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ABSTRACT
�e Web has accumulated a rich source of information, such as text,
image, rating, etc, which represent di�erent aspects of user pref-
erences. However, the heterogeneous nature of this information
makes it di�cult for recommender systems to leverage in a uni�ed
framework to boost the performance. Recently, the rapid develop-
ment of representation learning techniques provides an approach
to this problem. By translating the various information sources
into a uni�ed representation space, it becomes possible to integrate
heterogeneous information for informed recommendation.

In this work, we propose a Joint Representation Learning (JRL)
framework for top-N recommendation. In this framework, each
type of information source (review text, product image, numerical
rating, etc) is adopted to learn the corresponding user and item
representations based on available (deep) representation learning
architectures. Representations from di�erent sources are integrated
with an extra layer to obtain the joint representations for users and
items. In the end, both the per-source and the joint representations
are trained as a whole using pair-wise learning to rank for top-N
recommendation. We analyze how information propagates among
di�erent information sources in a gradient-descent learning para-
digm, based on which we further propose an extendable version of
the JRL framework (eJRL), which is rigorously extendable to new
information sources to avoid model re-training in practice.

By representing users and items into embeddings o�ine, and us-
ing a simple vector multiplication for ranking score calculation on-
line, our framework also has the advantage of fast online prediction
compared with other deep learning approaches to recommendation
that learn a complex prediction network for online calculation.

KEYWORDS
Recommender Systems; Representation Learning; Heterogeneous
Information Processing; Top-N Recommendation

1 INTRODUCTION
For many years, user to item numerical ratings have been the most
frequently used user-item interactions for personalized recommen-
dation, and they have served as the underpinning of most Matrix
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Factorization (MF)-based [22] Collaborative Filtering (CF) [32] algo-
rithms. Recently, researchers have found or argued that information
sources beyond ratings are extremely helpful in user/item pro�ling
and personalized recommendation, but these information sources
come in very di�erent and heterogeneous forms, e.g., textual re-
views, visual images, or even sound tracks.

Di�erent types of feedbacks describe di�erent aspects of user
preferences – numerical ratings indicate users’ overall a�itude to-
wards a product; textual reviews are able to express user opinions
towards various product features [9, 27, 42]; and product images
reveal users’ preferences on di�erent visual fashions [18, 28]. Intu-
itively, heterogeneous information sources can be complementary
with each other for user pro�ling, which can help to promote per-
sonalized recommendation when integrated properly. However, the
nature of heterogeneity makes it di�cult to fuse ratings, reviews,
images, and other information sources in a uni�ed way.

Previous work on this topic falls into the category of hybrid rec-
ommendation [6, 7], which generally includes two research lines
– the hybridization of algorithms, and the hybridization of het-
erogeneous information sources. �e �rst research line a�empts
to integrate di�erent recommendation techniques for improved
performance, e.g., integrating content- [30] and CF-based [14] algo-
rithms. Di�erent algorithms can be assembled by various strategies
such as weighting, switching, mixing, cascading, or meta-level hy-
bridization [7, 16]. However, these approaches put less a�ention on
leveraging heterogeneous information sources. �ey also require
signi�cant e�orts on model design and selection because di�er-
ent strategies are needed for di�erent algorithms, especially when
content-based methods are involved.

More recently, the second research line has a�racted much at-
tention from the research community, and algorithms are pro-
posed to leverage the power of di�erent information sources. One
trend is to augment numerical ratings with textual reviews for rec-
ommendation [8], which includes topic modeling [3, 26, 27, 34],
sentiment analysis [9, 13, 39, 42–44], and (deep) neural network
[2, 36, 41, 45] approaches for review modeling. Researchers have
also jointly considered ratings and images for product recommen-
dation [17, 18, 28], video signals for key frame recommendation
[10], audio signals for music recommendation [35, 37], and knowl-
edge bases for movie/book recommendation [40]. Yet existing ap-
proaches are usually restricted to limited information sources (e.g.,
rating plus another information source), or require the pre-existence
of domain knowledge for recommendation.

Fortunately, recent advances on representation learning [5] has
shed light on this problem, which makes it possible to learn the
representations of very di�erent information sources in a shared
representation space. �is further makes it possible to design a
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uni�ed recommendation framework that is capable of providing
recommendation lists based on a variety of user feedbacks.

In this work, we focus on ranking-based recommendation to con-
struct top-N recommendation lists. Referring to principles of multi-
view machine learning [33], we propose a Joint Representation
Learning (JRL) approach as a general framework for recommen-
dation, which builds representation learning on top of pair-wise
learning to rank for top-N recommendation (Figure 1). In this
framework, each kind of information source is considered as a view,
and each piece of information therein (e.g., a piece of review) is
considered as an entity. In each view, entities are represented as
embeddings based on available (deep) representation learning ar-
chitectures. �ese entity embeddings (shown as gray intermediate
embeddings in Figure 1) are connected to users and items based
on the observed user-item interactions, which give us the user and
item representations in the corresponding view. Representations
from each view are further mapped to a shared semantic space
with a full connection to obtain the integrated user/item represen-
tations, which are multiplied to produce the ranking scores for
pair-wise learning to rank. For model learning, we randomly select
an item that has no interaction with the target user to construct
positive-negative item pairs, and parameters and representations in
the whole framework are learned simultaneously in an end-to-end
manner on the ranking loss.

To avoid model re-training when adding new information sources
(i.e., views), we analyze the information propagation among views
in the JRL framework. With this, we further propose an extendable
version of the JRL framework (called eJRL), which theoretically al-
lows integrating new views without re-training the existing views
– an extremely favorable property in real-world systems where fre-
quent model retraining on large-scale data is not always practical.

In the following, we �rst review related work in Section 2. In Sec-
tion 3 we propose the JRL approach for recommendation, including
the modeling of each view, the uni�ed framework, and the top-N
recommendation strategy. We examine the framework extendabil-
ity and propose eJRL in Section 4, and provide the experimental
results and analyses in Section 5. Section 6 concludes the work and
points out some of the future research directions.

2 RELATEDWORK
Researchers and practitioners have known for years that incor-
porating richer information source beyond numerical ratings can
promote recommendation performance. �is leads to research on
hybrid recommendation techniques [6, 7]. At the very beginning,
hybrid recommendation mostly referred to the integration of both
content-based [30] and CF-based [14] techniques for recommen-
dation, where the integration can come in various forms such as
weighting, switching, mixing, etc, depending on the available con-
tent pro�les and meta-recommendation algorithms.

