
An Efficient Fitness Assignment Based on Dominating Tree

Chuan Shi1, 2 Zhongzhi Shi2 Bin Wu1
1 School of Computer Science and Technology,

Beijing University of Posts and Telecommunications, 100876
2 Institute of Computing and Technology, Chinese Academy of Sciences, 100080

{shic, shizz}@ics.ict.ac.cn, wubin@bupt.edu.cn

Abstract

It has seen a surge of research activity on

multiobjective optimization using evolutionary
algorithms in recent years. The majority of these
algorithms use fitness assignment based on Pareto
dominance. The fitness assignment not only decides the
algorithm’s performance, but also is one of the main
time-consuming components. This paper proposes an
efficient fitness assignment based on dominating tree
(DT). The dominating tree is a binary tree with the
dominating information of individuals, which can
represent three-valued relationship existing in Pareto
dominance. We apply the dominating tree as an effective
fitness assignment that can improve general
multiobjective evolutionary algorithms. The simulation
results also prove it.

1. Introduction

Over the last twenty years, there has been an
increasing interest in applying evolutionary algorithms to
multiobjective optimization problems (MOP). This
research is highly relevant to real world applications,
since real world optimization problems often involve
several conflicting objectives for which a tradeoff must
be found. The presence of multiple conflicting objectives
in an optimization problem means that no single solution
is globally optimal, unless priorities can be assigned to
the objectives. It is usually difficult or even impossible to
assign priorities and it makes an algorithm returning a set
of promising solutions is preferable. For this reason, most
contemporary multiobjective evolutionary algorithms
(MOEAs) are designed to return a set of promising
solutions, from which a solution can be picked by human
experts.

Many effective MOEAs have been suggested to solve
the problem [1]. These MOEAs use Pareto dominance to
guide the search, and return a set of nondominated
solutions as result. Consider, without loss of generality,

the minimization of the n objectives (), 1,kf k n=x " , of a
vector function f of a vector variable x in a universe Ω ,
where 1() ((), , ())nf f=f x x x" . A vector ()= =uu f x

1(, ,)nu u" Pareto dominates v 1() (, ,)nv v= =v f x " , denotes
as u v≺ if and only if

 {1, , } {1, , } i i i ii n u v i n u v∀ ∈ ≤ ∧ ∃ ∈ <" " (1)
A decision vector u ∈Ωx is said to be Pareto optimal if
and only if there is no v ∈Ωx for which v u() ()f x f x≺ .
The set of all Pareto optimal decision vectors is called the
Pareto optimal set. The corresponding set of the objective
vector is called the nondominated set, or Pareto front.

Even though contemporary MOEAs work with several
objectives simultaneously, they still transform all of the
objectives into one fitness measure. This necessary, since
what makes an evolutionary algorithm (EA) wok is the
selection of highly fit individuals over less fit individuals.
The process is also called fitness assignment, which
evaluates the quality of individuals. The fitness
assignment is the key component in MOEAs, which
decides the algorithm’s performance. The fitness
assignment is usually a costly matter in terms of
processing time. Most Pareto-based fitness assignment
require that each solution is compared with a large
number of other solutions, which make many MOEAs
have computational complexity bounded by 2()O MN
(where M is the number of objectives and N is the
population size)[2],[3]. The 2N factor means that the
processing time becomes large for large population sizes.
Since in some situations it is desirable to use large
population sizes, especially when the number of
conflicting objectives is large, it is important to reduce
the process time.

