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Abstract 

 
It has seen a surge of research activity on 

multiobjective optimization using evolutionary 
algorithms in recent years. The majority of these 
algorithms use fitness assignment based on Pareto 
dominance. The fitness assignment not only decides the 
algorithm’s performance, but also is one of the main 
time-consuming components. This paper proposes an 
efficient fitness assignment based on dominating tree 
(DT). The dominating tree is a binary tree with the 
dominating information of individuals, which can 
represent three-valued relationship existing in Pareto 
dominance. We apply the dominating tree as an effective 
fitness assignment that can improve general 
multiobjective evolutionary algorithms. The simulation 
results also prove it.  
 
1. Introduction 
 

Over the last twenty years, there has been an 
increasing interest in applying evolutionary algorithms to 
multiobjective optimization problems (MOP). This 
research is highly relevant to real world applications, 
since real world optimization problems often involve 
several conflicting objectives for which a tradeoff must 
be found. The presence of multiple conflicting objectives 
in an optimization problem means that no single solution 
is globally optimal, unless priorities can be assigned to 
the objectives. It is usually difficult or even impossible to 
assign priorities and it makes an algorithm returning a set 
of promising solutions is preferable. For this reason, most 
contemporary multiobjective evolutionary algorithms 
(MOEAs) are designed to return a set of promising 
solutions, from which a solution can be picked by human 
experts. 

Many effective MOEAs have been suggested to solve 
the problem [1]. These MOEAs use Pareto dominance to 
guide the search, and return a set of nondominated 
solutions as result. Consider, without loss of generality, 

the minimization of the n objectives ( ),  1,kf k n=x " , of a 
vector function f of a vector variable x in a universe Ω , 
where 1( ) ( ( ), , ( ))nf f=f x x x" . A vector ( )= =uu f x  

1( , , )nu u" Pareto dominates v 1( ) ( , , )nv v= =v f x " , denotes 
as u v≺  if and only if  

 {1, , }    {1, , }    i i i ii n u v i n u v∀ ∈ ≤ ∧ ∃ ∈ <" "                (1) 
A decision vector u ∈Ωx is said to be Pareto optimal if 
and only if there is no v ∈Ωx for which v u( ) ( )f x f x≺ . 
The set of all Pareto optimal decision vectors is called the 
Pareto optimal set. The corresponding set of the objective 
vector is called the nondominated set, or Pareto front. 

Even though contemporary MOEAs work with several 
objectives simultaneously, they still transform all of the 
objectives into one fitness measure. This necessary, since 
what makes an evolutionary algorithm (EA) wok is the 
selection of highly fit individuals over less fit individuals. 
The process is also called fitness assignment, which 
evaluates the quality of individuals. The fitness 
assignment is the key component in MOEAs, which 
decides the algorithm’s performance. The fitness 
assignment is usually a costly matter in terms of 
processing time. Most Pareto-based fitness assignment 
require that each solution is compared with a large 
number of other solutions, which make many MOEAs 
have computational complexity bounded by 2( )O MN  
(where M is the number of objectives and N is the 
population size)[2],[3]. The 2N factor means that the 
processing time becomes large for large population sizes. 
Since in some situations it is desirable to use large 
population sizes, especially when the number of 
conflicting objectives is large, it is important to reduce 
the process time.  

The main result of this paper is development of an 
effective fitness assignment approach. Through careful 
analysis, we find that there are many unnecessary 
comparisons in the process of the fitness assignment. 
Reducing the unnecessary comparisons may be a shortcut 
to reduce its computational complexity. Contrasting with 
binary search tree (BST), we propose a dominating tree 
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to effectively reduce the unnecessary comparisons. As 
we known, the nodes in BST are partial order, and their 
relationships are two-valued: < or ≥ . However, the 
solutions in MOP may be nondominated with each other, 
which make their relationships three-valued: dominating, 
dominated, and nondominated. The dominating tree is 
designed to represent the three-valued relationship. The 
left link of a node in dominating tree points to a 
dominated node and its right link pointes to a 
nondominated node. The construction algorithms of 
dominating tree keep some useful properties, which 
indicate it can be applied in evolutionary multiobjective 
optimization (EMO). We propose the fitness assignment 
based on dominating tree, and apply it to replace the non-
dominated-sort procedure of NSGA-II [6]. The 
simulation results show that the improved NSGA-Ⅱ is 
significantly faster than NSGA-Ⅱand SPEA2 [3]. On the 
other hand, the quality of the results obtained by the 
improved NSGA-Ⅱ is competitive with that of NSGA-
Ⅱ and SPEA2. 
 