More recently, many Web applications have accumulated a large
amount of heterogeneous information sources about users, items,
and their interactions, which helped to extend the concept of hybrid
recommendation to the integration of di�erent information sources.

A popular research line is the joint modeling of numerical ratings
and textual reviews for recommendation. �e earliest approach
constructs manually de�ned ontologies from free-text reviews to

… ……

Entity1 Entity2 Entity3 Entity4 … EntityN-1

… … … … ……

User	𝑢"+Item	𝑣$% -Item	𝑣$&

… ……

… ……

… ……

V2

V1

V3

EntityN

…

(Deep)	Representation	Learning

S1 S2>

+Item	𝑣$%

+Item	𝑣$%

+Item	𝑣$%

User	𝑢"

User	𝑢"

User	𝑢"

-Item	𝑣$&

-Item	𝑣$&

-Item	𝑣$&

Figure 1: Overview of the Joint Representation Learning
(JRL) framework for top-N recommendation. Each type of
information source is denoted as a viewVi , and user-item in-
teractions in each view are adopted to learn the correspond-
ing user/item representations. In this �gure, a positive item
is one that the user previously purchased, so the user and
item are linked to the common entity of this interaction (i.e.,
rating, review, or image of the product); instead, a negative
item is one that the user did not purchase before, thus they
are not linked to any common entity.
help rating prediction [1], but it requires extensive human labor
on domain-related ontology construction. To address the prob-
lem, researchers have been relying on automatic review analysis
techniques for recommendation. Speci�cally, [3, 26, 27, 34] conduct
topic discovery from the reviews and integrate it with the latent fac-
tors from ratings to estimate user preferences for recommendation,
which achieved be�er performance in rating prediction. Further-
more, [13, 39] proposed leveraging probabilistic graphical models
to include more �exible prior knowledge for review modeling. To
capture the local semantic information in reviews, [41] proposed
to integrate traditional matrix factorization with word2vec [29] for
user pro�ling and rating prediction.

Users may express explicit sentiments toward products or as-
pects in reviews. To capture this important signal of user preference,
researchers have also applied sentiment analysis on textual reviews
for recommendation. In particular, [42] uses multi-matrix factor-
ization to generate explainable recommendations based on phrase-
level sentiment analysis, and [9] further captures user interests on
multi-category product features with a learning to rank manner.
Furthermore, [4] proposed a Sentiment Utility Logistic Model to
recommend not only items but also item aspects to provide be�er
experience for the users, and [43] jointly considered sentiment,
aspect, and regional features based on geographical topic modeling
for location-aware recommendation.

Beyond numerical ratings and textual reviews, visual images re-
veal users’ visual preference towards di�erent items. For example,
[28] proposed image-based recommendation to provide co-purchase
recommendations, and [18] proposed a Visual-based Bayesian Per-
sonalized Ranking (VBPR) approach for top-N recommendation.
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In [10], the authors jointly modeled time-synchronized comments
and key frame images for personalized key frame recommendation
in video websites.

A related research trend in recent years is leveraging deep learn-
ing for recommendation. For example, [25, 38] adopted denoising
auto-encoders for recommendation, [46] developed a neural au-
toregressive approach for collaborative �ltering, and [19, 20] gen-
eralized matrix factorization and factorization machines for neural
collaborative �ltering. On considering information sources beyond
ratings, [2, 36, 41, 45] adopted deep textual modeling on reviews for
recommendation, [35, 37] leveraged deep audio embeddings for mu-
sic recommendation, [40] incorporated knowledge base embedding
for recommendation, and [15] studied cross-domain recommenda-
tion with deep user modeling based on web search queries.

�ough achieving be�er performance against modeling ratings
alone, previous models (including deep approaches) are usually lim-
ited to pre-selected information sources or domain knowledge, thus
researchers have to develop di�erent models for di�erent types of
user-item interactions. Recent promising advances on representa-
tion learning [5] shed light on this problem. With well established
representation learning theories on texts [24, 29], images [23], au-
dios [21], and many others, we can conduct joint representation
learning on heterogeneous information sources in a shared space
for more informed recommendation. Furthermore, by building rep-
resentation learning on top of pair-wise learning to rank techniques
[31], we are able to achieve highly promoted top-N recommenda-
tion performance, which is closely related to the business values in
real-world recommender systems.

3 JOINT REPRESENTATION LEARNING
In this section, we describe the Joint Representation Learning (JRL)
framework for recommendation. We �rst provide a simple overview
of the framework, and then adopt three heterogeneous information
sources (textual review, visual image, and numerical rating) to
describe how the framework can be developed in practice. A�er
that, we discuss and prove how di�erent selections of ranking loss
functions and multi-view representation merge functions a�ect the
extendability of the framework.

3.1 Framework Overview
LetVi be the i-th view in the framework. Speci�cally, we takeV1 for
reviews,V2 for images, andV3 for ratings in this work. Letu refer to
a speci�c user, andv to a speci�c item. In each viewVi , we have eiuv
denoting the entity corresponding to useru and itemv . For example,
we have duv and ruv referring to the review and rating given by
user u towards item v , and in the image view, puv refers to the
image that user u examined on item v . �e entity representations
ekuv (grey vectors in Figure 1 and 2) are linked to users and items
in di�erent views to obtain the user/item representations, which
will be described in detail in the following subsections.

�e JRL framework for recommendation consists of the following
four components:

• Learn the representation ekuv of each entity ekuv in view
Vk . When back-propagation is incorporated, this step will
introduce an objective function Lk (Θk ).

Table 1: A summary of key notations in this work. Note that
all vectors are denoted with bold lowercases.

