS’03),
May 12−14, 2003, St Augustine, FL, USA. 2003: 346−350

12. Mannor S, Menache I, Hoze I, et al. Dynamic abstraction in
reinforcement learning via clustering. Proceedings of the 21st
International Conference on Machine Learning (ICML’04), Jul 4−8, 2004,
Banff, Canada. San Francisco, CA, USA: Morgan Kaufmann, 2004:
560−567

13. Menache I, Mannor S, Shimkin N. Q-cut-dynamic discovery of subgoals
in reinforcement learning. Proceedings of the 13th European Conference
on Machine Learning (ECML’02), Aug 19−23, 2002, Helsinki, Finland.
Berlin, Germany: Springer, 2002: 295−306

14. Jing S, Gu G C, Liu H B. Automatic option generation in hierarchical
reinforcement learning via immune clustering. Proceedings of the 1st
International Symposium on Systems and Control in Aerospace and
Astronautics(SSCAA’06), Jan 19−21, 2006, Harbin, China. Piscataway,
NJ, USA: IEEE, 2006: 4p

15. Simsek Ö, Barto A G. Skill characterization based on betweenness.
Advances in Neural Information Processing Systems 21: Proceedings of
the 22 Annual Conference on Neural Information Processing Systems
(NIPS’09), Dec 8−11, 2008, Vancouver, Canada. Cambridge, MA, USA:
MIT Press, 2009: 1497−1504

16. Entezari N, Shiri M E, Moradi P. Subgoal discovery in reinforcement
learning using local graph clustering. International Journal of Future
Generation Communication and Networking, 2011,4(3): 13−23

17. He R J, Brunskill E, Roy N. PUMA: Planning under uncertainty with
macro-actions. Proceedings of the 24th AAAI Conference on Artificial
Intelligence (AAAI’10), Jul 11−15, 2010, Atlanta, GA, USA. Cambridge,
MA, USA: MIT Press, 2010: 1089−1096

18. Konidaris G, Barto A. Efficient skill learning using abstraction selection.
Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI’09}, Jul 11−17, 2009, Pasadena, CA, USA. 2009:
1107−1113

19. Wang B N, Gao Y, Chen Z Q, et al. K-cluster subgoal discovery
algorithm for option. Journal of Computer Research and Development,
2006, 42(5): 851−855 (in Chinese)

20. Sutton R S, Barto A G. Reinforcement learning: An introduction.
Cambridge, MA, USA: MIT Press, 1998

21. Precup D. Temporal abstraction in reinforcement learning. Ph. D Thesis.
Amherst, MA, USA: University of Massachusetts, 2000

 (Editor: WANG Xu-ying)