2. Dominating Tree and its Properties 

 
2.1 Structure of Dominating Tree 
 

Comparing with solutions in SOPs, solutions in MOPs 
are vectors, and their relationships are decided by Pareto 
dominance. For MOP, two solutions, ux and vx , can be 
evaluated by the following function 2 ( ( )= =uu f x  

1( , , )nu u" , v 1( ) ( , , )nv v= =v f x " ). If ( , ) 1Better =u v , ux is 
better than vx ; if ( , ) 0Better =u v , ux is nondominated 
with vx , which means some objective functions of ux  is 
smaller than that of vx but others are larger.  

 1           
( , ) -1          

0           nondominated      
Better


= 



u v
u v v u

≺
≺            (2) 

The Better function formally defines the relationship 
of solutions in SOP and MOP, and it also points out the 
important difference between these two problems. The 
objective space solution in SOP is real number, and their 
relationships of solutions are a two-valued: < or ≥ ; 
which constitutes the partial order. However, the 
objective space solution in MOP is vector, their 
relationships are a three-valued: u v≺ , v u≺  or 
nondominated. The function also explains the reason why 
MOP is more complex than SOP. Since the relationship 
of solutions in SOP is order partial, many sorting 
algorithms can be used in the fitness assignment of SOP, 
for example bubble sorting, shell sorting etc. The 
effective BST is also used to store the relationship of real 
number. The computational complexity of these 
algorithms is usually smaller than 2( )O N . However, as 

far as we knew, there are few studies on sorting the 
vectors and storing their relationships. As shown in 
Figure 1, the common method is to compare a vector 
with others and store their results with linear link, which 
causes 2N  process time. Can we design an efficient 
method to compare individuals and store their 
relationships?  

 

 
Figure 1. Illustration of the relationships among 

nodes obtained with linear link. 
 

 
Figure 2. Illustration of the relationships among 

nodes in Figure 1 with dominating tree. 
 

As a basal data structure, the binary search tree is used 
to sort the real number and store their relationships. The 
left link of a node in BST points to the smaller node, and 
its right link points to the larger node. When BST is  
used for heap sorting algorithm, the average complexity 
is ( lg )O N N , which confirms that it is an efficient 
algorithm. The BST is used for the two-valued 
relationship. For the three-valued relationship, the similar 
data structure may be used. The left link of a node in the 
binary tree points to the dominated node, and its right 
link points to the nondominated node. Taking Figure 2 
for example, the relationships of five nodes can be 
contained in the binary tree. 
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Figure 3. Illustration of the creating process of Figure 2. The left number in the node is its id, and the right 

number is its count. The sequence is alphabetic. 
 

The tree is a novel binary tree; therefore, we call it a 
dominating tree. A dominating tree can be designed as 
follows. 

Definition 1 (dominating tree): A dominating tree is 
a binary tree defined below. 

1. A dominating tree is either an external node or 
an internal node connected to a pair of dominating 
trees, which are called the left subtree and the right 
subtree of that node.  
2. Each node in the dominating tree has four fields: 
id, count, left-link, and right-link, where id registers 
which individual the node represents, count registers 
the size of its left subtree (including itself), left-link 
links to its left subtree whose root is dominated by 
that node, and right-link links to its right subtree 
whose root is nondominated with that node. 
Compared to BST, DT has the similar definition 

except the new notion “sibling chain” that refers to the 
chain constituted by the root and its right-link nodes. 
Following the right-links, one can obtain the sibling 
chain. Taking Figure 2 for example, N3 is the left child 
of N4, and N4 is the parent of N3 and N5. N1 is the 
right sibling of N4. N1 and N4 is the sibling chain of the 
DT whose root is N4. Moreover, N3 and N5 also 
constitute a sibling chain.  