Vk �e k-th view of the framework, speci�cally V1, V2, V3
refer to review, image, and rating views in this work

u, v An arbitrary user or item in the system
ekuv , ekuv An entity (and its representation) corresponding to user

u and item v in view Vk . �is is a general notation, and
an entity can be a review, image, rating, or others

duv , duv �e review user u wri�en to item v in view V1, and its
representation learned by PV-DBOW

puv , puv �e image that user u examined on item v in view V2,
and its representation learned by CNN

ruv , ru, rv �e rating user u rated on item v in view V3, and its
corresponding user and item representations learned by
multi-layer perceptron

m, n, Nk Number of users and items in the system, as well as the
total number of entities in view Vk

R �e set of all observed user-item interactions
uk , vk Representations of user u and item v in Vk
u, v Integrated representations of user u and item v
Lk (Θk ) Regularization function for learning entity representa-

tions ekuv in view Vk , and Θk is the parameter set
λk Regularization coe�cient for Lk (Θk )
Wk �e set of connection weight parameters from entity

representations to user/item representations in view Vk
f ( ·) �e merge function to get the integrated user/item rep-

resentations from per-view user/item representations,
i.e., u = f (u1u2u3 · · · ), v = f (v1v2v3 · · · )

д ( ·) �e ranking objective function for pair-wise learning to
rank, e.g., д (u, v+, v−) = σ (uᵀv+ − uᵀv−)

• In each view Vk , obtain user/item representations uk , vk
by linear combinations of entity representations ekuv , and
the learned connection weight parameters are denoted as
Wk , which is a set of connection weight parameters.

• Obtain the �nal user/item representations based on the
merge function: u = f (u1u2u3 · · · ), v = f (v1v2v3 · · · ).

• Optimize the pair-wise ranking objective functionд(u,v+,v−)
with objectives of each view Lk (Θk ) as regularizer.

Finally, the JRL framework optimizes the following abstract ob-
jective function for top-N recommendation:

maximize
∀k :{Wk ,Θk }

L =
∑

(u,v+ )∈R

д(u,v+,v−) +
∑
k

λkLk (Θk ) (1)

where (u,v+) is a positive user-item pair indicating that user u
purchased item v+, while (u,v−) is a negative pair where user u
did not purchase v−. In this framework, all observed user-item
interaction pairs in R are treated as positive pairs, while negative
pairs are randomly sampled from those items that a user did not
purchase before.

We will show that di�erent choices of merge function f (·) and
ranking loss functionд(·) will a�ect how information from di�erent
views are shared. Speci�cally, we will show that when f (·) and
д(·) obtain certain separation properties, the JRL framework is
extendable to new views without retraining of the existing views.
Key notations adopted in this section are summarized in Table 1.
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Figure 2: �e representation learning architectures for di�erent views. We consider the textual review, visual image, and
numerical rating views in thiswork, but the framework is extendable tomore heterogeneous information sources as additional
views. Each sub�gure examples the learning of a single entity therein, and di�erent entities in the same view are learned using
the same architecture. In each view, entity representations are connected to users and items according to the corresponding
user-item interactions in that view.

3.2 Modeling of Textual Reviews
We adopt the PV-DBOW model [24] to learn the review represen-
tations in V1, which is shown in Figure 2(a). PV-DBOW assumes
the independence between words in a document and uses the doc-
ument to predict each observed word in it. Let duv be the review
of user u on item v , with words {w1

uv ,w
2
uv · · ·w

nuv
uv } in it. �e

representations of user u, item v , word w , review duv in this view
V1 are de�ned as u1, v1,w, duv ∈ RK , respectively, where K is the
dimension (i.e., embedding size) of representations.

Speci�cally, each review duv is �rst projected into a semantic
space and then trained to predict its words. With the bag-of-words
assumption, the generative probability of word w in review duv is
calculated by a so�max function over the whole vocabularyV :

P (w |duv ) =
exp(wᵀduv )∑

w ′∈V exp(w′ᵀduv )
(2)

To reduce the cost of gradient computation of Eq.(2) given a large
vocabulary, we take the negative sampling strategy [29], which
randomly samples several words according to a prede�ned noise
distribution and uses these words to approximate the denominator
of Eq.(2). With negative sampling, the global objective of PV-DBOW
that sums over all possible word-review pairs is:

L1 (w, duv ) =
∑
w ∈V

∑
(u,v )∈R

fw,duv logσ (wᵀduv )

+
∑
w ∈V

∑
(u,v )∈R

fw,duv

(
t · EwN ∼PV logσ (−wᵀN duv )

) (3)

where fw,duv is the frequency of word-review pair, which is 0 when
duv does not mentionw . t is the number of negative samples, which
is set as 5 in this work according to the guidance of [29]. σ (x ) =

1
1+e−x is the sigmoid function, and EwN ∼PV [logσ (−wᵀN duv )] is
the expected value of logσ (−wᵀN duv ) given the noise distribution
PV , for which we take the 3/4rd unigram distribution as in [29].

A�er the review representations duv are obtained, each duv is
connected to its corresponding user u and itemv , thus the user and
item representations u1, v1 in V1 are generated from their corre-
sponding reviews. Weights of these connections consist a setW1,
which is learned as parameter in the �nal objective function.

3.3 Modeling of Visual Images
We adopt frequently used DNN architectures to learn the repre-
sentations in the image view V2, as shown in Figure 2(b). Let puv
denote the image that user u examined on item v . Same as [28],
the image features ~puv (black intermediate vectors in Figure 2(b))
are calculated using the Ca�e deep learning framework with 5 con-
volutional layers followed by 3 fully-connected layers, which was
pre-trained on 1.2 million ImageNet (ILSVRC2010) images. Output
of the second fully-connected layer are used as the intermediate
image vectors ~puv , whose dimension is 40961.

To learn our compressed image representations puv , we adopt a
fully connected layer to predict the image features ~puv . Let A and b
be the weight matrix and bias vector to be learned, this introduces
the following objective function,

L2 (A, b, puv ) =
∑

(u,v )∈R

(
ϕ (A · puv + b) − ~puv

)2 (4)

whereϕ (·) is the activation function that can be sigmoid, hyperbolic
tangent (tanh), exponential linear units (ELU), or others. It is known
that the sigmoid function restricts each neuron to be in (0,1), which
may limit the performance and may also su�er from saturation,
where neurons stop learning when their output is near either 0 or
1. �e tanh function only partly alleviates the problem because
tanh(x/2) = 2σ (x )−1. As a result, we take the state-of-the-art ELU
function in this work to avoid this problem [11].

Similar to reviews, a�er the image representations puv are ob-
tained, each puv is also connected to its corresponding user u and
item v , so that the user and item representations u2, v2 in view V2
are generated from their corresponding images. Weights of these
connections consist a parameter setW2 to be learned.