The main result of this paper is development of an
effective fitness assignment approach. Through careful
analysis, we find that there are many unnecessary
comparisons in the process of the fitness assignment.
Reducing the unnecessary comparisons may be a shortcut
to reduce its computational complexity. Contrasting with
binary search tree (BST), we propose a dominating tree

Seventh IEEE International Conference on Data Mining - Workshops

0-7695-3019-2/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDMW.2007.68

247

to effectively reduce the unnecessary comparisons. As
we known, the nodes in BST are partial order, and their
relationships are two-valued: < or ≥ . However, the
solutions in MOP may be nondominated with each other,
which make their relationships three-valued: dominating,
dominated, and nondominated. The dominating tree is
designed to represent the three-valued relationship. The
left link of a node in dominating tree points to a
dominated node and its right link pointes to a
nondominated node. The construction algorithms of
dominating tree keep some useful properties, which
indicate it can be applied in evolutionary multiobjective
optimization (EMO). We propose the fitness assignment
based on dominating tree, and apply it to replace the non-
dominated-sort procedure of NSGA-II [6]. The
simulation results show that the improved NSGA-Ⅱ is
significantly faster than NSGA-Ⅱand SPEA2 [3]. On the
other hand, the quality of the results obtained by the
improved NSGA-Ⅱ is competitive with that of NSGA-
Ⅱ and SPEA2.

2. Dominating Tree and its Properties

2.1 Structure of Dominating Tree

Comparing with solutions in SOPs, solutions in MOPs
are vectors, and their relationships are decided by Pareto
dominance. For MOP, two solutions, ux and vx , can be
evaluated by the following function 2 (()= =uu f x

1(, ,)nu u" , v 1() (, ,)nv v= =v f x "). If (,) 1Better =u v , ux is
better than vx ; if (,) 0Better =u v , ux is nondominated
with vx , which means some objective functions of ux is
smaller than that of vx but others are larger.

 1
(,) -1

0 nondominated
Better

=

u v
u v v u

≺
≺ (2)

The Better function formally defines the relationship
of solutions in SOP and MOP, and it also points out the
important difference between these two problems. The
objective space solution in SOP is real number, and their
relationships of solutions are a two-valued: < or ≥ ;
which constitutes the partial order. However, the
objective space solution in MOP is vector, their
relationships are a three-valued: u v≺ , v u≺ or
nondominated. The function also explains the reason why
MOP is more complex than SOP. Since the relationship
of solutions in SOP is order partial, many sorting
algorithms can be used in the fitness assignment of SOP,
for example bubble sorting, shell sorting etc. The
effective BST is also used to store the relationship of real
number. The computational complexity of these
algorithms is usually smaller than 2()O N . However, as

far as we knew, there are few studies on sorting the
vectors and storing their relationships. As shown in
Figure 1, the common method is to compare a vector
with others and store their results with linear link, which
causes 2N process time. Can we design an efficient
method to compare individuals and store their
relationships?

Figure 1. Illustration of the relationships among

nodes obtained with linear link.

Figure 2. Illustration of the relationships among

nodes in Figure 1 with dominating tree.

As a basal data structure, the binary search tree is used
to sort the real number and store their relationships. The
left link of a node in BST points to the smaller node, and
its right link points to the larger node. When BST is
used for heap sorting algorithm, the average complexity
is (lg)O N N , which confirms that it is an efficient
algorithm. The BST is used for the two-valued
relationship. For the three-valued relationship, the similar
data structure may be used. The left link of a node in the
binary tree points to the dominated node, and its right
link points to the nondominated node. Taking Figure 2
for example, the relationships of five nodes can be
contained in the binary tree.

248

Figure 3. Illustration of the creating process of Figure 2. The left number in the node is its id, and the right

number is its count. The sequence is alphabetic.

The tree is a novel binary tree; therefore, we call it a
dominating tree. A dominating tree can be designed as
follows.

Definition 1 (dominating tree): A dominating tree is
a binary tree defined below.