If we consider the dominated relationship 
corresponds to the smaller than relationship in BST and 
the nondominated relationship correspond to the larger 
than or equal relationship in BST, and then a DT is 
equivalent to a BST. However, the relationship of nodes 
in BST is two-valued, whereas that of DT is three-
valued. Thus although the construction of a DT is 
similar to that of a BST, they do have a difference. 

 
2.2 Construction Algorithms of Dominating Tree  
 

Since the creating process of a DT is similar to that of 
a BST, the construction algorithm of a DT is also a 
recursive algorithm. Unlike in BST, a new node inserted 
into the DT has three choices. When the new node is 
dominated by the root, it is inserted into the left subtree 
of the root, which is similar to the smaller than 

relationship in BST. When the new node is 
nondominated with the root, it is inserted into the right 
subtree of the root, which is similar to the larger than or 
equal relationship in BST. When the new node 
dominates the root, it is impossible that the new node is 
dominated by the nodes in the root’s sibling chain1. So 
the new node should not only take the place of the root 
and let the root become its left subtree, but should also 
continue to compare with other nodes in its sibling 
chain. If there are nodes dominated by the new node, 
they should be deleted from the sibling chain and then 
be inserted into the left subtree of the new node.  

Figure 3 demonstrates the process of creating the DT 
in Figure 2. The input order of these nodes is N1, N2, 
N3, N4, and N5, and the result of inserting each node is 
shown from Figure 3 (a) to Figure 3 (e) respectively. 
After the five nodes have been inserted, the DT is 
shown as Figure 3 (e). It is obvious that the DT is 
unbalanced since the count of N4 (which is 3) is larger 
than that of N1 (which is 2) in Figure 3 (e). To balance 
the tree, N4 with its left subtree moves along the sibling 
chain in the left direction as in Figure 3 (f). The action 
doesn’t change the relationships of the nodes, but it 
makes the DT more balanced. Figure 3 (f) is the same as 
Figure 2. The balanced DT has the advantage of less 
cost for adding or deleting a node. In addition, it also 
enables the dominating tree to have some useful 
properties. 
____________________________________________ 
/*Creating a dominating tree. pTree is the root of the 
whole tree. 
Input: all nodes in the population 
Output: the dominating tree  */ 
Link ConstructTree (Pop P){ 

For each node (pNewnode) in the population P 
AddinTree(pTree, pNewnode); 

return  pTree; 

                                                        
1 If there is a node in the sibling chain dominating the new node, 

the node also dominates the root, since the relationship of Pareto 
dominance is transitive. However, the node is nondominated with the 
root, since they are in the same sibling chain. 
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} 
 
/* Add pNewnode into the left subtree of the tree whose 
root node is pRoot when pNewnode is dominated by 
pRoot.  */ 
AddinTree (Link pRoot, Link pNewnode){ 

pRoot->count = pRoot->count + pNewnode->count; 
if ( pRoot->left-link == NULL ) 
then pRoot->left-link = pNewnode; 
else AddinSibling (pRoot, pRoot->left-link, 

pNewnode); 
} 
 
/* pNewnode is compared with pChild whose parent 
node is pParent when pNewnode is inserted into 
pParent’s left subtree.*/ 

AddinSibling (Link pParent, Link pChild, Link 
pNewnode){ 

switch (Better (pNewnode, pChild)) 
case 0:       //nondominated 

if (pChild->right-link == NULL) 
then pChild->right-link = pNewnode; 
else AddinSibling (pParent, pChild->right-link, 

pNewnode); 
case 1:      //dominating 

pNewnode takes the place of pChild; 
AddinTree (pNewnode, pChild); 
while there exists a pNode (a node in the 
pNewnode’s sibling chain) and Better(pNewnode, 
pNode) ==1  
do{   

delete pNode from the sibling chain;  
AddinTree (pNewnode, pNode); 

} 
BalanceTree(pParent, pNewnode, L); 

case -1：    //dominated 
AddinTree (pChild, pNewnode); 
BalanceTree (pParent, pChild, L); 