3.4 Modeling of Numerical Ratings
In this subsection, we present the modeling of the rating view in
our framework, as shown in Figure 2(c). Let ruv be the rating that
user u scores on item v . In contrast to the modeling of reviews
and images, we do not apply a single representation to each rating
1In experiments, the Amazon review dataset has pre-trained the image features and
each image is already represented as a 4096-dimensional vector ~puv , so we used these
vectors directly to learn our image representations puv .
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number, but use a pair of representations ru , rv corresponding to
the rating user and the rated item to predict the ratings, with the
following two-layer fully connected neural network to model the
underlying non-linear correlations:

r̂uv = ϕ
(
U2 · ϕ

(
U1 (ru � rv ) + c1

)
+ c2

)
(5)

where � is element-wise multiplication, ϕ (·) is also the ELU activa-
tion function, andU1,U2, c1, c2 are the weight and bias parameters
to be learned. �is gives us the following objective function,

L3 (U1,U2, c1, c2, ru , rv ) =
∑

(u,v )∈R

(r̂uv − ruv )
2 (6)

Because the entity representations of ratings have already been
mapped to each user and item, we take the entity representations
directly as the user/item representations in view V3, i.e., u3 = ru ,
v3 = rv , and connection weight setW3 is prede�ned as all 1’s.

3.5 Integrated Recommendation Strategy
In this subsection, we integrate the above three views in a uni�ed
pair-wise learning to rank framework. We already have the user
and item representations from each of the three views above, which
are u1, u2, u3 and v1, v2, v3, respectively. With merge function f (·),
we obtain the integrated user and item representations u and v,

u = f (u1, u2, u3), v = f (v1, v2, v3) (7)
Common selections of merge functions can be used in this step,

such as concatenation (i.e., u = [uᵀ1 u
ᵀ
2 u
ᵀ
3 ]ᵀ) or average (i.e., u =

1
3 (u1 + u2 + u3)). In this work, we adopt the simple concatenation
function to guarantee the extendability of the framework, which
will be analyzed in the next section.

To conduct pair-wise learning to rank, we consider all the ob-
served user-item purchases (u,v ) ∈ R as positive pairs, which
are identically denoted as (u,v+). For each positive pair (u,v+),
we randomly select a negative item v− that the user did not pur-
chase before to construct a triplet (u,v+,v−) for training, where
д(u,v+,v−) = д(u, v+, v−) denotes the ranking loss function based
on the integrated user and item representations. Generally,д(u, v+, v−)
can be any function as long as its maximization or minimization
leads to higher rankings of v+ against v− for user u, but its func-
tional form directly a�ects whether the framework is easily ex-
tendable to new views. For here, we primarily adopt the sigmoid
function д(u, v+, v−) = σ (uᵀv+ −uᵀv−) for model learning. In the
next section, we will discuss how di�erent selections of д(·) result
in di�erent extendable properties of this framework.

By integrating the objective functions in Eq.(3)(4)(6) as well as
the objective function for pair-wise learning to rank into Eq.(1), we
have the objective function for 3-view JRL as,

maximize
W,Θ

L =
∑

(u,v )∈R

д(u, v+, v−) + λ1L1 − λ2L2 − λ3L3

=
∑

(u,v )∈R

{
σ (uᵀv+ − uᵀv−) − λ2

(
ϕ (A · puv + b) − ~puv

)2

+ λ1
∑
w ∈V

fw,duv

(
logσ (wᵀduv ) + t · EwN ∼PV logσ

(
−wᵀN duv

))
− λ3

(
ϕ

(
U2 · ϕ

(
U1 (ru � rv ) + c1

)
+ c2

)
− ruv

)2}
(8)

where the optimization parametersW = {W1,W2,W3} and Θ =
{Θ1,Θ2,Θ3} = {{w, duv }, {A, b, puv }, {U1,U2, c1, c2, ru , rv }}. Be-
sides, λ1, λ2, λ3 > 0 are regularization coe�cients. Note that the
image and rating regularizer have negative coe�cients because
their objectives need to be minimized instead of being maximized.
Besides, the parameters of each viewVk are restricted to its own part
of objective function Lk , and the only interaction of di�erent views
lies in the ranking objective д(u, v+, v−), where u = f (u1, u2, u3)
and v = f (v1, v2, v3) integrate representations learned from dif-
ferent views. �is a�ects the gradient on di�erent parameters and
further a�ects the extendability of the framework, which will be
analyzed in the next section.

Eq.(8) can be easily optimized based on Stochastic Gradient De-
scent (SGD) in well-developed deep learning infrastructures. Once
we obtain the integrated user/item representations u and v, the
personalized recommendation list for each user is constructed by
ranking all the candidate items in descending order of s = uᵀv.

4 FRAMEWORK EXTENDABILITY
Intuitively, our JRL framework is already extendable to new views
in practice, in the sense that when a new view is added to the frame-
work, there is no need to redesign the architecture of existing views
– we only need to design a model to learn the user/item represen-
tations from the new information source, add it to the integrated
user/item representations with the merge function f (·), and �nally
retrain the whole framework for personalized recommendation.

But in this section, we discuss the extendability of the framework
in a more rigorous sense – we expect that there should not only
be no need to redesign the architecture of existing views, but also
no need to retrain the parameters of existing views, so that the
already trained model parameters can still be used even a new view
is added into the framework – which is a very favorable property
for real-world systems.

To this end, we analyze the learning process of the framework
by examining the updating gradients of di�erent parameters, based
on which we take a closer look at how information from di�erent
views is shared during model learning. Further more, by selecting
a proper merge function f (·) and ranking objective function д(·),
we propose a rigorously extendable version of the JRL framework
(denoted as eJRL) for recommendation.

4.1 Information Propagation among Views
Careful readers may have realized that our JRL framework does
not involve common parameters across views – each view has
its own optimization parameter set Θk for objective function Lk ,
as well as its own connection weight parameter setWk to map
entity representations to user/item representations within the view.
�is raises the question of how information is transferred amongst
di�erent views, so as to take advantage of the power of multi-
view machine learning. We examine this problem by looking into
the model learning process based on (stochastic) gradient descent
methods.