1. A dominating tree is either an external node or
an internal node connected to a pair of dominating
trees, which are called the left subtree and the right
subtree of that node.
2. Each node in the dominating tree has four fields:
id, count, left-link, and right-link, where id registers
which individual the node represents, count registers
the size of its left subtree (including itself), left-link
links to its left subtree whose root is dominated by
that node, and right-link links to its right subtree
whose root is nondominated with that node.
Compared to BST, DT has the similar definition

except the new notion “sibling chain” that refers to the
chain constituted by the root and its right-link nodes.
Following the right-links, one can obtain the sibling
chain. Taking Figure 2 for example, N3 is the left child
of N4, and N4 is the parent of N3 and N5. N1 is the
right sibling of N4. N1 and N4 is the sibling chain of the
DT whose root is N4. Moreover, N3 and N5 also
constitute a sibling chain.

If we consider the dominated relationship
corresponds to the smaller than relationship in BST and
the nondominated relationship correspond to the larger
than or equal relationship in BST, and then a DT is
equivalent to a BST. However, the relationship of nodes
in BST is two-valued, whereas that of DT is three-
valued. Thus although the construction of a DT is
similar to that of a BST, they do have a difference.

2.2 Construction Algorithms of Dominating Tree

Since the creating process of a DT is similar to that of
a BST, the construction algorithm of a DT is also a
recursive algorithm. Unlike in BST, a new node inserted
into the DT has three choices. When the new node is
dominated by the root, it is inserted into the left subtree
of the root, which is similar to the smaller than

relationship in BST. When the new node is
nondominated with the root, it is inserted into the right
subtree of the root, which is similar to the larger than or
equal relationship in BST. When the new node
dominates the root, it is impossible that the new node is
dominated by the nodes in the root’s sibling chain1. So
the new node should not only take the place of the root
and let the root become its left subtree, but should also
continue to compare with other nodes in its sibling
chain. If there are nodes dominated by the new node,
they should be deleted from the sibling chain and then
be inserted into the left subtree of the new node.

Figure 3 demonstrates the process of creating the DT
in Figure 2. The input order of these nodes is N1, N2,
N3, N4, and N5, and the result of inserting each node is
shown from Figure 3 (a) to Figure 3 (e) respectively.
After the five nodes have been inserted, the DT is
shown as Figure 3 (e). It is obvious that the DT is
unbalanced since the count of N4 (which is 3) is larger
than that of N1 (which is 2) in Figure 3 (e). To balance
the tree, N4 with its left subtree moves along the sibling
chain in the left direction as in Figure 3 (f). The action
doesn’t change the relationships of the nodes, but it
makes the DT more balanced. Figure 3 (f) is the same as
Figure 2. The balanced DT has the advantage of less
cost for adding or deleting a node. In addition, it also
enables the dominating tree to have some useful
properties.
__
/*Creating a dominating tree. pTree is the root of the
whole tree.
Input: all nodes in the population
Output: the dominating tree */
Link ConstructTree (Pop P){

For each node (pNewnode) in the population P
AddinTree(pTree, pNewnode);

return pTree;

1 If there is a node in the sibling chain dominating the new node,

the node also dominates the root, since the relationship of Pareto
dominance is transitive. However, the node is nondominated with the
root, since they are in the same sibling chain.

249

}

/* Add pNewnode into the left subtree of the tree whose
root node is pRoot when pNewnode is dominated by
pRoot. */
AddinTree (Link pRoot, Link pNewnode){

pRoot->count = pRoot->count + pNewnode->count;
if (pRoot->left-link == NULL)
then pRoot->left-link = pNewnode;
else AddinSibling (pRoot, pRoot->left-link,

pNewnode);
}

/* pNewnode is compared with pChild whose parent
node is pParent when pNewnode is inserted into
pParent’s left subtree.*/

AddinSibling (Link pParent, Link pChild, Link
pNewnode){

switch (Better (pNewnode, pChild))
case 0: //nondominated

if (pChild->right-link == NULL)
then pChild->right-link = pNewnode;
else AddinSibling (pParent, pChild->right-link,

pNewnode);
case 1: //dominating

pNewnode takes the place of pChild;
AddinTree (pNewnode, pChild);
while there exists a pNode (a node in the
pNewnode’s sibling chain) and Better(pNewnode,
pNode) ==1
do{

delete pNode from the sibling chain;
AddinTree (pNewnode, pNode);