} 
 
/* Sort the sibling chain of the parent’s left subtree in 
their count descending order. If the count of pMovenode 
(a node in the sibling chain) increases, it moves along 
the sibling chain in the left direction, or else in the right 
direction. */ 
BalanceTree (Link pParent, Link pMovenode, int 
direction){ 

if(direction == L) 
while the count of pMovenode is larger than that of 
its left  nodes which is also in the same sibling 
chain  
do pMovenode with its left subtree moves along 
the sibling chain in the left direction; 

if(direction == R) 
while the count of pMovenode is smaller than that 
of its right nodes which is in the same sibling chain  
do pMovenode with its left subtree moves along 
the sibling chain in the right direction; 

} 

Figure 4. Pseudocode of dominating tree 
construction algorithms. 

 
Based on the demonstration above, we have the 

dominating tree construction algorithms as shown in 
Figure 4. ConstructTree is the main loop of creating a 
DT according to nodes in the population. There are three 
functions used in the algorithm. AddinTree and 
AddinSibling demonstrate the action of a new node 
inserted into a DT. BalanceTree moves the node with 
the changing count along the sibling chain in the left or 
right direction, which makes the DT balanced. The 
algorithms fully utilize the properties of Pareto 
dominance and reduce the comparisons among nodes. 
 
2.3 Properties of Dominating Tree 
 

There are several useful properties of the dominating 
tree that can be derived from the construction process. 
For simplicity, we omit the detailed proof here. 

Lemma 1. The sibling chain of a dominating tree 
only conserves all Pareto optimal nodes in the tree. 

Lemma 2. The root of a dominating tree dominates 
all nodes in its left subtree. 

Lemma 3.The root node of the dominating tree has 
the largest count value among the nodes in its sibling 
chain. 

 
3. Fitness Assignment Based on Dominating 
Tree  
 

The high computational complexity of fitness 
assignment leads to long processing times for large 
population sizes, so it should be reduced if possible [5]. 
The creating process of a dominating tree is in fact the 
process of the fitness assignment. The dominating tree 
preserves the dominating relationships of solutions in 
the tree naturally. In NSGA-Ⅱ, a nondominated sorting 
approach is used for each individual to create a Pareto 
rank, which divides solutions into different fronts with 
different ranks [2]. In SPEA2, each individual in both 
the main population and elitist archive is assigned a 
strength value. On the basis of the strength value, the 
final rank value is determined by the summation of the 
strengths of the points that dominate the current 
individual [3].  

To test the applicability of DT in MOEA, we replace 
non-dominated-sort process in NSGA-Ⅱ with a new 
fitness assignment strategy based on dominating tree. 
To satisfy NSGA-Ⅱ, the nodes in the dominating tree 
also are assigned rank value as its front. The node’s 
rank can be assigned as follows. 

Definition 2 (Rank Assignment in DT): the ranks of 
nodes in a dominating tree can be assigned as following 
steps: 

1. The root’s rank is assigned as 1. 
2. If a node’s rank is k, its right-link node’s rank is 

k; and its left-link node’s rank is k+1. 
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The node’s rank value is used as its front. The rank 
assignment can be realized with the depth-first search 
algorithm or breadth-first search algorithm whose run-
time complexity is ( )O N . 
 
4. Experiment and Discussion 
 

In this section, we validate the proposed dominating 
tree through experiments. The improved version of 
NSGA-II by dominating tree is called NSGA-DT. Two 
well-known MOEAs -NSGA-II and SPEA2- are 
compared. The experiments include effectiveness and 
efficiency aspects. NSGA-II and SPEA2 are 
implemented in C according to their description in the 
literatures [2], [3]. The experiments are carried out on a 
3GHz and 512M RAM Pentium Ⅳ computer running 
Windows 2000.  

 
4.1 Test Functions and Performance 
Assessment 
 

Five two-objective functions (ZDT1-ZDT4 and 
ZDT6) and four three-objective functions (DTLZ1—
DTLZ4) will be used in the performance experiments. 
These functions are widely used as the benchmark 
problem in many researches [4]. These algorithms will 
be compared in three aspects: convergence to the Pareto 
front, maintenance of diversity and running time. Each 
of the algorithms runs for 20 times to obtain average 
results.  