For the optimization of Θk of the k-th view, we have,

∂L

∂Θk
= λk

∂Lk
Θk

(9)
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which only involves variables and parameters of the k-th view itself.
While for the optimization ofWk , we have,

∂L

∂Wk
=

∑
(u,v )∈R

(
∂д

∂u
∂u
∂Wk

+
∂д

∂v+
∂v+

∂Wk
+
∂д

∂v−
∂v−

∂Wk

)

=
∑

(u,v )∈R

*
,

∂д

∂u
∂ f

∂uk

∂uk
∂Wk

+
∂д

∂v+
∂ f

∂v+k

∂v+k
∂Wk

+
∂д

∂v−
∂ f

∂v−k

∂v−k
∂Wk

+
-

,
∑

(u,v )∈R

*
,
h(u)

∂uk
∂Wk

+ h(v+)
∂v+k
∂Wk

+ h(v−)
∂v−k
∂Wk

+
-

(10)
where the second equality holds for u = f (u1, u2, · · · ) because that,

∂д

∂u
∂u
∂Wk

=
∂д

∂u
*.
,

∂ f

∂uk

∂uk
∂Wk

+
∑
j,k

∂ f

∂uj

∂uj
∂Wk

+/
-
=
∂д

∂u
∂ f

∂uk

∂uk
∂Wk

(11)
and that similar results can be obtained for v+ = f (v+1 , v

+
2 , · · · ) and

v− = f (v−1 , v
−
2 , · · · ). �e last equality is for notational purpose by

de�ning the following discriminant,

h(x) =
∂д

∂x
∂ f

∂xk
, ∀x ∈ {u, v+, v−} (12)

where x represents any integrated user/item representation, and
xk is the corresponding representation from view Vk .

We see that for each additive component in Eq.(10), the last mul-
tiplier (i.e., ∂uk

∂Wk
, ∂v+k
∂Wk

, and ∂v−k
∂Wk

) is only related to viewVk itself,
while discriminant part h(·) may involve variables and parameters
from other views, which makes it possible for di�erent views to
share information during the model learning process. For example,
when we adopt sigmoid function д(u, v+, v−) = σ (uᵀv+ − uᵀv−)
as in Eq.(8), and adopt the concatenation function f (u1, u2, · · · ) =
[uᵀ1 u

ᵀ
2 · · · ]

ᵀ as examined before, then we have,

h(u) =
∂д

∂u
∂ f

∂uk
= σ ′(uᵀv+ − uᵀv−) (v+k − v

−
k )
ᵀ (13)

which is related not only to view Vk , but also variables from other
views because u = [uᵀ1 u

ᵀ
2 · · · ]

ᵀ , v+ = [v+1
ᵀv+2

ᵀ
· · · ]ᵀ , and v− =

[v−1
ᵀv−2

ᵀ
· · · ]ᵀ . �is is also true for h(v+) = σ ′(uᵀv+ − uᵀv−)uᵀk

and h(v−) = σ ′(uᵀv+ − uᵀv−) (−uᵀk ).
As a result, the learning of user/item representations in view Vk

based on Eq.(10) would rely on information (i.e., user/item represen-
tations) from other views, which eventually propagates information
among di�erent views.

4.2 Extendable JRL (eJRL)
Although information propagation among views helps to boost the
performance of joint representation learning, it also prevents the
framework from being extendable, that is, whenever a new view
is added, we need to retrain the whole model because information
from the new view will a�ect the parameters of the existing views,
which is not favorable in real-world systems that usually need
to train models based on massive data. However, we show that
by selecting certain combinations of the merge function f (·) and
ranking objective functionд(·), we can obtain an extendable version
of the JRL framework.

�e key is to examine the discriminant h(x) = ∂д
∂x

∂f
∂xk

in Eq.(12).
If for any x, h(x) contains no variable from other views beyond Vk ,
then the gradient ∂L

∂Wk
in Eq.(10) will also be independent from

other views. For example, when f (u1, u2, · · · ) = [uᵀ1 , u
ᵀ
2 , · · · ]

ᵀ

and д(u, v+, v−) = ∑
k σ (u

ᵀ
k v
+
k − u

ᵀ
k v
−
k ), we have,

h(u) = σ ′(uᵀk v
+
k − u

ᵀ
k v
−
k ) (v

+
k − v

−
k )
ᵀ

h(v+) = σ ′(uᵀk v
+
k − u

ᵀ
k v
−
k )u
ᵀ
k , h(v

−) = σ ′(uᵀk v
+
k − u

ᵀ
k v
−
k ) (−u

ᵀ
k )

(14)
By substituting Eq.(14) into Eq.(10), we obtain the gradient on

parameter setWk as,

∂L

∂Wk
=

∑
(u,v )∈R

σ ′(uᵀkv
+
k−u

ᵀ
kv
−
k )

*
,
(v+k − v

−
k )
ᵀ ∂uk
∂Wk

+ uᵀk
∂v+k
∂Wk

− uᵀk
∂v−k
∂Wk

+
-

(15)
which only contains variables from viewVk itself. Combining Eq.(9)
and Eq.(15), the parameters {Θk ,Wk } of view Vk will converge
to the same solution even if we retrain the whole model with a
new view added into the framework, as long as we adopt gradient
descent algorithms (e.g., SGD, BFGS, Adam, etc) for optimization.
In this case, we can actually �x the parameters of existing views and
only gradient on the parameters of the newly added view, which
makes the framework easily extendable in practice.

We denote this model under д(u, v+, v−) = ∑
k σ (u

ᵀ
k v
+
k −u

ᵀ
k v
−
k )

and f (u1, u2, · · · ) = [uᵀ1 , u
ᵀ
2 , · · · ]

ᵀ as the Extendable Joint Rep-
resentation Learning (eJRL) framework. Although it prevents in-
formation propagation among di�erent views, it still signi�cantly
outperforms baseline methods because of the integration of multi-
ple information sources for recommendation. We will report the
performance of both JRL and eJRL in the experiments.

5 EXPERIMENTS
In this section, we provide and analyze the experimental results to
study the performance of our (e)JRL framework. We �rst provide
the dataset descriptions and experimental setup, and then present
the evaluations and interpretations of our observations.

5.1 Dataset Description
We adopt the Amazon review dataset2 for experiments. It covers
user interactions (review, rating, helpfulness votes, etc) on items
as well as the item metadata (descriptions, price, brand, image
features, etc) on 24 product categories spanning May 1996 - July
2014, and each product category consists a sub-dataset. We adopt
�ve product categories of di�erent sizes and sparsity, and take the
standard �ve-core dataset for experiment. Some statistics of the
datasets are shown in Table 2.

�e number of interactions in Table 2 refers to the total number of
reviews or ratings in each dataset. Each item is accompanied with an
image, which has already been processed into a 4096-dimensional
vector in the dataset, and we take these vectors to �t the user/item
representations, as explained in Section 3.3.