}
BalanceTree(pParent, pNewnode, L);

case -1： //dominated
AddinTree (pChild, pNewnode);
BalanceTree (pParent, pChild, L);

}

/* Sort the sibling chain of the parent’s left subtree in
their count descending order. If the count of pMovenode
(a node in the sibling chain) increases, it moves along
the sibling chain in the left direction, or else in the right
direction. */
BalanceTree (Link pParent, Link pMovenode, int
direction){

if(direction == L)
while the count of pMovenode is larger than that of
its left nodes which is also in the same sibling
chain
do pMovenode with its left subtree moves along
the sibling chain in the left direction;

if(direction == R)
while the count of pMovenode is smaller than that
of its right nodes which is in the same sibling chain
do pMovenode with its left subtree moves along
the sibling chain in the right direction;

}

Figure 4. Pseudocode of dominating tree
construction algorithms.

Based on the demonstration above, we have the

dominating tree construction algorithms as shown in
Figure 4. ConstructTree is the main loop of creating a
DT according to nodes in the population. There are three
functions used in the algorithm. AddinTree and
AddinSibling demonstrate the action of a new node
inserted into a DT. BalanceTree moves the node with
the changing count along the sibling chain in the left or
right direction, which makes the DT balanced. The
algorithms fully utilize the properties of Pareto
dominance and reduce the comparisons among nodes.

2.3 Properties of Dominating Tree

There are several useful properties of the dominating
tree that can be derived from the construction process.
For simplicity, we omit the detailed proof here.

Lemma 1. The sibling chain of a dominating tree
only conserves all Pareto optimal nodes in the tree.

Lemma 2. The root of a dominating tree dominates
all nodes in its left subtree.

Lemma 3.The root node of the dominating tree has
the largest count value among the nodes in its sibling
chain.

3. Fitness Assignment Based on Dominating
Tree

The high computational complexity of fitness
assignment leads to long processing times for large
population sizes, so it should be reduced if possible [5].
The creating process of a dominating tree is in fact the
process of the fitness assignment. The dominating tree
preserves the dominating relationships of solutions in
the tree naturally. In NSGA-Ⅱ, a nondominated sorting
approach is used for each individual to create a Pareto
rank, which divides solutions into different fronts with
different ranks [2]. In SPEA2, each individual in both
the main population and elitist archive is assigned a
strength value. On the basis of the strength value, the
final rank value is determined by the summation of the
strengths of the points that dominate the current
individual [3].

To test the applicability of DT in MOEA, we replace
non-dominated-sort process in NSGA-Ⅱ with a new
fitness assignment strategy based on dominating tree.
To satisfy NSGA-Ⅱ, the nodes in the dominating tree
also are assigned rank value as its front. The node’s
rank can be assigned as follows.

Definition 2 (Rank Assignment in DT): the ranks of
nodes in a dominating tree can be assigned as following
steps:

1. The root’s rank is assigned as 1.
2. If a node’s rank is k, its right-link node’s rank is

k; and its left-link node’s rank is k+1.

250

The node’s rank value is used as its front. The rank
assignment can be realized with the depth-first search
algorithm or breadth-first search algorithm whose run-
time complexity is ()O N .

4. Experiment and Discussion

In this section, we validate the proposed dominating
tree through experiments. The improved version of
NSGA-II by dominating tree is called NSGA-DT. Two
well-known MOEAs -NSGA-II and SPEA2- are
compared. The experiments include effectiveness and
efficiency aspects. NSGA-II and SPEA2 are
implemented in C according to their description in the
literatures [2], [3]. The experiments are carried out on a
3GHz and 512M RAM Pentium Ⅳ computer running
Windows 2000.