To fairly compare these three algorithms, they all use 
the simulated binary crossover (SBX) and polynomial 
mutation. The reasonable parameters are settled. The 
population size is 200; the archive size is 200; the 
distribution indexes for crossover and mutation 
operators are 20=cη  and 20=mη  respectively; the 
crossover probability is 0.9; the mutation probability is 

n/1  for all test functions, where n is the number of 
variables. The running generations are settled as follows: 
ZDT1-ZDT6 are 100; DTLZ1-DTLZ4 are 200. 

We use two popular measure criterions in this paper. 
The first metric ϒ measures the extent of convergence 
to a known set of Pareto optimal solutions [6]. The 
smaller the value of the metric, the better the 
convergence toward the Pareto optimal front. In all 
simulations performed here, we present the average 
ϒ and variance σ ϒ of this metric calculated for solutions 
set obtained in multiple runs. The second metric ∆  
measures the extent of spread achieved among the 
obtained solutions [6]. A good distribution would make 
∆  equal to 0. We also calculate ∆ and σ ∆ for solutions 
obtained in multiple runs. 

 
4.2 Result and Discussion 
 

Table 1 shows the mean and variance of the 
convergence metric ϒ  obtained using three MOEAs. 

On most test problems, the three algorithms have close 
results; and they all converge to the true optimal front. 
NSGA-DT finds the best convergence in ZDT2, ZDT4, 
DTLZ1, DTLZ2 and DTLZ4; it also finds the worst 
convergence in ZDT3. Similarly, NSGA-II obtains the 
best result in ZDT1, ZDT3, ZDT6 and DTLZ3, and the 
worst result in DTLZ1 and DTLZ4. Observing from the 
variance of these three algorithms, we find they all are 
very steady.  

Table 2 shows the mean and variance of the 
distribution metric ∆  using different algorithms. The 
three algorithms also have very close and uniformly 
distribution. NSGA-DT has the best distribution in 
ZDT4 and DTLZ1, but the worst distribution in ZDT6. 
The distribution of NSGA-II is best in ZDT2, ZDT6, 
DTLZ2, DTLZ2 and DTLZ4. We also observe that 
these algorithms are steady from the distribution‘s 
variance. 

Table 3 shows the running time of three MOEAs. The 
running times of NSGA-DT are much smaller than that 
of other algorithms on all test functions; SPEA2 is the 
slowest one. Since the efficient density estimation 
algorithm and fast-nondominated-sort algorithm are 
used in NSGA-II [6], NSGA-II is obviously faster than 
SPEA2. Because of the application of dominating tree, 
NSGA-DT is much faster than NSGA-II. 

Through the performance experiments, we can find 
that NSGA-DT, as the application of dominating tree, 
not only approximate the true Pareto optimal front, but 
also maintain a good diversity on all problems. The 
running time show that the dominating tee reduces the 
unnecessary comparisons, and fasten the fitness 
assignment indeed.  

 
5. Conclusions 
 
In this paper, a new data structure- dominating tree-has 
been introduced to as a fitness assignment approach. 
The dominating tree is a binary tree with dominating 
information among individuals. The construction 
algorithm indicates that the dominating tree has some 
useful properties, which make it useful in EMO. To 
show DT as an effective fitness assignment that can 
improve general MOEAs, we propose the rank 
assignment in DT, and apply it to replace the non-
dominated-sort procedure of NSGA-II. The 
performance experiments indicate that the DT improved 
version of NSGA- Ⅱ  (NSGA-DT) is found to be 
competitive with SPEA2 and NSGA-II in terms of 
converging to the true Pareto front and maintaining the 
diversity of individuals. Moreover, NSGA-DT is much 
faster than other two algorithms. 
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Table 1. Convergence comparison of different algorithms using ϒ . First rows are mean, the second rows are 
variance. 

 
 

Table 2. Convergence comparison of different algorithms using ∆ . First rows are mean, the second rows are 
variance. 

 
 

Table 3. Compare running time of different algorithms. The time unit is millisecond.  
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