For each dataset, we randomly select 70% of the interactions from
each user to construct the training set, and adopt the remaining
30% for testing. Because we take the 5-core dataset where each user

2h�p://jmcauley.ucsd.edu/data/amazon/
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Table 2: Basic statistics of the experimental datasets.
Dataset #users #items #interactions sparsity
Movies 123,960 50,052 1,697,533 0.0274%

CDs 75,258 64,421 1,097,592 0.0226%
Clothing 39,387 23,033 278,677 0.0307%

Cell Phones 27,879 10,429 194,439 0.0669%
Beauty 22,363 12,101 198,502 0.0734%

has at least 5 interactions, thus we have at least 3 interactions per
user for training, and at least 2 interactions per user for testing.

5.2 Experimental Setup
We compare and analyze our JRL and eJRL framework, as well as
our framework using each single view (review, image, or rating),
with the following baselines3.
• BPR: �e Bayesian Personalized Ranking approach for rec-

ommendation, which is one of the state-of-the art ranking-based
method for top-N recommendation with numerical ratings. Speci�-
cally, we use BPR-MF for model learning [31].
• BPR-HFT: �e Hidden Factors and Topics model is one of the

state-of-the-art methods for rating prediction with textual reviews
[27], but it is not speci�cally designed for top-N recommendation.
We apply Bayesian personalized ranking on top of HFT for be�er
top-N recommendation while using textual reviews.
• VBPR: �e Visual Bayesian Personalized Ranking method for

recommendation, which is the state-of-the-art method for recom-
mendation based on visual images of the products [18].
• DeepCoNN: �e Deep Cooperative Neural Networks model

for recommendation, which models users and items jointly using
review text for rating prediction [45].
• CKE: �e Collaborative Knowledge-base Embedding model

for recommendation. We adopt the textual product description and
product image knowledge for model implementation [40].

In general, we have considered both shallow (BPR, BPR-HFT,
VBPR) and deep (DeepCoNN, CKE) models. Besides, they cover dif-
ferent information sources, including ratings (BPR), reviews (BPR-
HFT, DeepCoNN), and images (VBPR, CKE), respectively.

To simulate a practical application, we train the di�erent views
independently and then merge the views for the eJRL framework;
while for JRL, di�erent views are trained as a whole. We adopt
stochastic gradient descent with batch size 64 and train each model
for 20 epochs. �e learning rate is 0.5 multiplied with the num-
ber of trained instances divided by the total number of training
instances, which dynamically shrinks during the learning proce-
dure. We set the number of negative samples t = 5 in Eq.(3), and
clip the global norm of gradients from each batch with 5. Unless
otherwise speci�ed, we primarily set the embedding size (length
of vectors duv ,puv , ru , rv , and uk , vk ) as 300, and set the regular-
ization coe�cients as λ1 = λ3 = 1, λ2 = 0.0001 (λ2 = 0.001 for
clothing dataset). Performance on di�erent parameter se�ings will
be analyzed in Section 5.6 and 5.7.

We conduct �ve-fold cross-validation on training set to tune the
best hyper-parameters of each baseline. Speci�cally, the number
of topics is 10 for BPR-HFT, and the dimension of latent factor (or
embedding size) is 100 for baselines. �e regularization coe�cient
3Source code of our models are available at h�ps://github.com/evison/JRL

λ = 10 works the best for BPR and VBPR. Optimization for baselines
terminate until convergence or 150 learning epochs.

5.3 Evaluation Measures
For evaluation, we adopt the following four representative top-N
recommendation measures:
• Precision: Percentage of correctly recommended items in a

user’s recommendation list, averaged across all testing users.
• Recall: Percentage of purchased items that are really recom-

mended in the list, and it is also averaged across all testing users.
• NDCG: �e most frequently used list evaluation measure that

takes into account the position of correctly recommended items.
NDCG is averaged across all the testing users.
• HT: Hit Ratio, which is the percentage of users that have at

least one correctly recommended item in their list.
We provide top-N recommendation list for each user in the test-

ing set, where N=10 is taken to report the numbers and compare
di�erent algorithms.

5.4 Single-view Performance
We �rst look into the performance of our framework when using
each single view, i.e., when only one of the regularization coe�-
cients λi in Eq.(8) is non-zero. Results are shown in Table 3.

We see that both of the deep baselines (DeepCoNN and CKE)
are be�er than any of the shallow baselines, which is in accordance
with the observations in [40, 45]. Besides, we see that CKE per-
forms be�er than DeepCoNN on most datasets. �e reason can be
that CKE incorporates more multimodal information (both product
description and image) for product embedding, while DeepCoNN
only takes advantage of textual reviews. Another reason is that
DeepCoNN adopts point-wise learning for recommendation, while
CKE is based on pair-wise learning to rank, and the la�er has been
frequently observed to be be�er than point-wise methods on top-N
recommendation tasks [12].

We �rst compare our model with the shallow baselines to analyze
the advantage of deep representation learning methods. Speci�-
cally, we compare our review-based model with BPR-HFT – the
baseline that also models textual reviews for recommendation. �e
improvement mainly comes from two aspects: 1) embedding-based
representation learning gives higher degree of freedom to �nd the
word/document representations, instead of pre-assuming a �xed
number of topics as in topic modeling (used by BPR-HFT); and 2),
by word embedding, our model can be�er capture the semantic
similarity between words and phrases, which helps to aggregate
user preferences from multiple reviews that use di�erent but se-
mantically similar expressions.

Using images alone in our framework also outperforms VBPR –
the baseline that models images for recommendation. Considering
the di�erence of image modeling in our framework from that of
VBPR, this implies that by connecting both users and items to the
image representations directly (see Figure 2(b)), our model pro�les
the users and items in the same semantic space spanned by images,
which can be�er capture the user-item similarity than the latent
a�ne space used in VBPR.

However, when using the rating view alone, our framework did
not outperform the best baseline – it was only comparable to BPR
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Table 3: Summary of performance for baselines and our framework with single- andmulti-view settings (note: all numbers in
the table are percentage numbers with ‘%’ omitted). �e �rst block shows the shallow baseline performance, where the starred
numbers are the best shallow baseline performance among the four; the second block shows deep baseline performance; the
third block shows the results of our framework with each single view (Review, Image, Rating) and multi-views (JRL, eJRL).
�e last block shows the percentage increment (or decrement for negative numbers) of our results against the best baseline
(i.e., CKE). All increments/decrements are signi�cant at p=0.001. Underlined numbers show the best single view among all
three views, while bolded numbers are the best performance of each column.