4.1 Test Functions and Performance
Assessment

Five two-objective functions (ZDT1-ZDT4 and
ZDT6) and four three-objective functions (DTLZ1—
DTLZ4) will be used in the performance experiments.
These functions are widely used as the benchmark
problem in many researches [4]. These algorithms will
be compared in three aspects: convergence to the Pareto
front, maintenance of diversity and running time. Each
of the algorithms runs for 20 times to obtain average
results.

To fairly compare these three algorithms, they all use
the simulated binary crossover (SBX) and polynomial
mutation. The reasonable parameters are settled. The
population size is 200; the archive size is 200; the
distribution indexes for crossover and mutation
operators are 20=cη and 20=mη respectively; the
crossover probability is 0.9; the mutation probability is

n/1 for all test functions, where n is the number of
variables. The running generations are settled as follows:
ZDT1-ZDT6 are 100; DTLZ1-DTLZ4 are 200.

We use two popular measure criterions in this paper.
The first metric ϒ measures the extent of convergence
to a known set of Pareto optimal solutions [6]. The
smaller the value of the metric, the better the
convergence toward the Pareto optimal front. In all
simulations performed here, we present the average
ϒ and variance σ ϒ of this metric calculated for solutions
set obtained in multiple runs. The second metric ∆
measures the extent of spread achieved among the
obtained solutions [6]. A good distribution would make
∆ equal to 0. We also calculate ∆ and σ ∆ for solutions
obtained in multiple runs.

4.2 Result and Discussion

Table 1 shows the mean and variance of the
convergence metric ϒ obtained using three MOEAs.

On most test problems, the three algorithms have close
results; and they all converge to the true optimal front.
NSGA-DT finds the best convergence in ZDT2, ZDT4,
DTLZ1, DTLZ2 and DTLZ4; it also finds the worst
convergence in ZDT3. Similarly, NSGA-II obtains the
best result in ZDT1, ZDT3, ZDT6 and DTLZ3, and the
worst result in DTLZ1 and DTLZ4. Observing from the
variance of these three algorithms, we find they all are
very steady.

Table 2 shows the mean and variance of the
distribution metric ∆ using different algorithms. The
three algorithms also have very close and uniformly
distribution. NSGA-DT has the best distribution in
ZDT4 and DTLZ1, but the worst distribution in ZDT6.
The distribution of NSGA-II is best in ZDT2, ZDT6,
DTLZ2, DTLZ2 and DTLZ4. We also observe that
these algorithms are steady from the distribution‘s
variance.

Table 3 shows the running time of three MOEAs. The
running times of NSGA-DT are much smaller than that
of other algorithms on all test functions; SPEA2 is the
slowest one. Since the efficient density estimation
algorithm and fast-nondominated-sort algorithm are
used in NSGA-II [6], NSGA-II is obviously faster than
SPEA2. Because of the application of dominating tree,
NSGA-DT is much faster than NSGA-II.

Through the performance experiments, we can find
that NSGA-DT, as the application of dominating tree,
not only approximate the true Pareto optimal front, but
also maintain a good diversity on all problems. The
running time show that the dominating tee reduces the
unnecessary comparisons, and fasten the fitness
assignment indeed.

5. Conclusions

In this paper, a new data structure- dominating tree-has
been introduced to as a fitness assignment approach.
The dominating tree is a binary tree with dominating
information among individuals. The construction
algorithm indicates that the dominating tree has some
useful properties, which make it useful in EMO. To
show DT as an effective fitness assignment that can
improve general MOEAs, we propose the rank
assignment in DT, and apply it to replace the non-
dominated-sort procedure of NSGA-II. The
performance experiments indicate that the DT improved
version of NSGA- Ⅱ (NSGA-DT) is found to be
competitive with SPEA2 and NSGA-II in terms of
converging to the true Pareto front and maintaining the
diversity of individuals. Moreover, NSGA-DT is much
faster than other two algorithms.