Dataset Movies CDs Clothing Cell Phones Beauty
Measures(%) NDCG Recall HT Prec NDCG Recall HT Prec NDCG Recall HT Prec NDCG Recall HT Prec NDCG Recall HT Prec
BPR 1.267 1.988 4.421 0.528 2.009 2.679 8.554 1.085 0.601 1.046 1.767 0.185 1.998 3.258 5.273 0.595 2.753 4.241 8.241 ∗1.143
BPR-HFT ∗2.092 ∗3.255 ∗6.378 ∗0.776 ∗2.661 ∗3.570 ∗9.926 ∗1.268 ∗1.067 ∗1.819 ∗2.872 ∗0.297 ∗3.151 ∗5.307 ∗8.125 ∗0.860 ∗2.934 ∗4.459 ∗8.268 1.132
VBPR 0.849 1.534 2.976 0.324 0.631 0.845 2.930 0.328 0.560 0.968 1.557 0.166 1.797 3.489 5.002 0.507 1.901 2.786 5.961 0.902
DeepCoNN 3.800 4.671 10.522 0.886 4.218 6.001 13.857 1.681 1.310 2.332 3.286 0.229 3.636 6.353 9.913 0.999 3.359 5.429 9.807 1.200
CKE 4.091 5.466 11.053 1.319 4.620 6.483 14.541 1.779 1.502 2.509 4.275 0.388 3.995 7.005 10.809 1.070 3.717 5.938 11.043 1.371
Review 4.222 6.145 12.958 1.465 5.286 7.454 16.592 2.079 1.270 2.211 3.527 0.336 4.184 7.275 10.632 1.062 4.216 6.766 12.422 1.467
Image 2.648 4.035 9.489 1.048 3.191 4.564 11.547 1.379 1.393 2.481 3.773 0.354 3.777 6.439 9.444 0.932 3.310 5.288 10.280 1.211
Rating 0.432 0.700 2.242 0.234 0.528 0.747 2.394 0.248 0.377 0.732 1.219 0.112 1.506 2.706 3.845 0.369 0.876 1.442 3.322 0.313
eJRL 4.405 6.28913.292 1.521 5.023 6.973 16.081 2.002 1.523 2.679 4.182 0.396 4.185 7.130 10.531 1.054 3.896 6.010 11.090 1.355
JRL 4.334 6.334 13.245 1.492 5.378 7.54516.774 2.085 1.735 2.989 4.634 0.442 4.364 7.51010.940 1.096 4.396 6.94912.776 1.546
Review-Impr 3.20 12.43 17.24 11.09 14.43 14.99 14.11 16.86 -15.46 -11.90 -17.51 -13.36 4.72 3.86 -1.64 -0.73 13.42 13.94 12.49 6.98
Image-Impr -35.28 -26.19 -14.15 -20.58 -30.92 -29.59 -20.59 -22.50 -7.24 -1.12 -11.75 -8.84 -5.47 -8.08 -12.63 -12.89 -10.96 -10.95 -6.91 -11.67
eJRL-Impr 7.67 15.07 20.26 15.33 8.72 7.57 10.59 12.54 1.41 6.75 -2.19 1.92 4.74 1.79 -2.57 -1.52 4.81 1.21 0.42 -1.14
JRL-Impr 5.92 15.89 19.84 13.08 16.40 16.39 15.36 17.21 15.52 19.12 8.38 13.87 9.23 7.21 1.21 2.41 18.27 17.03 15.69 12.76

on some datasets. Because of the sparsity of rating interactions and
the huge parameter complexity in the training stage of our model,
this observation is not surprising, and it also implies that the power
of (deep) representation learning structures can be be�er leveraged
with the availability of large-scale unstructured data of rich (textual
or visual) semantics, such as text or image.

We also see that Review performs be�er than Image on most
datasets except clothing, which is expected because users’ prefer-
ences to clothes are largely a�ected by their visual fashions, which
is also observed in VBPR [18]. But for other domains such as movie
or CD, it is relatively di�cult to make judgements only based on
the appearance of a movie poster or a CD cover, while the textual
comments from users may reveal more details about these products.

Similar observations can be found when comparing our single-
view model with the best baseline (CKE), shown in the last block of
Table 3. We see that Review achieves be�er performance than CKE
on all datasets except Clothing and (partly) Cell Phones, because the
review information not only contains users’ description of products,
but also their personalized preferences and sentiments on these
products, while the product text description information used by
CKE is non-personalized. On Clothing dataset, however, image is
the most informative source for consumer decisions, as a result,
CKE is be�er for its adoption of both text and image information.
However, by incorporating image, review, and rating information
sources together, our uni�ed JRL or eJRL models are be�er than the
best CKE baseline, which will be analyzed in the next subsection.

5.5 Multi-view Performance
We further look into our framework when integrating all three
views. Generally, we see that on most datasets, eJRL is be�er than
CKE, and JRL is even be�er than eJRL for nearly all the cases.

Intuitively, our ranking-based uni�cation of di�erent views, plus
the adoption of concatenation function f (u1, u2, · · · ) = [uᵀ1 , u

ᵀ
2 , · · · ]

ᵀ

as the merge function, together help to gain be�er performance
when integrating di�erent views. Mathematically, this is equiva-
lent to adding up the ranking scores sk = uᵀk vk from each view
to rerank the top-N recommendation lists produced by di�erent
views. As a result, an item tends to gain a higher score in the �nal
recommendation list as long as it achieves a high score from one
view, i.e., as long as the user preference on this item is appropriately
pro�led by one information source.

Furthermore, by allowing information propagation among views
during model learning, each view borrows representations from
other views to �t the ranking objective д(·), which helps the JRL
framework to achieve even be�er performance than eJRL. However,
the performance of eJRL is generally comparable to JRL on most
cases, and they are both signi�cantly be�er than the best CKE
baseline. As a result, eJRL has advantages in practice given its
extendability property.

We also �nd that selecting proper regularization coe�cients in
Eq.(8) is important to gain be�er integrated performance on JRL
and eJRL than the single-view versions – especially the image view
regularizer λ2. We analyze the parameter sensitivity and explain
the reasons in the following subsections.

5.6 Impact of Regularization Coe�cients
During the experiments, we �nd that the performance of the (e)JRL
framework is relatively stable in terms of review and rating regu-
larization coe�cients λ1 and λ3, but the image regularization coef-
�cient λ2 largely a�ects the results. As a result, we �x λ1 = λ3 = 1
as the default value, and vary the values of λ2 to study the e�ect.

Figure 3 shows the performance of Review, Image, eJRL, and
JRL on the �ve datasets in terms of NDCG. Observations on other
evaluation measures were similar. Note that only the performance
of Image, eJRL and JRL change with di�erent values of λ2, because
other model variations do not involve this parameter.
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Figure 3: Relationship of NDCG vs the Image Regularization Coe�cient λ2 under the default embedding size 300 and other
regularizers λ1 = λ3 = 1. Note that only the performance of Image, eJRL, and JRL approaches change with di�erent selections
with λ2, because other model variations do not involve this parameter. We also plot Review performance for reference.

We see that on most datasets (Movies, CDs, Cell Phones, Beauty),
the performance of our model increases with the increase of λ2 at
the beginning, and then drops when λ2 further increases, which
indicates that a proper λ2 value is required for the model to gain the
best performance. When λ2 is too small, the image regularization
term vanishes, which prevents the model from ��ing accurate user
preferences based on visual images, while if λ2 is too large, the
image regularizer dominates the gradient direction during SGD
learning. Speci�cally, we see that the best selection of λ2 is 0.0001
for JRL on all these four datasets, which is actually not a coincidence
– by referring to Eq.(8), we see that the image regularizer component
is an `2-norm of a 4096-dimensional vector, while the remaining
components are scalars. �ough the scale of each element of the
image vector is comparable to the other components of the objective
function, they amount to approximately 4000 times when added
into an `2-norm. As a result, a coe�cient on the magnitude of
0.0001 is needed to rescale the image regularizer to be comparable
with other components in the range of 0 ∼ 1. Otherwise, the model
would be dominated by the image view and will only gradient
descend towards the image features in SGD, which is veri�ed by our
observations when tracing the learning procedure. �is observation
indicates that it is important to make sure that di�erent views are
comparable on scale when adding new information sources into
the JRL framework.

For eJRL, on the other hand, di�erent views do not interact
during model learning, and this is why we see that eJRL is be�er
than JRL when λ2 is large. However, for most datasets in Figure 3,
the globally best performance is still achieved when using JRL with
the appropriate image regularization coe�cient.

We also see that on the Clothing dataset, the best image regular-
ization coe�cient is λ2 = 0.001. Together with the observation in
Section 5.4 that clothing is the only dataset where Image achieved
be�er performance than Review on single-view modeling, this im-
plies that it would be bene�cial to strengthen the best view when
integrating di�erent views so as to achieve further promoted per-
formance in multi-view modeling.

5.7 Impact of Embedding Size
We study the e�ect of di�erent embedding sizes in this subsection.
To do so, we �x λ2 as default values (0.001 for clothing and 0.0001
for other datasets), and then tune the embedding size from 10 to 500.
We plot the results on Movies and CDs in Figure 4, and observations
on other datasets were similar.

We see that the performances of both JRL and eJRL gradually
increase with the increase of embedding size, and then tend to be
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Figure 4: Relationship of NDCG vs embedding size (Movies
and CDs) under default regularizer coe�cient λ2 = 0.0001.
stable when the embedding size is su�ciently large, and this is
why we adopt 300 as the default embedding size in the previous
experiments. �is observation is similar to previous work on matrix
factorization algorithms, however, MF algorithms usually achieve
stable performance with several tens or at most a hundred of latent
factors, while the performance of our JRL and eJRL frameworks
keep increasing until a few hundred factors, which implies that with
the availability of large-scale user-generated data, our frameworks
are able to learn more complex user-item interactions with more
parameters than matrix factorization.

For the baseline algorithms, we see that the best performance is
usually achieved with smaller embedding sizes, for example, the
BPR-HFT method achieves its best performance when using 100
latent factors, and BPR and VBPR perform best with even smaller
embedding size. Because of their limited ability to model complex
user-item interactions in multimodal data, these methods could not
bene�t from an increased parameter complexity, instead, they may
even result in over-��ing when too many latent factors are used
for model learning. �is observation, on the other hand, further
veri�es the advantage of our joint representation learning approach
for recommendation. �e only trade-o� here is recommendation
quality and the speed of model training. In our experiments, both
the JRL and eJRL models can be trained within 10 hours on a single
GPU for most datasets and parameter se�ings, which is su�cient
to support daily-level model updating in practice.

5.8 Discussions
Another advantage of our deep representation learning approach
to recommendation is its ability of fast online prediction. �is is be-
cause we adopt a simple vector multiplication s = uᵀv to calculate
ranking scores online, as a result, once the user and item embed-
dings are calculated and stored in the o�ine, the online prediction
and recommendation procedure only involve vector multiplications,
which is similar to conventional latent factor models such as ma-
trix factorization. �is is more e�cient than other deep learning
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approaches to recommendation that train a complex prediction
network for online ranking score calculation.

6 CONCLUSIONS AND FUTUREWORK
In this work, we proposed a Joint Representation Learning (JRL)
framework based on multi-view machine learning, which is capa-
ble of incorporating heterogeneous information sources for top-N
recommendation by learning user/item representations in a uni�ed
space. We analyzed how information is propagated among di�erent
views in a gradient-based model learning paradigm, and further
proposed a rigorously extendable version of the JRL framework
(eJRL), which makes it possible to integrate new views (i.e., infor-
mation sources) without re-training of existing views. Experiments
on various datasets veri�ed the e�ectiveness of both JRL and eJRL.

In contrast to previous work that mostly focuses on rating pre-
diction tasks, our work reveals the signi�cant potential for improve-
ment on top-N recommendation tasks brought about by the power
of representation learning architectures, and there is even more
room for further improvements. In the future, we will consider
alternative representation learning architectures to model reviews,
images, and ratings. Speci�cally, we would like to capture the
word sequential information and their local semantics to be�er
model the textual reviews for recommendation, design structures
to further promote the rating view in top-N recommendation, and
�nally incorporate more information sources such as sound tracks
or even videos towards a uni�ed, multi-view informed practical
recommendation system.
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