251

Table 1. Convergence comparison of different algorithms using ϒ . First rows are mean, the second rows are
variance.

Table 2. Convergence comparison of different algorithms using ∆ . First rows are mean, the second rows are
variance.

Table 3. Compare running time of different algorithms. The time unit is millisecond.

Acknowledgement

This work is supported by the National Science
Foundation of China (No. 60435010, 90604017,
60675010), 863 National High-Tech Program
(No.2006AA01Z128), National Basic Research
Priorities Programme (No. 2003CB317004) and the
Nature Science Foundation of Beijing (No. 4052025).
It is also supported by the National Natural Science
Foundation of China under Grant 60402011.

References

[1] C.A.C.Coello, “Evolutionary multiobjective optimization:
a historical view of the field,” IEEE Computational
Intelligence Magazine, vol. 1, no. 1, pp. 28-36, 2006.
[2] K. Deb, A. Pratab, S. Agarwal, and T.MeyArivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Trans. Evol. Comput., vol.6, pp. 182-197, Apr.2002.
[3] E.Zitzler, M.Laumanns and L.Thiele, “SPEA2: improving
the strength Pareto evolutionary algorithm,” TIK-Report 103,

2001, ETH Zentrum, Gloriastrasse 35, CH-8092 Zurich,
Switzerland.
[4] G. Yen and H. Lu, “Dynamic multiobjective evolutionary
algorithm: adaptive cell-based rank and density estimation,”
IEEE Trans. Evol. Comput., vol.7, no3, pp. 253-274, 2003.
[5] M.T.Jensen, “Reducing the Run-Time complexity of
Multiobjective EAs: The NSGA-II and Other Algorithms,”
IEEE Trans. Evol. Comput., vol.7, no.5, pp.503-515, 2003.
[6] K.Deb, A.Samir, etc, “A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization:
NSGA-II,” KanGAL Report No.200001, Kanpur, PIN 208
016, India.

 ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ1 DTLZ2 DTLZ3 DTLZ4

0.001800 0.000241 0.006068 6.834584 0.380954 0.062340 0.117837 0.192634 0.120307 NSGA-DT

0.000229 0.000807 0.001702 3.070909 0.038333 0.088464 0.003187 0.082492 0.002533

0.001152 0.000327 0.001454 8.260305 0.351938 0.571498 0.119575 0.173664 0.130049 NSGA-II

0.000115 0.000589 0.000068 5.866980 0.030285 0.508453 0.002103 0.044093 0.027837.

0.001984 0.001252 0.001618 8.341894 0.399221 0.253707 0.121365 0.277417 0.121587 SPEA2

0.000167 0.001006 0.000091 4.454580 0.038211 0.314592 0.002137 0.130644 0.001067

 ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ1 DTLZ2 DTLZ3 DTLZ4

0.002647 0.000768 0.006777 0.464903 0.012766 0.184153 0.253905 0.325358 0.248115 NSGA-DT

0.000181 0.001172 0.000538 0.675500 0.002407 0.097828 0.008718 0.074161 0.011867

0.002654 0.000532 0.006781 0.610860 0.009561 0.500472 0.251486 0.321142 0.230279. NSGA-II

0.000126 0.001063 0.000488 1.617882 0.001242 0.270827 0.024443 0.051273 0.076928

0.001219 0.000834 0.005585 0.842312 0.010338 0.572517 0.254560 0.505960 0.255493 SPEA2

0.000070 0.000679 0.000461 1.746986 0.000742 0.889044 0.009572 0.349350 0.011421

 ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ1 DTLZ2 DTLZ3 DTLZ4

NSGA-DT 1420 934 1328 867 654 2387 2923 2329 3098

NSGA-II 1885 2234 1839 2223 1910 3343 4045 3310 4185

SPEA2 8657 8756 8593 8614 8368 20468 23417 20384 23715

252

